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Abstract

In this present paper, we prove a common fixed point theorem for self maps in modular spaces. Also one corollary,
which shows that our main theorem is generalized version of the main theorem of [A. Razani, E. Nabizadeh, M.
Beyg Mohamadi and S. Homaei Pour, Abs. Appl. Anal. 2007, Article ID 40575] is given.
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1. Introduction

The theory of modular spaces was introduced by Nakano [1] in 1950 and generalized by Musielak and Orlicz [2],
Koshi and Shimogaki [3] and Yamamuro [4] and their collaborators. The monographic exposition of the theory of
Orlicz spaces may be found in in the book of Krasnosel’skii and Rutickii[5]. We referred the reader for the theory
of Orlicz spaces and modular spaces, to the books [6, 7]. Fixed point theorems in modular spaces, generalizing the
classical Banach fixed point theorem in metric spaces, have been studied extensively by many mathematicians such
as Arandelović, [8], Edelstein [9], Ćirić [10], Rakotch [11], Reich [12], Kirk [13]. In addition, Razani et al. [14] proved
some fixed point theorems of non linear and asymptotic contractions in modular spaces. Also, quasi-contraction
mappings in modular spaces without ∆2–condition were investigated by Khamsi [15]. Kuaket and Kumam [16]
proved the existence of fixed points of asymptotic pointwise contractions in modular spaces. Moreover Chen and
Wang [17] proved the fixed points of asymptotic pointwise nonexpansive mappings in modular spaces.

In this paper we establish a fixed point theorem for self maps in modular spaces with new type contractivity.

Definition 1.1 Let X be an arbitrary vector space over F(= R or C).
A functional ρ : X → [0,∞] is called modular if for all x, y ∈ X ,
(i) ρ(x) = 0 if and only if x = 0,
(ii) ρ(αx) = ρ(x) for every α ∈ F with |α| = 1,
(iii) ρ(αx+ βy) ≤ ρ(x) + ρ(y) if α, β ≥ 0 and α+ β = 1.

Definition 1.2 If (iii) in definition 1.1 is replaced by

ρ(αx+ βy) ≤ αsρ(x) + βsρ(y),

for α, β ≥ 0, α + β = 1 with an s ∈ (0, 1], then we say that ρ is an s-convex modular, and if s = 1, ρ is called a
convex modular.
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A modular ρ defines a corresponding modular space, i.e., the vector space Xρ given by to
Xρ = {x ∈ X : ρ(λx)→ 0 as λ→ 0} .Letρ be a convex modular, the modular space Xρ can be equipped with a

norm called the Luxemburg norm, defined by

‖x‖ρ = inf
{
λ > 0 ; ρ

(x
λ

)
≤ 1
}
.

Definition 1.3 Let Xρ be a modular space and let {xn} and x be in Xρ. Then

(i) {xn} is said to be ρ–convergent to x and write xn
ρ−→ x if ρ(xn − x)→ 0 as n→∞.

(ii) {xn} is called ρ–Cauchy if ρ(xn − xm)→ 0 as n,m→∞.
(iii) A subset S of Xρ is called ρ–complete complete if any ρ–Cauchy sequence is ρ–convergent to an element of S.

(iv) A subset B of Xρ is called ρ–closed if for any sequence {xn} ⊆ B with xn
ρ−→ x, we have x ∈ B.

(v) We say the modular ρ has the Fatou property if ρ(x) ≤ lim infn→∞ ρ(xn) whenever xn
ρ−→ x.

(vi) ρ is said to satisfy the ∆2–condition if ρ(2xn)→ 0 whenever ρ(xn)→ 0 as n→∞.

Remark 1.4 Note that, if x ∈ Xρ then ρ(ax) is an increasing function of a > 0. Suppose 0 < a < b, then property
(iii) of Definition 1.1 with y = 0 shows that ρ(ax) = ρ

(
a
b bx
)
≤ ρ(bx) for all x ∈ X . Moreover, if ρ is a convex

modular on X and |α| ≤ 1, then ρ(αx) ≤ αρ(x) and also ρ(x) ≤ 1
2ρ(2x) for all x ∈ X .

