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Abstract

In this paper an M/M/1/K interdependent retrial queueing model with controllable arrival rates and impatient
customers is considered. The steady state solutions and the system characteristics are derived for this model. The
analytical results are numerically illustrated and the effect of the nodal parameters on the system characteristics
are studied and relevant conclusion is presented.
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1. Introduction

Queueing systems in which primary customers who find all the servers and waiting positions (if any) occupied may
retry for service after a long period of time are called retrial queues. Between retrials a customer is said to be in
orbit (in a sort of queue) and becomes a source of repeated calls. Due to impatience, a repeated call after the nth

unsuccessful retrials gives up further repetitions and abandons the system.
Detailed survey on retrial queues and bibliographical information have been obtained from Artalejo [2, 3, 4],

Falin [5], Medhi [7], Falin and Templeton [6]. Artalejo [1] studied retrial queues with a finite number of sources.
In most of the research work the authors have considered that the input flow of primary calls, intervals between
repetitions, service times and decision not to retry for service are mutually independent. But the primary arrival
and service processes are interdependent in practical situations. It is also assumed that whenever the queue size
reaches a prescribed number R, the arrival reduces from λ0 to λ1 and it continues with that rate as long as the
content in the queue is greater than some prescribed integer r (0 ≤ r < R). When the system size reaches r, the
arrival rate changes back to λ0 and the same process is repeated.

Much work has been reported in the literature regarding interdependent standard queueing model with controllable
arrival rates. K.Srinivasa Rao, Shobha and P.Srinivasa Rao have discussed M/M/1/∞ interdependent queueing
model with controllable arrival rates in [8]. Srinivasan and Thiagarajan [9, 10, 11] have analysed M/M/1/K
interdependent queueing model with controllable arrival rates, M/M/c/ /N loss and delay queueing system with
interdependent queueing model with controllable arrival rates and no passing, M/M/C/K/N interdependent
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queueing model with controllable arrival rates balking, reneging and spares. Recently Antline Nisha, Thiagarajan
and Srinivasan [12] have studied M/M/1/K interdependent retrial queueing model with controllable arrival rates.
Although it is natural in the real world, there are only few works taking into consideration retrial phenomena
involving the interdependent controllable arrival rates.

An attempt is made in this paper to obtain relevant results for the M/M/1/K interdependent retrial queueing
model with impatient customers and controllable arrival rates. In section 2, the description of the model is given
stating the relevant postulates. In section 3, the steady state equations are obtained. In section 4, the characteristics
of the model are derived. In section 5, numerical results are calculated.

2. Description of the model

Consider a single server finite capacity retrial queueing system in which primary customers arrive according to the
Poisson flow of rate λ0 and λ1, service times are exponentially distributed with rate µ. If a primary customer finds
some server free, he instantly occupies it and leaves the system after service. Otherwise, if the server is busy, at the
time of arrival of a primary call then with probability H1 ≥ 0 the arriving customer enters an orbit and repeats his
demand after an exponential time with rate θ. Thus the Poisson flow of repeated call follow the retrial policy where
the repetition times of each customer is assumed to be independent and exponentially distributed. If an incoming
repeated call finds the line free, it is served and leaves the system after service, while the source which produced this
repeated call disappears. Otherwise, if the server is occupied at the time of a repeated call arrival with probability
H2 retries for service again and with probability (1−H2) the source leaves the system without service.

It is assumed that the primary arrival process [X1(t)] and the service process [X2(t)] of the systems are correlated
and follow a bivariate Poisson process given by

P (X1 = x1, X2 = x2, ; t)= e−(λi+µ−ε)t

min(x1,x2)∑

j=0

(εt)j [(λi− ε)t]x1−j [(µ− ε)t]x2−j

j!(x1− j)!(x2− j)!

where x1, x2= 0,1,2........
0 < λi, µ;
0 < ε <min(λi, µ),i=0,1
with parameters λ0, λ1, µ and ε as mean faster rate of primary arrivals, mean slower rate of primary arrivals, mean
service rate and mean dependence rate (covariance between the primary arrival and service processes)respectively.

