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Abstract 
 

A one-dimensional model dealing with underground explosions as experienced in areas such as mining or excavations is presented. 

When an explosion in a typical soil medium occurs, soil material is displaced and shock waves propagate in the soil medium. Soil is con-

sidered as a floating, ideally locking material. In this paper, the speed of propagation for the shock waves is analyzed, and results are 

given. The Mie-Gruneisen equation of state is used to find the pressure as a function of the density. Results with the present model yield 

an efficient and comprehensive means to analyze speed of waves in a sandy medium. 
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1. Introduction 

Over the previous several decades, enormous work has gone into 

understanding the response of soils to violent disturbances. This 

work has been motivated by efforts to model underground 

excavations, penetration of projectiles in targets, and other 

applications. Unfortunately, most of the work done on projectile 

penetration has focused on steel, metal and aluminum targets with 

different thickness such as thick, intermediate and thin plates. The 

analysis of modern state of the problem of analytical of high-

velocity penetration of a projectile in target can be found in works 

by Forrestal ([3],[4]), Warren and Forrestal [11], Yarin et al. [9], 

Bachman and Goldsmith [2], Chen and Li [5] and Roisman [10]. 

However, sufficient data is available so that an equation of state 

for certain soils can be obtained. 

Despite the importance and implications of the subject, little 

information exists in literature on the mechanisms involved during 

rigid body penetration into terrestrial materials and underground 

explosions. The reasons behind the lack of information about the 

mechanisms' penetration are obvious. The inherent mathematical 

complexities associated with defining constitutive equations and 

developing solutions for the conservation equations make the 

problem very hard to deal with. 

Problems dealing with the underground explosion and penetration 

of a rigid body into a soil medium have many applications in the 

real word. Examples of such applications are mining, construction, 

excavations and putting down pilings in soils for large buildings. 

This paper presents the results of a numerical study of shock 

waves that arise from underground explosions as experienced in 

areas such as mining, excavations and the penetration of soils by 

rigid bodies. The main purpose of this investigation is to study the 

speed of shock waves through a soil medium. Two-time intervals 

are observed after the explosion, the first starts at time t = 0  of the 

explosion when the disturbance begins, and the second is when the 

shock starts to dissipate. 

2. Model problem 

In order to describe the speed of propagation for the shock waves 

in a sandy medium caused by an underground explosion (see Fig. 

1), the following assumption is made: 

The medium is assumed to be a sandy medium, deformable and 

visco-plastic. 

 

 
Fig. 1: Listing of the 1-2-3 Macro. 

 

We begin with the following system of partial differential 

equations based on the laws of conservation of mass, momentum, 

and energy. 

 

( v) = 0
t x

 
 

 
                                                                             (1) 

 

v v p
v =

t x x x

    
        

                                                               

(2) 

 

e e v
v = p

t x x

   
      

                                                                     

(3) 

 

In this model,   represents the mass density of the medium, v  

the eulerian velocity field of the medium, e  the specific internal 

energy, i.e. energy/mass and p  is the pressure. / x   is the 

deviatoric stress tensor of the form given by Papanastasiou and 

Boudouvis (1997): 

 

τ = 2α(D)D                                                                                    (4) 
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Where (D)  is a scalar function and 
v

D = ,
x




 is the rate of 

deformation tensor. The function (D)  is given by  

 

(D) = 1 [1 exp( n | D |)] , ifD 0
| D |

 
      

 
                                  

(5) 

 

(0) =1 n,   

 

  is the dynamic viscosity of the saturated medium and   and n  

are empirical constants. 

We assume the explosion takes place at the time t = 0  and the 

position x = 0. The following initial conditions for x 0  are used :  

 

3(x,0) = g/cm ,0   

 

v(x,0) = (x) cm/sec,  

 

e(x,0) = e J/kg0  

 

Where (x)  is the delta function. 

3. Pressure model in sand 

The shock pressure in the sandy medium is assumed to be 

governed by the Mie-Gruneisen equation of state, given by 

 

 

22o 0 op( ,e) = e C0 0 21 o 2(1 ) 1 so

    
  

       

                                 (6) 

 

Where =1 / ,0   o  is the Gruneisen parameter (unitless), s  is 

a positive number (unitless) and C0  is the dimensional reference 

sound speed for the target medium. 

If the impact shock occurs so rapidly, then the heat conduction 

becomes negligible and; consequently, by using Gibb’s relation, 

the Mie-Gruneisen equation of state can be written in the form  

 

A ln(1 )o

B
11 o2p( ) = e co 0 0 o 0 02 A ln(1 s )

C
1 s

   
 

 
   

       
   
 
 

   

 

 

 

2c (2 )0 o0
2

2(1 ) 1 so

    


    
 (7) 

 

2s oA = , B = ,
3 2( s) ( s)o o

2so 0C = , = 1
2( s)o



   

  
 

 

 

 

Which is referred as the Hugoniot-adiabat. 