Definition 1.5 A function T : Xρ → Xρ is called ρ-continuous if

ρ(xn − x)→ 0, then ρ
(
T (xn)− T (x)

)
→ 0. (2)

2. Main results

Throughout this paper, we assume that the modular ρ satisfies the ∆2–condition. In this section, by using some
ideas from [14, 18] we will prove a fixed point theorem for a new type of contractivity as follows.

Theorem 2.1 Let Xρ be a ρ-complete modular space, where ρ satisfies the ∆2-condition. Suppose that ϕ : R+ →
[0,∞) is an increasing and upper semicontinuous function satisfying

ϕ(t) < t, (t > 0). (3)

Let C be a ρ-closed subset of Xρ and let T, S : C → C be mappings such that there exist α, β ∈ R+ with α > β, and

ρ
(
α(Tx− Sy)

)
≤ ϕ

(
ρ(β(x− y))

)
, (4)

for all x, y ∈ C. Then T and S have a unique common fixed point in C.

First we prove that any fixed point of T is also a fixed point of S, and conversely. Suppose Tx = x, hence we have
from (4)

0 ≤ ρ
(
α(x− Sx)

)
≤ ϕ

(
ρ(β(x− x))

)
= 0, (5)

since α > 0, so Sx = x. Similarly, if Sx = x, then Tx = x.
Now, we prove that if T and S have a common fixed point, then the fixed point is unique. Let Tx = Sx = x

and Ty = Sy = y. If x 6= y, then (4) implies that

ρ
(
β(x− y)

)
< ρ
(
α(x− y)

)
= ρ
(
α(Tx− Sy)

)
≤ ϕ

(
ρ(β(x− y))

)
, (6)

which is a contradiction. Therefore x = y.
Suppose x0 ∈ C and put x2n+1 = Tx2n, x2n+2 = Sx2n+1 for all n = 0, 1, 2, , · · · . We may suppose that for any

n, xn+1 6= xn, otherwise T or S has a fixed point and the proof is complete. Now, we have

ρ
(
α(x2n+1 − x2n)

)
= ρ
(
α(Tx2n − Sx2n−1)

)
≤ ϕ

(
ρ
(
β(x2n − x2n−1)

))
(7)

< ρ
(
β(x2n − x2n−1)

)
,
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similarly

ρ
(
α(x2n+2 − x2n+1)

)
= ρ
(
α(Sx2n+1 − Tx2n)

)
≤ ϕ

(
ρ
(
β(x2n+1 − x2n)

))
(8)

< ρ
(
β(x2n+1 − x2n)

)
.

Hence (7) and (8) imply that

ρ
(
α(xn+1 − xn)

)
≤ ϕ

(
ρ
(
β(xn − xn−1)

))
< ρ
(
β(xn − xn−1)

)
(n ≥ 1). (9)

Consequently, {ρ
(
α(xn+1 − xn)

)
} is decreasing and bounded from below. Hence

{ρ
(
α(xn+1 − xn)

)
} converges to z. Now, if z 6= 0,

z = lim
n→∞

ρ
(
α(xn+1 − xn)

)
≤ lim
n→∞

ϕ
(
ρ
(
β(xn − xn−1)

))
< lim
n→∞

ϕ
(
ρ
(
α(xn − xn−1)

))
= ϕ(z),

which is a contradiction, hence z = 0.
Now, we show that {xn} is a ρ-cauchy sequence in Xρ. If {βxn} is not a ρ-cauchy sequence, then there exists

ε > 0 and sequences {mk}, {nk} of integers with mk > nk ≥ k and

ρ
(
β(xmk

− xnk
)
)
≥ ε (k ∈ N). (10)

Moreover, corresponding to odd numbers nk, we can choose even numbers mk in such a way that it is the smallest
integer with mk > nk such that

ρ
(
β(xmk−2

− xnk
)
)
< ε. (11)

In fact, let mk be the smallest even number exceeding nk for which (10) holds, and

Nk = {m ∈ Ne | ∃nk ∈ No; ρ
(
β(xm − xnk

)
)
≥ ε,m > nk ≥ k}.