At time t, let N(t) be the number of sources of repeated calls and C(t) be the number of busy servers. The
system state at time t can be described by means of a bivariate process C(t),N(t),t ≥ 0, where C(t)=1 or 0
according as the server is busy or idle, the process will be called CN process. If the service time is exponential,
then {C(t), N(t)} is Markovian. Let C and N be the numbers of customers in the service facility and in the orbit
respectively in steady state. The processes {N(t), C(t)} ; t ≥ 0 is a markov process defined on the state space
(n, c)|n = {0, 1, 2, .....r − 1, r, r + 1, ......k} , c = {0, 1}. The state probabilities at time t are defined as follows

From state (0, n) transitions only to the following states are possible.
(i) State (1, n) with the probability that the arrival of a primary call during the interval (t, t + dt) of time t,

when the system is in faster rate of primary arrivals is (λ0− ε)dt+ o(dt) and the system is in slower rate of primary
arrivals is (λ1 − ε)dt + o(dt).

(ii) State (1, n− 1) with the probability that the commencement of service of one of n sources in the orbit when
the server is free during the interval (t, t+dt) of time t, when the system is either in faster or slower rate of primary
arrivals is nθdt + o(dt).

Since the state (0, n) means that the server is free, there is no transitions corresponding to the service completion.

Again state (0, n) can be reached with transitions only from the following states.
(iii) State (1, n) with the probability that the service completion of the call in service during the interval (t, t+dt)

of time t, when the system is either in faster or slower rate of primary arrivals is (µ− ε)dt + o(dt).

From state (1, n) transitions only to the following states are possible.
(iv) State (1, n + 1) with the probability that the arrival of a primary call which is blocked and decides to try

again during the interval (t, t + dt) of time t, when the system is in faster rate of primary arrivals (form a source of
repeated calls) is H1(λ0 − ε)dt + o(dt) and when the system is in slower rate of primary arrivals (form a source of
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repeated calls) is H1(λ1 − ε)dt + o(dt).

(v) State (0, n) with the probability that the service completion of the call in service during the interval (t, t+dt)
of time t, when the system is either in faster or slower rate of primary arrivals is (µ− ε)dt + o(dt).

(vi) State (1, n − 1) with the probability that the arrival of a repeated call from a source which was blocked
again and then decided to leave the system without service during the interval (t, t+dt) of time t, when the system
is either in faster or slower rate of primary arrivals is nθ(1−H2)dt + o(dt).

Again state (1, n) can be reached with transitions only from the following states.
(vii)State (0, n) with the probability that the arrival of a primary call which is admitted to service as the server

is free during the interval (t, t+dt) of time t, when the system is in faster rate of primary arrival is (λ0− ε)dt+o(dt)
and the system is in slower rate of primary arrival is (λ1 − ε)dt + o(dt).

(viii) State (0, n + 1) with the probability that the commencement of service of one of the (n+1) source in the
orbit as the server is free during the interval (t, t + dt) of time t, when the system is either in faster and slower rate
of primary arrivals is (n + 1)θdt + o(dt).

(ix) State (1, n − 1) with the probability that the arrival of a primary call which is not admitted to service as
the server is busy during the interval (t, t + dt) of time t, when the system is in faster rate of primary arrivals is
H1(λ0 − ε)dt + o(dt) and the system is in slower rate of primary arrivals is H1(λ1 − ε)dt + o(dt).

(x) State (1, n + 1) with probability that the arrival of a repeated call from (n+1) sources which was blocked
again as the server is busy and then decided to leave the system without service during the interval (t, t + dt) of
time t, when the system is either in faster or slower rate of primary arrivals is (n + 1)θ(1−H2)dt + o(dt)

(xi) The probability that there is one primary arrival and one service completion during the interval (t, t + dt)
of time t, when the system is either in faster or slower rate of primary arrivals is εdt + o(dt)

3. Steady state equation

Let P0,n,0 denote the steady state probability that there are n customers in the queue when the system is in the
faster rate of primary arrivals and the server is idle.
Let P0,n,1 denote the steady state probability that there are n customers in the queue when the system is in the
slower rate of primary arrivals and the server is idle.
Let P1,n,0 denote the steady state probability that there are n customers in the queue when the system is in the
faster rate of primary arrivals and the server is busy.
Let P1,n,1 denote the steady state probability that there are n customers in the queue when the system is in the
slower rate of primary arrivals and the server is busy.
We observe that only P0,n,0 and P1,n,0 exists when n = 0, 1, 2, . . . , r − 1, r;
P0,n,0, P1,n,0, P0,n,1 and P1,n,1 exist when n = r + 1, r + 2, . . . , R− 2, R− 1;
P0,n,1 and P1,n,1 exists when n = R, R + 1, . . . , K.
Further P0,n,0 = P1,n,0 = P0,n,1 = P1,n,1 = 0 if n > K.
The steady state equations are

