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Abstract

The main aim of this paper is to prove that the existence and uniqueness of solutions for systems of simultaneous
Volterra Hammerstein and Urysohn nonlinear integral equations in G-metric spaces and partially ordered G-metric
spaces settings by using common fixed point theorems satisfying generalized contractive conditions.
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1. Introduction and Preliminary notes

The fixed point theory is one of the most rapidly growing topic of nonlinear functional analysis. It is a vast and
interdisciplinary subject whose study belongs to several mathematical domains such as: classical analysis, functional
analysis, operator theory, topology and algebraic topology, etc. This topic has grown very rapidly perhaps due to its
interesting applications in various fields within and out side the mathematics such as: integral equations, initial and
boundary value problems for ordinary and partial differential equations, game theory, optimal control, nonlinear
oscillations, variational inequalities, complementary problems, economics and others.

Existence of fixed points in ordered metric spaces has been initiated by Ran and Reurings [21] and further
studied by Nieto and López [14]. They studied existence and uniqueness of fixed points on partially ordered metric
spaces and applied their results to boundary value problems for ordinary differential equations. Subsequently,
several interesting and valuable results have appeared in this direction see for examples [5, 6, 9, 15, 20, 23, 25].

Integral equation methods are very useful for solving many problems in several applied fields like mathematical
economics and optimal control theory, because these problems are often reduced to integral equations. Since these
equations usually cannot be solved explicitly, so it is necessary to get different numerical techniques. There are
numerous advanced and efficient methods, which have been focusing on the solution of integral equations. Many
papers have been appeared on the problem of existence and uniqueness of solutions of nonlinear integral equations
and the results are established by applying various fixed point techniques, see e.g., [7, 8, 16, 17, 18, 19, 26].

In 2006, Mustafa and Sims [12, 13] introduced the concept of a G-metric and G-metric space, which is a
generalization of metric space. After this pioneering work, G-metric spaces and particularly fixed points of various
maps on G-metric spaces have been intensively studied, see, e.g., [1, 4, 11, 22].

Definition 1.1 [13] Let X be a nonempty set and let G : X3 → [0,∞) be a function satisfying:
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(G1) G(x, y, z) = 0 if x = y = z,

(G2) 0 < G(x, x, y), for all x, y ∈ X, with x 6= y,

(G3) G(x, x, y) ≤ G(x, y, z),∀x, y, z ∈ X, with z 6= y,

(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = . . . , (symmetry in all three variables),

(G5) G(x, y, z) ≤ G(x, a, a) + G(a, y, z), ∀x, y, z, a ∈ X, (rectangle inequality).

Then the function G is called a G-metric on X, and the pair (X,G) is called a G-metric space.

Definition 1.2 [13] Let (X, G) be a G-metric space, a sequence (xn) is said to be

(i) G-convergent if for every ε > 0, there exists an x ∈ X, and k ∈ N such that for all m,n ≥ k, G(x, xn, xm) < ε.

(ii) G-Cauchy if for every ε > 0, there exists an k ∈ N such that for all m,n, p ≥ k, G(xm, xn, xp) < ε, that is
G(xm, xn, xp) → 0 as m,n, p →∞.

(iii) A space (X, G) is said to be G-complete if every G-Cauchy sequence in (X,G) is G-convergent.

Proposition 1.3 [13] Every G-metric space (X,G) will define a metric space (X, dG) by

dG(x, y) = G(x, y, y) + G(y, x, x), ∀x, y ∈ X.

Lemma 1.4 [13] Let (X, G) be a G-metric space. Then the following are equivalent:

(i) {xn} is G-convergent to x.

(ii) dG(xn, x) → 0, as n →∞ (that is, {xn} converges to x relative to the metric dG).

(iii) G(xn, xn, x) → 0 as n →∞,

(iv) G(xn, x, x) → 0 as n →∞,

(v) G(xn, xm, x) → 0 as n, m →∞,

Lemma 1.5 [13] Let (X, G) be a G-metric space. Then the following are equivalent:

(i) The sequence (xn) is G-Cauchy,

(ii) for every ε > 0, there exists k ∈ N such that G(xn, xm, xm) < ε for m,n ≥ k.

Lemma 1.6 [13] Let (X,G) be a G-metric space. Then the function G(x, y, z) is jointly continuous in all three of
its variables.

