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Abstract 
 

Water is considered as a lifeline of all living things, especially humans; hence its availability is a critical component in 

the measurement of human wellbeing through the Human Development Index (HDI). Its production and distribution in 

Ghana, particularly in the Hohoe Municipality of the Volta Region is a challenge. This study seeks to identify the best-

fit time series model to the water consumption data in the Hohoe Municipality and to forecast water consumption in the 

Municipality. This underpins the development of a time-series model for forecasting water consumption levels of the 

residents, institutions and businesses in the municipality. Several time series models, including AR, MA, ARMA, 

ARIMA and SARIMA were fitted to the data, and it emerged that the most adequate model for the data was ARIMA (2, 

1, and 2). The model was then used to forecast the consumption for the next four years, to advise Ghana Water 

Company Limited in the municipality to meet the demand of the people. 
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1. Introduction 

Water is required by all living creatures for survival. It is also required for economic growth and development [3]. 

According to the UN World Water Development Report (2006), water is an essential life-sustaining element. It 

pervades our lives and is deeply embedded in our cultural backgrounds.” The achievement of the millennium 

development goals depends largely on improved water supply and sanitation in the developing countries in which 

Ghana is not an exception. The World Health Organisation [3] recommended that 75 litres of water a day is necessary to 

protect against household diseases and 50 litres a day necessary for basic family sanitation. The international 

consumption figures released by the 4th World Water Forum [11] indicate that a person living in an urban area uses an 

average of 250 litres/day. With these figures in mind, experts need to factor in population increase and forecast for the 

production and consumption of water in the area.  

The Hohoe Municipality is one of the eighteen districts in the Volta Region of Ghana with Hohoe as its capital and 

administrative centre. According to the Ghana Statistical Service report (2010), it has a population of 262,046 made up 

of 126,239 and 135,807 males and females respectively. The population size has grown by almost 81% from the year 

2000. In terms of water supply in the municipality, the Ghana Water Company Limited and DANIDA have been 

effective in resolving many problems identified in 1992 were more than 60% of the population lack good drinking 

water and sanitation facilities. Very old machines, broken-down hand pumps and other equipment have either been 

replaced or repaired for efficient water production and distribution in the municipality. 

Majority of the people of the Municipality (about 65%) are engaged in agricultural production. The technology 

employed in agricultural production in the municipality is largely the traditional cutlass and hoe. Mechanised farming is 

very limited and the rate of adoption of other agricultural-related technologies is equally low. Farming is entirely rain-

fed as there are no irrigation facilities, and this culminates in low productivity. Access roads to farming centres are also 
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poor thus hampering the marketing of the products. These together with the absence of storage facilities give rise to 

high post-harvest losses. 

2. Related works 

Initial works in water demand forecasting have included regression and time series analyses by Jain [5]. Salas [10] 

formulated a general time series model for water use on any time interval. Their model contains a polynomial trend in 

mean and standard deviation, a periodic mean and standard deviation, and an autoregressive (AR) short-memory 

component. The model residuals were fitted by the normal, log-normal, or gamma distributions. They also calculated 

the cross-correlation and coherence functions between monthly water use and rainfall and between monthly water use 

and temperature.  

Maidment [8] created a time-series model based on precipitation and temperature and included the Box-Jenkins transfer 

function. A year after, they applied the model to nine cities in three states in USA [9], their models achieved overall 

correlation of determination (R2) ranging from 61 to 96 percent. Zhou [12] developed a forecasting model for 

Melbourne, Australia. Using a time-series analysis, they proposed that demand was comprised of base, seasonal, 

climatic, and persistence components.  

Gato [2] used a similar time series model as Zhou [12] but added temperature and precipitation thresholds into their 

model. Aside from time-series analysis, more complicated algorithms have been used to forecast demand. 

Lertpalangsunti [7] created a model using the artificial neural network (ANN) and applied the model in an attempt to 

predict the demand for the city of Regina.  

Bougadis [1] compared a time-series approach and ANN in demand prediction for the city of Ottawa. Khan [6] 

compared the support vector machine with ANN and an autoregressive model to forecast water level for Lake Erie. 