4. Time intervals 

There are two times intervals that are identified following an 

underground explosion. The first time interval is the elapsed time 

in which the deviatoric stress tensor has no effect (see [7]) and 

thus near x = 0 , one can see the material rushing out. The second 

time interval starts when the deviatoric stress tensor become 

important and is no more negligible. 

If the impact shock occurs rapidly, then the heat conduction 

becomes negligible and; consequently during the first time interval 

a scaling argument shows that the contribution of the deviatoric 

stress tensor is negligible and so only the first two equations, (1), 

(2), with the Hugoniot-adiabat equation (7) enter into the 

calculations. After 0.001  msec., time at which the second interval 

starts, the full system of equations (1-3) with the Gruneisen 

equation of state (6) will used to compute the speed. 

5. Numerical solution 

The Lax-Wendroff scheme will be used to find the numerical 

solution to our model problem which requires that the differential 

equations be written in a conservative form 
u j

= ,
t x

 


 
 so the 

original system (1)-(3) is written as follows:  

 

= ( v)
t x

 
 

   
 

2( v)
( v) = p

t x

   
     

    

 (8) 

 

1 12 2(e v ) = v(e v ) vp
t 2 x 2

    
            

 

 

Let w = v  and 
1 2E = (e v )
2

   then the system (8) can be written 

as 

 

w
=

t x

 


 
 

 

2w w
= p

t x

  
    
   
 

                                                                 (9) 

 

E w
= (E p)

t x

  
  

   
 

 

For initial value problems involving a conservative-hyperbolic 

differential equation of the form 
u j

= ,
t x

 


 
 the Lax-Wendroff 

scheme employs the leapfog method with half-step to calculate 

new values for u  at each time step. That is, let n = (ih,nk),
i
 

nw = w(ih,nk)
i

 and nE = E(ih,nk)
i

, h, k,  being the mesh spacing 

in the space and time directions respectively .  We have: 

At the half time grid t = ti 1/2  and half time space n 1/2x = x   

 

 
n n

1 kn 1/2 n ni 1 i= w w
i 1/2 i 1 i2 2 h

    
 

 (10) 

 

n nw wn 1/2 i 1 iw =
i 1/2 2

n 2 n 2(w ) (w )
i 1 i

1 k n n
i 1 i2 h
n n n np p
i 1 i 1 i i

 


    
    
          
    
               

                                             

(11) 
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n nE En 1/2 i 1 iE =

i 1/2 2

1 k n n n n n n n nw (E p ) / w (E p ) /
i 1 i 1 i 1 i 1 i i i i2 h

 


      
     

                     
(12) 

 

n n n= 2 (D )D ,
i i i

n n n n n nD = (v v ) / h = (w w ) / (h )
i i 1 i i 1 i i

 

  
 

                                   
(13) 

 

at t = ti 1  
 

 kn 1 n n 1/2 n 1/2= w w
i i i 1/2 i 1/2h

     
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(14) 

 

n 1/2 2 n 1/2 2
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n 1 nw = w
i i

k (w ) (w )
p p

h

 

    

    

 



     
           
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(15)
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 

n 1 nE = E
i i

n 1/2 n 1/2 n 1/2 n 1/2w E p /
i 1/2 i 1/2 i 1/2 i 1/2

k

h
n 1/2 n 1/2 n 1/2 n 1/2w E p /
i 1/2 i 1/2 i 1/2 i 1/2



     
    

 
  

           

                                  

(16)

 

 

where in the first time interval p  is given by 

 

n np = p( ) = eo 0 0i i

nA ln(1 )o i

n
1 2 nic B A ln(1 s )o 0 0 in2 1 o i

n
iC

n1 s
i

  

 
 
   
 
 

 
       

   
 
 
 
  
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 

2 n nc (2 )0 o0 i i
2

n n2(1 ) 1 so i i

    


    

 (17) 

 

2sn 0= 1 , A = ,
i n 3( s)oi

2so oB = , C = ,
2 2( s) ( s)o o

 
 

  

  
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and in the second time interval  

 

 

n n np = p( ,e )
i i i

n2 on 2 no 0 i= e c0 0i in 21 n no 2(1 ) 1 si o i i



   
  

  
    

 (18) 

 

n 0= 1
i n

i


 


 

With 

 

0 0= , w = (x )0 i 0i i
   

 
 

10 0 2E = e (w ) / .0 0 0i i2
    

 

Note that for the first time interval only (10)-(11) and (14)-(15) 

are used with   set to zero. At the end of the first time interval the 

full system is used. 