Definition 1.7 [13] A G metric space X is symmetric if G(x, y, y) = G(y, x, x) for all x, y ∈ X.

Proposition 1.8 [13] Let (X, G) be a G-metric space. Then for any x, y, z, and a ∈ X, it follows that

(i) if G(x, y, z) = 0 then x = y = z,

(ii) G(x, y, z) ≤ G(x, x, y) + G(x, x, z),

(iii) G(x, y, y) ≤ 2G(x, x, y),

(iv) G(x, y, z) ≤ G(x, a, z) + G(a, y, z),

(v) G(x, y, z) ≤ 2
3 (G(x, y, a) + G(x, a, z) + G(a, y, z)),

(vi) G(x, y, z) ≤ G(x, a, a) + G(y, a, a) + G(z, a, a),

Proposition 1.9 [13] A G-metric space (X,G) is G-complete if and only if (X, dG) is a complete metric space.

Corollary 1.10 [13] If Y is a non-empty subset of a G-complete metric space (X,G), then (Y, G|Y ) is complete if
and only if Y is G-closed in (X, G).
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Definition 1.11 [10] A function ψ : [0,∞) → [0,∞) is called altering distance function if

(i) ψ is increasing and continuous,

(ii) ψ(t) = 0 if and only if t = 0.

Definition 1.12 [1] Let X be a nonempty set. Then (X,¹, G) is called an ordered G-metric space if (X, G) is a
G- metric space and (X,¹) is a partial order set.

Definition 1.13 Let (X,¹) be a partial ordered set. Then two points x, y ∈ X are said to be comparable if x ¹ y
or y ¹ x.

Definition 1.14 [3] Let (X,¹) self-maps ordered set. A mapping f is called weak annihilator of g if fgx ¹ x for
all x ∈ X.

Definition 1.15 [3] Let (X,¹) self-maps ordered set. A mapping f on X is called dominating if x ¹ fx for all
x ∈ X.

For examples illustrating the above definitions are given in [3].

Definition 1.16 A subset W of a partially ordered set X is said to be well ordered if every two elements of W are
comparable.

In this paper, we discuss two applications for the solutions of nonlinear Volterra-Hammerstein integral equations in
partially ordered G-metric space and Urysohn integral equations in G-metric space.

2. Existence solutions of nonlinear integral equations

The following two theorems 2.1 and 2.2 were proved by Rashwan et.al [23], [24] respectively.

Theorem 2.1 [23] Let (X,¹, G) self-maps ordered G-metric space and let f, g, h, S, T and R be self-maps on X
satisfying the following condition

G(fx, gy, hz) ≤ kM(x, y, z), (1)

where k ∈ [0, 1
2 ) and

M(x, y, z) = max{G(Sx, Ty, Rz), G(fx, fx, Sx), G(gy, gy, Ty), G(hz, hz, Rz), (gy, gy, Sx),
G(Ty, hz, hz), G(Rz, fx, fx)},

for all comparable elements x, y, z ∈ X. Suppose that

(i) f(X) ⊆ T (X), g(X) ⊆ R(X), h(X) ⊆ S(X),

(ii) dominating maps f, g, h are weak annihilators of T, R, S respectively,

(iii) one of S(X) , T (X) or R(X) is a G-complete subspace of X.

If, for a non-decreasing sequence {xn} with xn ¹ yn for all n and yn → q implies that xn ¹ q, then f, g, h, S, T and
R have a common fixed point. Moreover, the set of common fixed points of f, g, h, S, T and R is well ordered if and
only if f, g, h, S, T and R have one and only one common fixed point.

Theorem 2.2 [24] Let (X, G) be a complete G-metric space and f, g and h be self maps on X satisfying inequality

ψ(G(fx, gy, hz)) ≤ ψ(M(x, y, z))− ϕ(M(x, y, z)), (2)

where

M(x, y, z) = max{G(x,y, z), G(x, y, gy), G(y, z, hz), G(z, x, fx),
αG(fx, x, gy) + (1− α)G(y, gy, hz)},

for all x, y, z ∈ X, where 0 < α < 1, ψ is an altering distance function, and ϕ : [0,∞) → [0,∞) is a continuous
function with ϕ(t) = 0 if and only if t = 0.. Then f, g, and h have a unique common fixed point in X.
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First, we present an application of Theorem 2.1 to study the existence and uniqueness of solution for a system
of nonlinear Volterra-Hammerstein integral equation in G-metric spaces. Let X = (L[0,∞), R) be the space of real
valued functions that are measurable on [0,∞) and let d : X ×X → R+ be defined by

d(x, y) =

∞∫

0

|x(t)− y(t)|dt,

for all x, y ∈ X. Equip X with the G-metric given by

G(x, y, z) = max{d(x, y), d(y, z), d(z, x)}, for all x, y, z ∈ X.