Hererra [4] compared the results from four methods, including ANN, projection pursuit regression, multivariate 

adaptive regression splines, and random forests and support vector regression in the forecasting of water demand for a 

water district servicing approximately 5000 customers in south-eastern Spain. 

3. Research methodology 

The demand for water can be influenced by certain factors, such as changes in weather conditions, changes in yearly 

patterns, population change, and industrial and agricultural activities. The research looks at forecasting the demand for 

water based on population change using time series based on MA, AR, ARMA, and ARIMA models. 

 

3.1. Autocorrelation function (ACF) 
 

Autocorrelation refers to the correlation of a time series with its own past and future values. 

Autocorrelation is also called “lagged correlation” or “serial correlation," which refers to the correlation between 

members of a series of numbers arranged in time. 

The first- order autocorrelation coefficient is the simple coefficient of the first N–1 observations, t =1, 2… N-1 :tX t =2, 

3… N. The correlation between tX and 1tX   is given by, 
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Where is the mean of the first N – 1 observations. As the correlation coefficient given above measure correlation 

between successive observations, it is called the autocorrelation coefficient or serial correlation coefficient. For N 

reasonably large, the difference between the sub-period means 1X and 2X can be ignored and 1r  can be approximated as 

by Equation (3.2) can be generalised to give the correlation between observations separated by k years: 

 



International Journal of Applied Mathematical Research 395 

 

 

 

 

1

2
1

( )( )

( )

N k
t t t k

k N
t t

X X X X
r

X X


 



 




                                                                                                                                        (3.3) 

 

3.2. Partial autocorrelated function 
 

Partial autocorrelation function measures the degree of association between Yt and Yt+k when the effect of another 

time lags on Y are held constant. The Partial Autocorrelation Function PACF denoted by the set of partial 

autocorrelations at various lags k are defined by (k=1,2, 3…). The set of partial autocorrelations at various lags k are 

defined by. 
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Where, 
1, 1, , 1kk kk j k j r r kr r
    j =1, 2…k-1 

Specifically, partial autocorrelations are useful in identifying the order of an autoregressive Model. The partial 

autocorrelation of an AR (p) process is zero at lag p+1 and greater. 

 

3.3. Autoregressive (AR) models 
 

An autoregressive model is simply a linear regression of the current value of the series against one or more prior values 

of the series. The value of p is called the order of the AR model. AR models can be analyzed with one of the various 

methods, including standard linear least squares techniques. They also have a straightforward interpretation. A common 

approach for modelling univariate time series is the autoregressive (AR) model: 

 

1 1 2 2 . . .t t t p t p tX X X X A          
                                                                                                                    (3.5) 

 
Where Xt is the time series, at is white noise, and with  denoting the process mean. An autoregressive model of order 

p, denoted by AR (p) with mean zero is generally given by the equation: 
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Or 

 

1 1 2 2 . . .t p p tX L L L       
                                                                                                                                      (3.7)

 

 

When  ( ) t tL X   

 
1 2

1 2( ) 1 . . . p

pu u u u       
                                                                                                                                      (3.8) 

 

Where L, is the lag operator 1 2, , . . . ,  are constants with 0p p     are the autoregressive model parameters and t is the 

random shock or white noise process, with mean zero and variance 2

 . Replace Xt by Xt -  . That is 
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1 2Where (1 . . . )p          

 

3.4. Moving average (MA) models 
 

Moving Average (MA) is another common approach for modelling univariate time series. Moving average model of 

order q is (MA (q)) is given by  
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1 1 2 2 . . .t t t t q t qX A A A A          
                                                                                                                      (3.11) 

 

1 2Where , , . . .  are constants with 0q q     Xt is the time series,  is the mean of the series, t iA  and are white noise. 

A moving average model of order q, with mean zero, denoted by MA (q) is generally given. 