−(λ0 − ε)P0,0,0 + (µ− ε)P1,0,0 = 0 (1)

− [H1(λ0 − ε) + (µ− ε)] P1,0,0 + (λ0 − ε)P0,0,0 + θP0,1,0 + θ(1−H2)P1,1,0 = 0 (2)

−(λ0 − ε + nθ)P0,n,0 + (µ− ε)P1,n,0 = 0 (3)

− [H1(λ0 − ε) + (µ− ε) + nθ(1−H2)] P1,n,0 + (λ0 − ε)P0,n,0 + (n + 1)θP0,n+1,0 + (n + 1)θ(1−H2)P1,n+1,0

+H1(λ0 − ε)P1,n−1,0 = 0, n = 1, 2, 3, . . . , r − 1 (4)

−(λ0 − ε + rθ)P0,r,0 + (µ− ε)P1,r,0 = 0 (5)
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− [H1(λ0 − ε) + (µ− ε) + rθ(1−H2)] P1,r,0 + (λ0 − ε)P0,r,0 + (r + 1)θP0,r+1,0 + (r + 1)θ(1−H2)P1,r+1,0

+(r + 1)θP0,r+1,1 + (r + 1)θ(1−H2)P1,r+1,1 + H1(λ0 − ε)P1,r−1,0 = 0 (6)

−(λ0 − ε + nθ)P0,n,0 + (µ− ε)P1,n,0 = 0 (7)

− [H1(λ0 − ε) + (µ− ε) + nθ(1−H2)] P1,n,0 + (λ0 − ε)P0,n,0 + (n + 1)θP0,n+1,0 + (n + 1)θ(1−H2)P1,n+1,0

+H1(λ0 − ε)P1,n−1,0 = 0, n = r + 1, r + 2 . . . , R− 2 (8)

−(
λ0 − ε + (R− 1)θ

)
P0,R−1,0 + (µ− ε)P1,R−1,0 = 0 (9)

− [H1(λ0 − ε) + (µ− ε) + (R− 1)θ(1−H2)] P1,R−1,0 + (λ0 − ε)P0,R−1,0 + H1(λ0 − ε)P1,R−2,0 = 0 (10)

−(
λ1 − ε + (r + 1)θ

)
P0,r+1,1 + (µ− ε)P1,r+1,1 = 0 (11)

− [H1(λ1 − ε) + (µ− ε) + (r + 1)θ(1−H2)] P1,r+1,1 + (λ1 − ε)P0,r+1,1 + (r + 2)θP0,r+2,1

+(r + 2)θ(1−H2)P1,r+2,1 = 0 (12)

−(λ1 − ε + nθ)P0,n,1 + (µ− ε)P1,n,1 = 0 (13)

− [H1(λ1 − ε) + (µ− ε) + nθ(1−H2)] P1,n,1 + (λ1 − ε)P0,n,1 + (n + 1)θP0,n+1,1 + (n + 1)θ(1−H2)P1,n+1,1

+H1(λ1 − ε)P1,n−1,1 = 0, n = r + 2, r + 3, .., R− 1 (14)

−(λ1 − ε + Rθ)P0,R,1 + (µ− ε)P1,R,1 = 0 (15)

− [H1(λ1 − ε) + (µ− ε) + Rθ(1−H2)] P1,R,1 + (λ1 − ε)P0,R,1 + (R + 1)θP0,R+1,1 + (R + 1)θ(1−H2)P1,R+1,1

+H1(λ0 − ε)P1,R−1,0 + H1(λ1 − ε)P1,R−1,1 = 0 (16)

−(λ1 − ε + nθ)P0,n,1 + (µ− ε)P1,n,1 = 0 (17)

− [H1(λ1 − ε) + (µ− ε) + nθ(1−H2)] P1,n,1 + (λ1 − ε)P0,n,1 + (n + 1)θP0,n+1,1 + (n + 1)θ(1−H2)P1,n+1,1