Once , w  and E  are obtained the relations v = w /   and 

2e = E / v / 2  are used to get v  and e.  

For the first time interval the system (9) can be written in the 

matrix form U = F (U)t x  where U =
w

 
 
 

 and 

w

2F = .w
p

 
 
 

 
 

 It is 

well know that the Lax Wendroff scheme is stable if the CFL 

condition, 
k

sup(| |) 1
h

   is satisfied. Here   is an eigenvalue of 

the Jacobian matrix F / U   of F.  We have  

 

0 1

2F / U = w 2w
a

2

 
 

   
    

                                                           (19) 

 

Where a = p / .  The eigenvalues of (19) are  1
= w a ,1  


 1
= w a .2  


 So, for the first time intervals the method is 

stable if 
k 1

,
h v a



 assuming that w  and   are positive. 

For the second time interval we have 

 

0 1 0

2w 2w
F / U = a b c

2

w w 1 w
(E p) a (E p) (1 c)

2

 
 
 
 
     
  
 
     
    

                       (20) 

 

Where b = / w   and c = p / E.   If | D |  is small then b  can be 

neglected and the eigenvalues in this case are given by 

 

1 2 2 2= 2w 4a c w 4cp 4c E cw1
2

 
         

  
 

 

1 2 2 2= 2w 4a c w 4cp 4c E cw2
2

 
         

  
 

 

w
=3


 

 

 So, assuming that   and w  are positive, the method is stable if  

 

k 1 2 2 22w 4a c w 4cp 4c E cw 1
h 2

 
         

  
 

6. Numerical results 

Empirical Mie-Gruneisen constants are shown in Table 2 for three 

types of sandy media: 
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Table 2: Mie-Gruneisen Constants 

Dry-Silica Sand - Porosity 41% 

=13.85090  s = 1.6369  c = 0.06060  cm/ sec  

Dry-Silica Sand - Porosity 22% 

=14.87260  s = 2.1451  c0 = 0.0442 cm/μsec 

Water-Saturated Silica Sand - Porosity 41% 

γ0 = 5.2676 s = 1.5406 c0 = 0.269 cm/μsec 

 

Given the values of the Mie-Gruneisen constants, ,0 s,  and c ,0  

with the empirical constants in the deviatoric stress tensor 

3= 10 , n = 10  and 4= 10 ,  we now look at the outward of the 

speed of propagation for the shock waves w  given by 

 

2w(x, t)] = p /                                                                          (21) 

 

The Lax-Wendroff scheme was used to determine values for the 

speed of the shock waves at various distances from the point of 

explosion. We will compare the results given when the deviatoric 

tensor both included and not included in the system of equation in 

order to study the behavior of the speed waves. 

The following initial and boundary conditions given by Eqs. (4)-

(5) will be used for the numerical solution: 

 

3(x,0) = =1.98g/cm ,0   

 

v(0,0) = V = 0.04572 cm/ secand v(x,0) = 0 for x > 00   

 

2 2e(x,0) = e = 222775.2817 J/kg = 0.00228 cm / sec0   

 

The spatial step h  is taken as small as possible to allow the 

disturbance to be close to x = 0 , but must also be large enough in 

proportion to the time step size k  to allow the numerical scheme 

to be stable. 

Figs. 2-7 show the speed of the shock waves for three different 

types of silica sand listed in Table 2. Figs. 2-3 show the speed of 

the shock waves for the wet sand with porosity 41%  in the first 

and second time intervals respectively. Similarly Figs. 4-5 and 6-7 

show the speed of the shock waves for dry sands with porosity 

41%  and 22%,  respectively, in both time intervals. 

From the graphs of the numerical results one can observe that the 

speed of the shock wave is faster in the wet sand than the dry 

sands (see [1]). In the contrary, the amplitude of the shock wave in 

the wet sand is approximately one-third of the one in the dry sands 

and it damps faster in the wet than in the dry sands. In addition, 

one can observe a net decrease of the amplitude of the shock 

waves in all three types of sand after the first time interval. That 

is, after the first 1000  micosec. 

 

 
Fig. 2: First Time Interval. 

 

 
Fig. 3: Second Time Interval. 

 

 
Fig. 4: First Time Interval. 

 

 
Fig. 5: Second Time Interval. 

 

 
Fig. 6: First Time Interval. 
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Fig. 7: Second Time Interval. 

7. Conclusion 

This work addressed the numerical investigation of an explosion 

or a penetration of a typical rigid body into a sand medium. 

Conservative laws in continuum mechanics were used to model 

the problem. Numerical results were obtained using the Lax-

Wendroff scheme to analyze the speed of the shock waves for 

three types of sandy media. Further study that uses different forms 

of the stress-strain relation and different type of soil could be 

conducted for a better analysis of soil explosion or penetration 

problems. 
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