By: 

 

1 1 2 2 . . .t t t t q t qX A A A A        
                                                                                                                            (3.12) 

 
2where (0, )tA WN 

 
 

The MA (q) process can also be written in the following equivalent form ( )t tX u A where the moving average 

operator 
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3.5. Autoregressive moving average (ARMA) models 
 

Autoregressive and Moving Average processes can be combined to obtain a very flexible Class of univariate processes 

(proposed by Box and Jenkins), known as ARMA processes. The time series Xt is an ARMA (p, q) process, if it is 

stationary and 

 

1 1 2 2 1 1 2 2. . . . . .t t t p t p t t t t t q t qX X X X X A A A A                     
                                                             (3.14) 

4. Data analysis and results 

This section applied the models described in Section 4 to forecast water consumption in Hohoe. A fortnight demand 

data in (m3) obtained from Ghana Water Company Limited for the years 2009, 2010, 2011 and 2012 were used to 

forecast for the next four years.  

 
Table 1: Fortnights Consumption of Water in (M3) from Hohoe Municipality 

2009 2010 2011 2012 

Fortnights Data Fortnights Data Fortnights Data Fortnights Data 

1 22245 28 25647 55 25721 81 30264 

2 23415 29 24040 56 22025 82 29400 

3 18319 30 22846 57 24366 83 29443 

4 20675 31 23672 58 22419 84 26045 

5 23220 32 24257 59 24010 85 24479 

6 21514 33 24883 60 24326 86 29499 

7 22398 34 22570 61 22700 87 29401 

8 21639 35 23668 62 23267 88 28795 

9 21852 36 23587 63 24127 89 25445 

10 19862 37 23903 64 24480 90 28226 

11 22953 38 24212 65 24519 91 27472 

12 21338 39 21968 66 22486 92 30105 

13 22356 40 17108 67 22368 93 29269 

14 22904 41 22043 68 21314 94 30946 

15 22161 42 25449 69 24226 95 30434 

16 23786 43 22464 70 22994 96 27631 

17 22827 44 23261 71 23972 97 29408 

18 21072 45 22546 72 22151 98 28826 

19 21044 46 21541 73 23032 99 27922 

20 23374 47 21414 74 21173 100 26002 

21 22245 48 19759 75 22133 101 28573 

22 22551 49 19063 76 21766 102 30056 

23 24274 50 21036 77 28054 103 31325 

24 24086 51 24270 78 29265 104 29275 

25 25394 52 24599 79 16325 105 30330 

26 23241 53 25358 80 30179 106 30507 
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4.1. Preliminary analysis 
 

A dimension of the preliminary analysis for examining non-stationarity of the data is by considering the trend analysis 

plot of 106 fortnight water consumption between 2009 and 2012 as shown in Figure 4.1. 

 

 
Fig. 4.1: Trend in Fortnight Water Consumption between 2009 and 2012 

 

It is revealed from Figure 4.1 that water consumption in the Hohoe Municipality between2009 and 2012 have been 

largely non-stationary. The mean is not constant throughout the series as it assumes a fairly stable mean till 26th 

fortnight. The 27th, 40th and 79th fortnights recorded significantly low water consumption, perhaps due to the 

insufficient water provision in the municipality. Furthermore, Moving Average (MA) analyses for lags 2, 4 and 8 are in 

Figures 4.2, 4.3, and 4.4. A comparison of their respective accuracy measures indicates that MA (8) better fits the data. 

 

 
Fig. 4.2: Moving Average (MA) with 2 Averages. 

 

 
Fig. 4.3: Moving Average (MA) with 4 Averages 
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Fig. 4.4: Moving Average (Ma) with 8 Averages 

 

The next step in the model-building procedure is to determine the order of the AR and MA for both seasonal and non-

seasonal components. This was suggested by the sample ACF and PACF plots based on the Box-Jenkins approach. 

From Figure 4.2, the correlations are significant for a large number of lags but perhaps the autocorrelations at lags 2 or 

and above are merely due to the propagation of the autocorrelation at lag 1. This is confirmed by the PACF plot. 

The ACF and PACF plots in Figures 4.5 and 4.6 respectively suggest that q = 2 or 3, and  

p = 2 would be needed to describe this data set as coming from a non-seasonal moving average and autoregressive 

process respectively. 

 

 
Fig. 4.5: ACF for First Order Differencing. 