+H1(λ1 − ε)P1,n−1,1 = 0, n = R + 1, R + 2, . . . ,K − 1 (18)

−(
λ1 − ε + Kθ

)
P0,K,1 + (µ− ε)P1,K,1 = 0 (19)

−(µ− ε)P1,K,1 + (λ1 − ε)P0,k,1 + H1(λ1 − ε)P1,k−1,1 = 0 (20)

Write s =
λ0 − ε

µ− ε
, γ = [H1(λ0 − ε)], δ = [H2(λ1 − ε)]

From (1)-(4) we get,

P0,n,0 =
γn

n! θn

∏n−1
i=0 (λ0 − ε + iθ)∏n

i=1(µ− ε) + (1−H2)(λ0 − ε + iθ)
P0,0,0, n ≥ 1 (21)

P1,n,0 = s
γn

n! θn

n∏

i=1

(λ0 − ε + iθ)
(µ− ε) + (1−H2)(λ0 − ε + iθ)

P0,0,0, n ≥ 0 (22)
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From (5)-(8) we get,

P0,n,0 =
γn

n! θn

∏n−1
i=0 (λ0 − ε + iθ)∏n

i=1(µ− ε) + (1−H2)(λ0 − ε + iθ)
P0,0,0

−
{

A1(r + 1)!
A2 n! θn−1−r

[( n−2∑
m=r

m! θm−r

r!
γn−1−m

n−1∏

i=m+1

(λ0 − ε + iθ)
(µ− ε) + (1−H2)(λ0 − ε + iθ)

)

+
(n− 1)!

r!
θn−1−r

]}
P0,r+1,1 (23)

P1,n,0 = s
γn

n! θn

n∏

i=1

(λ0 − ε + iθ)
(µ− ε) + (1−H2)(λ0 − ε + iθ)

P0,0,0

−
[

A1(r + 1)!
A2(µ− ε)n!θn−1−r

( n−1∑
m=r

m! θm−r

r!
γn−1−m

n∏

i=m+1

(λ0 − ε + iθ)
(µ− ε) + (1−H2)(λ0 − ε + iθ)

)]
P0,r+1,1

n = r + 1, r + 2, · · · , R− 1 (24)

where

A1 =
[
(µ− ε) + (1−H2)(λ1 − ε + (r + 1)θ)

]
, A2 =

[
(µ− ε) + (1−H2)(λ0 − ε + nθ)

]

From (9) and (10) we get,

P0,r+1,1 =
A3

A4
P0,0,0

where

A3 =

[
γR

(R− 1)! θR−1

∏R−1
i=0 (λ0 − ε + iθ)∏R−1

i=1 (µ− ε) + (1−H2)(λ0 − ε + iθ)

]

A4 =

[(
A1(r + 1)!

(R− 1)! θR−2−r

R−2∑
m=r

m! θm−r

r!
γR−1−m

R−1∏

i=m+1

(λ0 − ε + iθ)
(µ− ε) + (1−H2)(λ0 − ε + (i)θ)

)
+ A1(r + 1)θ

]

(25)

From (11)-(14), we recursively derive,

P0,n,1 =

{
A1(r + 1)!

A5 n!θn−1−r

[( n−2∑
m=r

m! θm−r

r!
δn−1−m

n−1∏

i=m+1

(λ1 − ε + iθ)
(µ− ε) + (1−H2)(λ1 − ε + iθ)

)

+
(n− 1)!

r!
θn−1−r

]}
P0,r+1,1 (26)

P1,n,1 =

[
A1(r + 1)!

(µ− ε)n!θn−1−r

( n−1∑
m=r

m! θm−r

r!
δn−1−m

n∏

i=m+1

(λ1 − ε + iθ)
(µ− ε) + (1−H2)(λ1 − ε + iθ)

)]
P0,r+1,1

n = r + 1, r + 2, · · · , R− 1, R (27)
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where

A5 =
[
(µ− ε) + (1−H2)(λ1 − ε + nθ)

]

A1 is given by (23) and P0,r+1,1 is given by (25)

From (15)-(20) we recursively derive,

P0,n,1 =

[
A1(r + 1)!