Clearly, (X, G) is a complete G-metric space. We endow X with the partial ordered ¹ given by

x ¹ y ⇐⇒ x(t) ≤ y(t) for all t ∈ [0,∞). (3)

Motivated by the work in [18], we apply Theorem 2.1 to prove the existence of solution in partially ordered G-metric
space (X, G) for the following simultaneous Volterra-Hammerstein nonlinear integral equations.

x(t) = p1(t)− p2(t) + λ

t∫

0

m(t, s)g1(s, x(s))ds + µ

∞∫

0

k(t, s)h2(s, x(s))ds,

x(t) = p1(t)− p2(t) + λ

t∫

0

m(t, s)g2(s, x(s))ds + µ

∞∫

0

k(t, s)h3(s, x(s))ds, (4)

x(t) = p1(t)− p2(t) + λ

t∫

0

m(t, s)g3(s, x(s))ds + µ

∞∫

0

k(t, s)h1(s, x(s))ds,

for all t ∈ [0,∞), where p1, p2 ∈ X are known with p1(t) ≥ p2(t), m(t, s), k(t, s), gi(s, x(s)) and hi(s, x(s)), i = 1, 2, 3
are real valued functions that are measurable both in t and s on [0,∞) and λ, µ are real numbers. These functions
satisfy the following conditions:

(C0)
∞∫
0

sup
s∈[0,∞)

|m(t, s)|dt = M1 < +∞,

(C1)
∞∫
0

sup
s∈[0,∞)

|k(t, s)|dt = M2 < +∞,

(C2) gi(s, x(s)) ∈ X, i = 1, 2, 3 for all x ∈ X and there exists K1 > 0 such that for all s ∈ [0,∞)

|gi(s, x(s))− gj(s, y(s))| ≤ K1|x(s)− y(s)|, ∀x, y ∈ X, i = 1, 2, 3

(C3) hi(s, x(s)) ∈ X, i = 1, 2, 3 for all x ∈ X and there exists K2 > 0 such that for all s ∈ [0,∞)

|hi(s, x(s))− hj(s, y(s))| ≤ K2|x(s)− y(s)|, ∀x, y ∈ X, i = 1, 2, 3.

We state the following existence and uniqueness theorem for the solution of (4).

Theorem 2.3 Under the assumptions (C0)–(C3), if the following conditions are also satisfied:

(a)

µ
∞∫
0

k(t, s)h2(s, λ
s∫
0

m(s, r)g1(r, x(r))dr + p1(s)− p2(s))ds = 0,

µ
∞∫
0

k(t, s)h3(s, λ
s∫
0

m(s, r)g2(r, x(r))dr + p1(s)− p2(s))ds = 0,

µ
∞∫
0

k(t, s)h1(s, λ
s∫
0

m(s, r)g3(r, x(r))dr + p1(s)− p2(s))ds = 0,
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(b) for all x ∈ X,

x(t) ≤ λ

t∫

0

m(t, s)gi(s, x(s))ds− p2(t), i = 1, 2, 3,

(c) for all x ∈ X,

λ
t∫
0

m(t, s)g1(s, x(s)− p1(t)− µ
∞∫
0

k(t, r)h2(r, x(r))dr)ds− p2(t) ≤ x(t),

λ
t∫
0

m(t, s)g2(s, x(s)− p1(t)− µ
∞∫
0

k(t, r)h3(r, x(r))dr)ds− p2(t) ≤ x(t),

λ
t∫
0

m(t, s)g3(s, x(s)− p1(t)− µ
∞∫
0

k(t, r)h1(r, x(r))dr)ds− p2(t) ≤ x(t).