 

 
Fig. 4.6: PACF for First Order Differencing 

 

4.2. Seasonal ARIMA model estimations 
 

At this stage, it is important also to consider the seasonality of the data by adopting the seasonal ARIMA models. 

Looking at the seasonal lags, both ACF and PACF spike at seasonal lag 27 (because there are 27 fortnights in a year) 

and drop to zero for other seasonal lags suggesting that Q = 1 or 2 and P = 0 or 1 with d = 1 would be needed to 

describe these data as coming from a seasonal moving average and autoregressive process. Therefore, 15 proposed 

SARIMA models are presented in Table 4.12 with their corresponding p-values, Chi-square values and degree of 

freedom. 
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Table 4.2: Suggested Sarima Models 

Model       p-value   Chi-Square   Df 

ARIMA (0, 1, 1) (1, 0, 1)27   0.557  7.8    9 

ARIMA (1, 1, 1) (0, 1, 1)27   0.798  3.8    7 

ARIMA (1, 1, 3) (1, 0, 1)27   0.793  2.4    5 

ARIMA (1, 1, 3) (1, 0, 1)27   0.699   2.2    4 

ARIMA (1 1, 3) (0, 1, 0)27   0.427  6.0    6 

ARIMA (2, 1, 2) (0, 1, 0)27   0.859   3.3    7 

ARIMA (2, 1, 1) (1, 1, 1)27    0.534   5.1     6 

ARIMA (2, 1, 2) (1, 0, 1)27   0.774   2.5    5 

ARIMA (2, 1, 2) (0, 0, 1)27   0.846  2.7     6 

ARIMA (2, 1, 3) (1, 0, 1)27   0.699  2.2    4 

ARIMA (2, 1, 2) (1, 0, 0)27   0.915  2.0   6 

ARIMA (4, 1, 3) (0, 0, 1)27   0.614  1.8   3 

ARIMA (3, 1, 1) (1, 1, 1)27   0.011  15.0   5 

ARIMA (2, 2, 3) (0, 0, 1)27   0.186  7.5   5 

ARIMA (2, 2, 2) (1, 0, 1)27   0.006  16.2   5 

 
 

A critical comparison of the models based on their respective p-values and Chi-Square values shows, that seasonal 

ARIMA (2, 1, 2)(1, 0, 0)27 is the appropriate model that best fitted the fortnight water consumption data in the Hohoe 

Municipality in the Volta Region of Ghana. 

This would, however, be compared with the non-seasonal ARIMA model for final selection of the most adequate and 

parsimonious model. 

 

4.3. Model evaluation and selection 
 

From the aforementioned, we have identified two good models, namely, a non-seasonal and seasonal ARIMA model as 

shown in Tables 4.13 and 4.14 respectively for comparison and selection. We used the conditional-sum-of-squares to 

find starting values of parameters, then do the Maximum Likelihood Estimate (MLE) for the proposed models. The 

procedure for choosing these models relied on choosing the model with the maximum p-values for the Ljung-Box 

statistic (more than 5% as a rule of thumb) and minimum Chi-square values. 

Comparing the non-seasonal ARIMA and the seasonal ARIMA models, it can be concluded that the non-seasonal 

model of (2, 1, 2) is somewhat adequate than the seasonal ARIMA model of (2, 1, 2) (1, 0, 0)27. Hence, ARIMA (2, 1, 

2) is the best model and plausible time series model for the fortnight water consumption because of its high p and least 

Chi-Square values of 0.955 and 2.0 respectively. 

 
Table 4.3: ARIMA (2, 1, 2) 

Type    Coefficient    SE    t     p 

Constant   126.59                 56.37   2.25   0.027 

AR 1                -0.4754                 0.5375                 -0.88   0.379 

AR 2                -0.0800                 0.1508              -0.53   0.597 

MA 1    0.2946                0.5340                 0.55   0.582 

MA 2    0.4659   0.4789                 0.97  0.333 
χ2 = 2.1; p = 0.955; df = 7 

 
Table 4.4: Estimates of Parameters for SARIMA (2, 1, 2) (1, 0, 0) 27 

Variable    Coefficients   SE  t   p 

Constant                    122.55   60.72  2.02  0.046 

AR 1                   -0.5697   0.4053              -1.41  0.163 

AR 2                    -0.1006   0.1410             -0.71   0.477 

SAR 27                     0.1811   0.1199               1.51   0.134 

MA 1       0.2128   0.3988  0.53   0.595 

MA 2       0.5279   0.3600  1.47   0.146 
p = 0.735, χ2= 4.4, df = 6 

 