A5 n!θn−1−r

( R−1∑
m=r

m! θm−r

r!
δn−1−m

n−1∏

i=m+1

(λ1 − ε + iθ)
(µ− ε) + (1−H2)(λ1 − ε + iθ)

)]
P0,r+1,1 (28)

P1,n,1 =

[
A1(r + 1)!

(µ− ε)n!θn−1−r

( R−1∑
m=r

m! θm−r

r!
δn−1−m

n∏

i=m+1

(λ1 − ε + iθ)
(µ− ε) + (1−H2)(λ1 − ε + iθ)

)]
P0,r+1,1 (29)

where A1 is given by (23),

A5 is given by (26) and P0,r+1,1 is given by (25).

Thus from (21)-(29), we find that all the steady state probabilities are expressed in terms of P0,0,0.

4. Characteristics of the model

The following system characteristics are considered and their analytical results are derived in this system.
The probability P (0) that the system is in faster rate of primary arrivals with the server idle and busy.
The probability P (1) that the system is in slower rate of primary arrivals with the server idle and busy.
The probability P0,0,0 that the system is empty.
The expected number of customers in the orbit Lq0, when the system is in faster rate of primary arrivals with

the server idle and busy.
The expected number of customers in the orbit Lq1, when the system is in slower rate of primary arrivals with

the server idle and busy.
The probability that the system is in faster rate of primary arrivals is

P (0) =
K∑

n=0

P0,n,0 +
K∑

n=0

P1,n,0

=

[
r∑

n=0

P0,n,0 +
R−1∑

n=r+1

P0,n,0 +
K∑

n=R

P0,n,0

]
+

[
r∑

n=0

P1,n,0 +
R−1∑

n=r+1

P1,n,0 +
K∑

n=R

P1,n,0

]

Since P0,n,0 and P1,n,0 exist only when n = 0, 1, 2, . . . , r − 1, r, r + 1, r + 2, . . . , R− 2, R− 1, we get

P (0) =
[ r∑

n=0

P0,n,0 +
R−1∑

n=r+1

P0,n,0

]
+

[ r∑
n=0

P1,n,0 +
R−1∑

n=r+1

P1,n,0

]
(30)
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From (21) to (24) and (30), we get

P (0) =
R−1∑
n=0

γn

n! θn

∏n−1
i=0 (λ0 − ε + iθ)∏n

i=1(µ− ε) + (1−H2)(λ0 − ε + iθ)

[
λ0 + µ− 2ε + nθ

µ− ε

]
P0,0,0

−
R−1∑

n=r+1

{
A1(r + 1)!

A2 n!θn−1−r

[( n−2∑
m=r

m! θm−r

r!
γn−1−m

n−1∏

i=m+1

(λ0 − ε + iθ)
(µ− ε) + (1−H2)(λ0 − ε + iθ)

)

+
(n− 1)!

r!
θn−1−r

][
λ0 + µ− 2ε + nθ

µ− ε

]}
P0,r+1,1 (31)

where A1and A2 is given by (23), and P0,r+1,1 is given by (25).

The probability that the system is in slower rate of primary arrivals is

P (1) =
K∑

n=0

P0,n,1 +
K∑

n=0

P1,n,1

=
[ r∑

n=0

P0,n,1 +
R−1∑

n=r+1

P0,n,1 +
K∑

n=R

P0,n,1

]
+

[ r∑
n=0

P1,n,1 +
R−1∑

n=r+1

P1,n,1 +
K∑

n=R

P1,n,1

]

Since P0,n,1 and P1,n,1 exists only when n = r + 1, r + 2, . . . , R− 2, R− 1, . . . , K, we get,

P (1) =
[ R∑

n=r+1

P0,n,1 +
K∑

n=R+1

P0,n,1

]
+

[ R∑
n=r+1

P1,n,1 +
K∑

n=R+1

P1,n,1

]
(32)

From (26) to (29) and (32), we get

P (1) =
R∑

n=r+1

{
A1(r + 1)!

A5 n!θn−1−m

[( n−2∑
m=r

m! θm−r

r!
δn−1−m

n−1∏

i=m+1

(λ1 − ε + iθ)
(µ− ε) + (1−H2)(λ1 − ε + iθ)

)

+
(n− 1)!

r!
θn−1−r

][
λ1 + µ− 2ε + nθ

µ− ε

]}
P0,r+1,1

+
K∑

n=R+1

{
A1(r + 1)!