Then the system of simultaneous Volterra-Hammerstein nonlinear integral equation (4) has a unique solution in X

for each pair of real numbers λ, µ with |µ|K2M2 < 1 and |λ|K1M1
1−|µ|K2M2

< 1
2 .

proof
We define, for every x ∈ X

fx(t) = −p2(t) + λ

t∫

0

m(t, s)g1(s, x(s))ds,

gx(t) = −p2(t) + λ

t∫

0

m(t, s)g2(s, x(s))ds,

hx(t) = −p2(t) + λ

t∫

0

m(t, s)g3(s, x(s))ds,

Sx(t) = (I −A)x(t), Tx(t) = (I −B)x(t), Rx(t) = (I − C)x(t),

where I is the identity operator on X and

Ax(t) = p1(t) + µ

∞∫

0

k(t, s)h1(s, x(s))ds,

Bx(t) = p1(t) + µ

∞∫

0

k(t, s)h2(s, x(s))ds,

Cx(t) = p1(t) + µ

∞∫

0

k(t, s)h3(s, x(s))ds.

We see that x is a solution to (4) if and only if x is a common fixed point of f, g, h, S, T, and R in Theorem 2.1.
So to prove the existence of such point we check that all the hypotheses of Theorem 2.1 are satisfied.

We shall show that each f, g, h, S, T, R, A, B, and C are operators from X into itself.

|fx(t)| ≤ |λ|
∞∫

0

|m(t, s)g1(s, x(s))|ds + |p2(t)| ≤ |λ| sup
0≤s<∞

|m(t, s)|
∞∫

0

|g1(s, x(s))|ds + |p2(t)|,

applying conditions (C0) and (C2), we have
∞∫

0

|fx(t)|dt ≤ |λ|
∞∫

0

sup
0≤s<∞

|m(t, s)|dt

∞∫

0

|g1(s, x(s))|ds +

∞∫

0

|p2(t)|dt < +∞.
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Hence f ∈ X. Similarly g, h ∈ X.
For mapping A we apply conditions (C1) and (C3) as following:

∞∫

0

|Ax(t)|dt ≤ |µ|
∞∫

0

sup
0≤s<∞

|k(t, s)|dt

∞∫

0

|h1(s, x(s))|ds +

∞∫

0

|p1(t)|dt < +∞.

Thus A ∈ X, similarly B, C ∈ X. we conclude that S, T, R ∈ X.
Now, we show the condition (i) of Theorem 2.1 is hold. We prove that f(X) ⊆ T (X). For all x ∈ X, by using

hypothesis (a), we get

T (fx(t) + p1(t)) = (I −B)(fx(t) + p1(t))

= fx(t)− µ

∞∫

0

k(t, s)h2(s, fx(s) + p1(s))ds

= fx(t)− µ

∞∫

0

k(t, s)h2(s,−p2(s) + λ

s∫

0

h(s, r)g1(r, x(r))dr + p1(s))ds

= fx(t).

Hence f(X) ⊆ T (X). Similarly g(X) ⊆ R(X), h(X) ⊆ S(X).
From condition (b) we conclude that x(t) ≤ fx(t) and hence x ¹ fx. Similarly we get x ¹ gx and x ¹ hx. That

is f, g, h are dominating operators. Also from condition (c) we obtain

fTx(t) = λ

t∫

0

m(t, s)g1(s, x(s)− p1(t)− µ

∞∫

0

k(t, r)h2(r, x(r))dr)ds− p2(t) ≤ x(t).

Thus fTx ¹ x Similarly we have gRx ¹ x and hSx ¹ x. Hence the ordered pairs (f, T ), (g, R) and (h, S) are weak
annihilators. Therefore the condition (ii) of Theorem 2.1 is valid.

Further, we show the condition (iii) of Theorem 2.1. Suppose {xn} ⊆ X such that xn → x as n → ∞ and
Sxn → y as n →∞ we want to prove that y ∈ S(X) and y = S(x). From (C3) we conclude that

d(Axn, Ax) =

∞∫

0

|Axn(t)−Ax(t)|dt

=

∞∫

0

|µ
t∫

0

k(t, s)[h1(s, xn(s))− h1(s, x(s))]ds|dt

≤
∞∫

0

|µ| sup
0≤s<∞

|k(t, s)|dt

∞∫

0

|h1(s, xn(s))− h1(s, x(s))|ds

≤ |µ|M2K2

∞∫

0

|xn(s)− x(s)|ds

= |µ|M2K2d(xn, x) → 0 as n →∞.