4.4. Diagnostic analysis 
 

The diagnostic analyses using the ACF of residuals, PACF residuals, and the normal probability plot of the residuals as 

shown in Figures 4.7, 4.8, 4.9 and 4.10 reveal that the residuals of the model have zero mean and constant variance. The 

ACF of the residuals depicts that the autocorrelation of the residuals are all zero, that is to say, they are uncorrelated. 
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Hence, it can be concluded that there is a constant variance among residuals of the selected model, and the true mean of 

the residuals is approximately equal to zero. Thus, the selected model satisfies all the model assumptions. Since the 

ARIMA (2, 1, 2) satisfies all the necessary assumptions, it can be inferred that the model provides an adequate 

representation of the data. Hence, the predictive model would be formulated from the parameter estimates in Table 4.13. 

 

 
Fig. 4.7: ACF Diagnostic Plot of the Residuals for ARIMA (2, 1, 2) Model. 

 

 
Fig. 4.8: PACF Diagnostic Plot of the Residuals for ARIMA (2, 1, 2) Model. 

 

 
Fig. 4.9: Actual and Predicted Water Consumption Using ARIMA (2, 1, 2) 

5. Discussions (forecasting) 

Table 4.15 summarises the forecasted values of water consumption in the Municipality over the period of January 2013 

to December 2016 fortnightly with 95% confidence level using the ARIMA (2, 1, 2) model, which has a higher p-value 

of 0.955 (thus, greater than alpha value of 0.05) indicating that it is the best model according to Modified Box-Pierce 

(Ljung-Box) Chi-Square statistic. 
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Table 4.5: Forecasted Fortnight Water Consumption for the Next 4 Years 

                                                                                                                          95% CI 

Year   Fortnight   Forecast Lower Limit  Upper Limit 

2013   1st   29809.6    25129.4               34489.7 

2013  2nd    29995.4    25193.0  34797.7 

2013   3rd   30089.4    25281.3  34897.5 

2013  4th    30156.4    25260.5  35052.4 

2013  5th    30243.6    25303.0  35184.3 

2013   6th   30323.4   25328.8  35318.0 

2013  7th   30405.1   25358.8  35451.3 

2013  8th   30486.5    25389.1   35583.8 

2013   9th    30567.8   25419.7  35716.0 

2013   10th   30649.2   25450.9   35847.5 

2013  11th    30730.6   25482.5  35978.7 

2013  12th    30812.0    25514.6   36109.3 

2013  13th    30893.4    25547.2   36239.5 

2013  14th   30974.7   25580.2   36369.3 

2013  15th   31056.1   25613.7   36498.6 

2013  16th    31137.5    25647.5   36627.5 

2013  17th    31218.9   25681.8  36756.0 

2013  18th    31300.3   25716.5  36884.1 

2013   19th    31381.7  25751.5  37011.8 

2013  20th    31463.0    25787.0  37139.1 

2013  21st   31544.4    25822.8  37266.1 

2013  22nd    31625.8   25858.9   37392.7 

2013   23rd    31707.2   25895.4   37518.9 

2013  24th    31788.6   25932.3  37644.9 

2013  25th    31870.0    25969.5   37770.4 

2013   26th    31951.3    26007.0   37895.7 

2013  27th    32032.7    26044.8   38020.6 

 