It is clear that Nk 6= ∅ and by well ordering principle, the minimum element of Nk exists and is denoted by mk,
and clearly (11) holds.

Now, let α0 ∈ R+ be such that β
α + 1

α0
= 1, then we have

ρ
(
β(xmk

− xnk
)
)

= ρ
(βα
α

(
α(xmk

− xnk+2
)
)

+
1

α0

(
α0β(xnk+2

− xnk
)
))

≤ ρ
(
α(xmk

− xnk+2
)
)

+ ρ
(
α0β(xnk+2

− xnk
)
)

≤ ϕ
(
ρ
(
β(xmk−1

− xnk+1
)
))

+ ρ
(
α0β(xnk+2

− xnk
)
)

< ε+ ρ
(
α0β(xnk+2

− xnk
)
)
.

If k →∞, by ∆2-condition, ρ
(
α0β(xnk+2

− xnk
)
)
→ 0, hence limk→∞ ρ

(
β(xmk

− xnk
)
)

= ε. Therefore,

ρ
(
β(xmk

− xnk
)
)
≤ ρ
(
α(xmk+1

− xnk+1
)
)

+ ρ
(
2α0β(xmk

− xmk+1
)
)

+ ρ
(
2α0β(xnk+1

− xnk
)
)

≤ ϕ
(
ρ
(
β(xmk

− xnk
)
))

+ ρ
(
2α0β(xmk

− xmk+1
)
)

+ ρ
(
2α0β(xnk+1

− xnk
)
)
.

Therefore, as k → ∞, we get ε ≤ ϕ(ε), which is a contradiction. Hence {βxn} is a ρ-cauchy sequence, and by
∆2-condition, {xn} is a ρ-cauchy sequence. Since Xρ is complete, there is a w ∈ C such that ρ(xn − w) → 0, as
n→∞. Now, we show that w is the common fixed point of T and S. Put x = x2n and y = w in (4), we have

ρ
(
α(x2n+1 − Sw)

)
= ρ
(
α(Tx2n − Sw)

)
≤ ϕ

(
ρ
(
β(x2n − w)

))
,

therefore ρ
(
α(w − Sw)

)
= limn→∞ ρ

(
α(x2n+1 − Sw)

)
= 0, and so w = Sw. This completes the proof.

The following corollaries are immediate consequences of Theorem 2.1.

Corollary 2.2 Let Xρ be a ρ-complete modular space. Suppose that ϕ : R+ → [0,∞) is an increasing and upper
semicontinuous function satisfying

ϕ(t) < t, (t > 0). (12)

Let C be a ρ-closed subset of Xρ and let T : C → C be a mapping such that there exist α, β ∈ R+ with α > β, and

ρ
(
α(Tx− Ty)

)
≤ ϕ

(
ρ(β(x− y))

)
, (13)

for all x, y ∈ C. Then T has a unique fixed point in C.
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Corollary 2.3 Let Xρ be a ρ-complete modular space. Let C be a ρ-closed subset of Xρ and let T, S : C → C be
mappings such that there exist α, β, η ∈ R+ with α > β and η ∈ (0, 1), and

ρ
(
α(Tx− Sy)

)
≤ η

(
ρ(β(x− y))

)
, (14)

for all x, y ∈ C. Then T and S have a unique common fixed point in C.

Corollary 2.4 Let Xρ be a ρ-complete modular space, where ρ is s-convex and satisfies the ∆2-condition. Let C be
a ρ-closed subset of Xρ and let T, S : C → C be mappings such that there exist α, β, η ∈ R+ with α > max{β, ηβ}
and

ρ
(
α(Tx− Sy)

)
≤ ηs

(
ρ(β(x− y))

)
, (15)

for all x, y ∈ C. Then T and S have a unique common fixed point in C.

Let β0 be a constant such that α > β0 > max{β, ηβ}. Then we have

ρ
(
α(Tx− Sy)

)
≤ ηs

(
ρ(β(x− y))

)
= ηs

(
ρ(
β

β0
β0(x− y))

)
≤
(βη
β0

)s
ρ(β0(x− y)),

where
(
βη
β0

)s
< 1. Hence by using Corollary 2.3, the result follows.
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