Therefore

d(Sxn, Sx) = d((I −A)xn, (I −A)x)

=

∞∫

0

|xn(t)− x(t)−Axn(t) + Ax(t)|dt

≤
∞∫

0

|xn(t)− x(t)|dt +

∞∫

0

|Axn(t)−Ax(t)|dt

= d(xn, x) + d(Axn, Ax) → 0 as n →∞.
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Therefore

G(Sxn, Sx, Sx) = d(Sxn, Sx) → 0 as n →∞.

This implies that Sxn → Sx as n → ∞. Hence S(X) is G-closed. Thus from Corollary 1.10 S(X) is complete
subspace of (X,G). Now, we check the condition (1). Let x, y,∈ X such that x ¹ y then

d(fx, gy) =

∞∫

0

|fx(t)− gy(t)|dt

=

∞∫

0

|λ
t∫

0

m(t, s)g1(s, x(s))ds− λ

t∫

0

m(t, s)g2(s, y(s))ds|dt

≤
∞∫

0

|λ| sup
0≤s<∞

|m(t, s)|dt

∞∫

0

|g1(s, x(s))− g2(s, y(s))|ds

≤ |λ|M1K1

∞∫

0

|x(s)− y(s)|ds

= |λ|M1K1d(x, y) ≤ |λ|M1K1G(x, y, z).

Hence

d(fx, gy) ≤ |λ|M1K1G(x, y, z). (5)

Similarly, we can show that

d(gy, hz) ≤ |λ|M1K1G(x, y, z) and d(hz, fx) ≤ |λ|M1K1G(x, y, z). (6)

Therefore from (5) and (6) we conclude that

G(fx, gy, hz) ≤ |λ|M1K1G(x, y, z). (7)

Likewise, we obtain

d(Ax, By) ≤ |µ|M2K2G(x, y, z), d(Bx, Cy) ≤ |µ|M2K2G(x, y, z), d(Cx, Ay) ≤ |µ|M2K2G(x, y, z).

Therefore

d(Sx, Ty) = d((I −A)x, (I −B)y)

=

∞∫

0

|x(t)− y(t)−Ax(t) + By(t)|dt

≥
∞∫

0

|x(t)− y(t)|dt−
∞∫

0

|Ax(t)−By(t)|dt

≥ d(x, y)− d(Ax,By)
≥ d(x, y)− |µ|M2K2G(x, y, z).

Thus

d(Sx, Ty) ≥ d(x, y)− |µ|M2K2G(x, y, z). (8)

Similarly, we get

d(Ty,Rz) ≥ d(y, z)− |µ|M2K2G(x, y, z) and d(Rz, Sx) ≥ d(z, x)− |µ|M2K2G(x, y, z). (9)

Hence from (8) and (9) we obtain

G(Sx, Ty,Rz) ≥ (1− |µ|M2K2)G(x, y, z).
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That is

G(x, y, z) ≤ 1
(1− |µ|M2K2)

G(Sx, Ty, Rz). (10)

From (7) and (10) we obtain

G(fx, gy, hz) ≤ |λ|M1K1

(1− |µ|M2K2)
G(Sx, Ty, Rz)

≤ kM(x, y, z),

where

M(x, y, z) = max{G(Sx, Ty, Rz), G(fx, fx, Sx), G(gy, gy, Ty), G(hz, hz, Rz), (gy, gy, Sx),
G(Ty, hz, hz), G(Rz, fx, fx)},

and k = |λ|M1K1
(1−|µ|M2K2)

. Hence the generalized contractive condition (1) of Theorem 2.1 is satisfied. If {xn}, {yn} are
sequences in X such that {xn} is a monotone nondecreasing and xn ¹ yn for all n with yn → q as n → ∞. From
(3) we have

xn−1(t) ≤ xn(t) ≤ yn(t), ∀n ≥ 0.

Since yn → q as n →∞ hence {yn} is bounded, this implies that {xn} is bounded above and so {xn(t)} is bounded
above and since {xn(t)} is a monotone nondecreasing then xn(t) → sup

n
{xn(t)} and xn(t) ≤ sup

n
{xn(t)} ≤ q(t).