2014  1st   32114.1   26083.0  38145.2 

2014   2nd    32195.5    26121.5  38269.5 

2014  3rd    32276.9    26160.2  38393.5 

2014  4th   32358.3   26199.3  38517.2 

2014  5th   32439.6    26238.6  38640.6 

2014   6th   32521.0   26278.3  38763.8 

2014   7th    32602.4    26318.2  38886.6 

2014   8th    32683.8   26358.4  39009.2 

2014   9th    32765.2   26398.8  39131.5 

2014   10th    32846.5   26439.5  39253.6 

2014   11th    32927.9    26480.5  39375.4 

2014  12th   33009.3   26521.7  39496.9 

2014  13th    33090.7    26563.2  39618.2 

2014   14th    33172.1   26604.9  39739.3 

2014  15th   33253.5   26646.8  39860.1 

2014   16th   33334.8   26689.0  39980.7 

2014  17th   33416.2    26731.4  40101.0 

2014  18th    33497.6    26774.1  40221.2 

2014   19th   33579.0    26816.9  40341.1 

2014  20th   33660.4    26860.0  40460.7 

2014   21st    33741.8   26903.3  40580.2 

2014   22nd   33823.1   26946.8  40699.5 

2014   23rd   33904.5   26990.5  40818.5 

2014  24th    33985.9   27034.4  40937.4 

2014  25th    34067.3   27078.5  41056.0 

2014  26th    34148.7   27122.8  41174.5 

2014  27th    34230.1    27167.3  41292.8 

 

2015  1st    34311.4   27212.0  41410.8 

2015  2nd   34392.8   27256.9  41528.7 
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2015  3rd   34474.2    27302.0  41646.4 

2015  4th    34555.6   27347.3  41763.9 

2015  5th    34637.0   27392.7  41881.2 

2015  6th    34718.3   27438.3  41998.4 

2015  7th    34799.7   27484.1  42115.4 

2015   8th   34881.1    27530.1  42232.2 

2015   9th    34962.5   27576.2  42348.8 

2015  10th    35043.9    27622.5  42465.3 

2015   11th   35125.3   27669.0  42581.6 

2015  12th    35206.6   27715.6  42697.7 

2015  13th    35288.0   27762.4  42813.7 

2015   14th    35369.4   27809.3  42929.5 

2015   15th    35450.8    27856.4  43045.2 

2015  16th    35532.2   27903.7  43160.7 

2015   17th    35613.6   27951.1  43276.0 

2015   18th    35694.9    27998.6  43391.3 

2015   19th    35776.3   28046.3  43506.3 

2015   20th    35857.7    28094.2  43621.2 

2015  21st    35939.1   28142.2  43736.0 

2015  22nd    36020.5   28190.3  43850.6 

2015   23rd    36101.9   28238.6  43965.1 

2015  24th    36183.2   28287.0  44079.5 

2015  25th    36264.6    28335.6  44193.7 

2015  26th    36346.0   28384.3  44307.8 

2015  27th    36427.4   28433.1  44421.7 

 

2016  1st    36508.8   28482.0   44535.5 

2016   2nd    36590.1    28531.1   44649.2 

2016   3rd   36671.5    28580.3  44762.7 

2016   4th    36752.9   28629.7   44876.2 

2016   5th    36834.3    28679.1   44989.5 

2016  6th   36915.7    28728.7   45102.6 

2016   7th    36997.1   28778.4   45215.7 

2016   8th    37078.4   28828.3   45328.6 

2016  9th    37159.8   28878.2  45441.4 

2016   10th    37241.2    28928.3   45554.1 

2016  11th    37322.6   28978.5   45666.7 

2016  12th    37404.0   29028.8   45779.1 

2016   13th    37485.4   29079.2   45891.5 

2016   14th    37566.7    29129.8  46003.7 

2016   15th   37648.1   29180.4  46115.8 

2016   16th    37729.5   29231.2  46227.8 

2016   17th    37810.9    29282.1  46339.7 

2016   18th    37892.3    29333.0  46451.5 

2016   19th    37973.7    29384.1  46563.2 

2016   20th    38055.0   29435.3  46674.8 

2016   21st    38136.4   29486.6  46786.2 

2016   22nd    38217.8   29538.0  46897.6 

2016   23rd    38299.2    29589.5  47008.8 

2016   24th    38380.6    29641.1  47120.0 

2016  25th    38462.0   29692.9  47231.0 

2016   26th    38543.3   29744.7  47342.0 

2016  27th    38624.7   29796.6  47452.9 
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