A5 n!θn−1−m

( R−1∑
m=r

m! θm−r

r!
δn−1−m

n−1∏

i=m+1

(λ1 − ε + iθ)
(µ− ε) + (1−H2)(λ1 − ε + iθ)

)

[
λ1 + µ− 2ε + nθ

µ− ε

]}
P0,r+1,1 (33)

where P0,r+1,1 is given by (25).
The probability P0,0,0 that the system is empty can be calculated form the normalizing condition.

P (0) + P (1) = 1
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P0,0,0
−1 =

R−1∑
n=0

γn

n! θn

∏n−1
i=0 (λ0 − ε + iθ)∏n

i=1(µ− ε) + (1−H2)(λ0 − ε + iθ)

[
λ0 + µ− 2ε + nθ

µ− ε

]

−
R−1∑

n=r+1

{
A1(r + 1)!

A2 n!θn−1−r

[( n−2∑
m=r

m! θm−r

r!
γn−1−m

n−1∏

i=m+1

(λ0 − ε + iθ)
(µ− ε) + (1−H2)(λ0 − ε + iθ)

)

+
(n− 1)!

r!
θn−1−r

][
λ0 + µ− 2ε + nθ

µ− ε

]}
A3

A4

+
R∑

n=r+1

{
A1(r + 1)!

A5 n!θn−1−m

[( n−2∑
m=r

m! θm−r

r!
δn−1−m

n−1∏

i=m+1

(λ1 − ε + iθ)
(µ− ε) + (1−H2)(λ1 − ε + iθ)

)

+
(n− 1)!

r!
θn−1−r

][
λ1 + µ− 2ε + nθ

µ− ε

]}
A3

A4

+
K∑

n=R+1

{
A1(r + 1)!

A5 n!θn−1−m

( R−1∑
m=r

m! θm−r

r!
δn−1−m

n−1∏

i=m+1

(λ1 − ε + iθ)
(µ− ε) + (1−H2)(λ1 − ε + iθ)

)

[
λ1 + µ− 2ε + nθ

µ− ε

]}
A3

A4
(34)

Now we calculate the expected number of customers in the orbit. Let Lq denote the average number of customers
in the orbit, then we have

Lq = Lq0 + Lq1

where

Lq0 =
K∑

n=0

n P0,n,0 +
K∑

n=0

nP1,n,0

=

[
r∑

n=0

n P0,n,0 +
R−1∑

n=r+1

nP0,n,0 +
K∑

n=R

nP0,n,0

]
+

[
r∑

n=0

n P1,n,0 +
R−1∑

n=r+1

nP1,n,0 +
K∑

n=R

nP1,n,0

]

When n = 0, 1, 2, . . . , r − 1, r, r + 1, r + 2, . . . , R− 2, R− 1, we get

Lq0 =
[ r∑

n=0

nP0,n,0 +
R−1∑

n=r+1

n P0,n,0

]
+

[ r∑
n=0

nP1,n,0 +
R−1∑

n=r+1

nP1,n,0

]
(35)

and

Lq1 =
K∑

n=0

n P0,n,1 +
K∑

n=0

nP1,n,1

=
[ r∑

n=0

nP0,n,1 +
R−1∑

n=r+1

n P0,n,1 +
K∑

n=R

nP0,n,1

]
+

[ r∑
n=0

n P1,n,1 +
R−1∑

n=r+1

nP1,n,1 +
K∑

n=R

nP1,n,1

]

When n = r + 1, r + 2, . . . , R− 2, R− 1, . . . , K, we get,

Lq1 =
[ R∑

n=r+1

nP0,n,1 +
K∑

n=R+1

n P0,n,1

]
+

[ R∑
n=r+1

nP1,n,1 +
K∑

n=R+1

nP1,n,1

]
(36)



International Journal of Applied Mathematical Research 493

From (21)-(24),(35) and (36), we get

Lq =
R−1∑
n=0

γn

(n− 1)! θn

∏n−1
i=0 (λ0 − ε + iθ)∏n

i=1(µ− ε) + (1−H2)(λ0 − ε + iθ)

[
λ0 + µ− 2ε + nθ

µ− ε

]
P0,0,0

−
R−1∑

n=r+1

{
A1(r + 1)!