Therefore xn ¹ q. Thus all the conditions of Theorem 2.1 are satisfied and the solution of equations (4) exists.
Further, since ([0,∞),≤) is well ordered set then (X,¹) is well ordered set. Therefore the solution is unique.

Now, as an application of Theorem 2.2, we consider the problem of existence and uniqueness of solutions defined
by a system of Urysohn integral equations as follows:

x(t) =

b∫

a

L1(t, s, x(s))ds + p(t),

x(t) =

b∫

a

L2(t, s, x(s))ds + p(t), (11)

x(t) =

b∫

a

L3(t, s, x(s))ds + p(t),

where t ∈ [a, b] ⊆ R+. A solution of the equation (11) is a function x ∈ X = C[a, b] (the set of real continuous
functions on [a, b] ) and d : X ×X → R+ be defined by

d(x, y) = max
t∈[a,b]

|x(t)− y(t)|, x, y ∈ X,

with the G-metric defined by

G(x, y, z) = max{d(x, y), d(y, z), d(z, x)}, x, y, z ∈ X.

Clearly (X,G) is a complete G-metric space.
The existence and uniqueness theorem can be formulated as follows:

Theorem 2.4 Consider (11) and assume that:

(i) x, p ∈ C[a, b] and Li : [a, b]× [a, b]×R → R, i = 1, 2, 3 are continuous functions,

(ii) for all s, t ∈ [a, b] and all x, y ∈ C[a, b] we have

|Li(s, x(s))− Lj(s, y(s))| ≤ q(t, s)|x(s)− y(s)|,
where q : [a, b]× [a, b] → [0,∞) is a continuous function satisfying

sup

b∫

a

|q(t, s)|dt <
1

λ(b− a)
, where λ ≥ 1.
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Then the system (11) has a solution x ∈ X.

proof
Let f, g, h : X → X be the mappings defined by

fx(t) =

b∫

a

L1(t, s, x(s))ds + p(t),

gx(t) =

b∫

a

L2(t, s, x(s))ds + p(t),

hx(t) =

b∫

a

L3(t, s, x(s))ds + p(t),

for all x ∈ X and for all t ∈ [a, b]. Obviously, the existence of a solution for (11) is equivalent to the existence of a
common fixed point of f, g and h in Theorem 2.2. Now, let x, y ∈ X, from condition (ii) for all t ∈ [a, b] we obtain

λ|fx(t)− gy(t)|2 ≤ λ




b∫

a

|L1(t, s, x(s))− L2(t, s, y(s))|ds




2

≤ λ




b∫

a

12ds







b∫

a

|L1(t, s, x(s))− L2(t, s, y(s))|2ds




≤ λ(b− a)

b∫

a

q(t, s)|x(s)− y(s)|2ds

≤ λ(b− a)

b∫

a

q(t, s)d(x, y)2ds

≤ λ(b− a)

b∫

a

q(t, s)G(x, y, z)2ds

≤ λ(b− a)M(x, y, z)2


sup

b∫

a

q(t, s)ds




< M(x, y, z)2 = λM(x, y, z)2 − λM(x, y, z)2 + M(x, y, z)2.

Hence

λ(d(fx, gy))2 = λ max
t∈[a,b]

|fx(t)− gy(t)|2 < λM(x, y, z)2 − λM(x, y, z)2 + M(x, y, z)2. (12)

Similarly, for x, y, z ∈ X we can show that

λ(d(gy, hz))2 = λ max
t∈[a,b]

|gy(t)− hz(t)|2 < λM(x, y, z)2 − λM(x, y, z)2 + M(x, y, z)2, (13)

and

λ(d(hz, fx))2 = λ max
t∈[a,b]

|hz(t)− fx(t)|2 < λM(x, y, z)2 − λM(x, y, z)2 + M(x, y, z)2. (14)

Thus from (12), (13) and (14), we get

λ(G(fx, gy, hz))2 = λ max{d(fx, gy)2, d(gy, hz)2, d(hz, fx)2}
< λM(x, y, z)2 − λM(x, y, z)2 + M(x, y, z)2.

Taking ψ(t) = λt2, ϕ(t) = (λ− 1)t2 in Theorem 2.2, then there exists a unique common fixed point of f, g and h,
which is a solution of (11).
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