A2 (n− 1)!θn−1−r

[( n−2∑
m=r

m! θm−r

r!
γn−1−m

n−1∏

i=m+1

(λ0 − ε + iθ)
(µ− ε) + (1−H2)(λ0 − ε + iθ)

)

+
(n− 1)!

r!
θn−1−r

][
λ0 + µ− 2ε + nθ

µ− ε

]}
P0,r+1,1

+
R∑

n=r+1

{
A1(r + 1)!

A5 (n− 1)!θn−1−m

[( n−2∑
m=r

m! θm−r

r!
δn−1−m

n−1∏

i=m+1

(λ1 − ε + iθ)
(µ− ε) + (1−H2)(λ1 − ε + iθ)

)

+
(n− 1)!

r!
θn−1−r

][
λ1 + µ− 2ε + nθ

µ− ε

]}
P0,r+1,1

+
K∑

n=R+1

{
A1(r + 1)!

A5 (n− 1)!θn−1−m

( R−1∑
m=r

m! θm−r

r!
δn−1−m

n−1∏

i=m+1

(λ1 − ε + iθ)
(µ− ε) + (1−H2)(λ1 − ε + iθ)

)

[
λ1 + µ− 2ε + nθ

µ− ε

]}
P0,r+1,1 (37)

Using Little’s formula, the expected waiting time of the customer in the orbit is calculated as

Wq =
Lq

λ

where λ = λ0P (0) + λ1P (1)
Wq is calculated from (31),(33),(34) and (37)

This model includes the earlier models as particular cases. For example, when H1 = 1 and H2 = 1, we get the
M/M/1/K interdependent retrial queueing model with controllable arrival rates. When H1 = 1, H2 = 1 and
θ → ∞, we get the standard M/M/1/K interdependent queueing model with controllable arrival rates. When λ0

tends to λ1 and ε = 0 this model reduces to M/M/1/K retrial queueing model with impatient customers. When λ0

tends to λ1, ε = 0, H1 = 1 and H2 = 1 this model reduces to M/M/1/K retrial queueing model. When λ0 tends
to λ1, ε = 0,H1 = 1,H2 = 1 and θ →∞, this model reduces to standard M/M/1/K queueing model.

5. Numerical Illustrations

For various values of λ0, λ1, µ, θ, H1,H2, ε, r, R,K the values of P0,0,0, P (0), P (1),
Lq and Wq are computed and tabulated in the tables 1 and 2
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Table 1

r R K λ0 λ1 µ θ H1 H2 ε P0,0,0 P(0) P(1)
4 8 12 4 3 5 2 0.9 0.1 0.5 0.457578609 0.999841856 0.000158144
4 8 12 6 3 5 2 0.9 0.1 0.5 0.115219769 0.996998721 0.003001279
4 8 12 6 4 5 2 0.9 0.1 0.5 0.115188377 0.996727085 0.003272915
4 8 12 6 4 5 3 0.9 0.1 0.5 0.238055517 0.999580933 0.000419066
4 8 12 6 4 5 3 0.9 0.1 1 0.269761172 0.999740303 0.000259697
4 8 12 6 4 5 3 0.9 0.1 0 0.210846583 0.999222989 0.000777011
4 8 12 6 4 5 3 0.9 0.2 0.5 0.20718277 0.99926046 0.00073954
4 8 12 6 4 5 3 0.8 0.1 0.5 0.290201668 0.999798898 0.000201102
4 8 12 6 4 5 3 0.8 0.2 0.5 0.265412955 0.999626284 0.000373716
4 8 12 6 4 6 3 0.9 0.2 0.5 0.315127220 0.999643174 0.000356826

Table 2

r R K λ0 λ1 µ θ H1 H2 ε Lq Wq
4 8 12 4 3 5 2 0.9 0.1 0.5 1.451269428 0.362831701
4 8 12 6 3 5 2 0.9 0.1 0.5 2.180027424 0.363883962
4 8 12 6 4 5 2 0.9 0.1 0.5 2.181468789 0.363975218
4 8 12 6 4 5 3 0.9 0.1 0.5 1.755364793 0.292601672
4 8 12 6 4 5 3 0.9 0.1 1 1.687937523 0.281347275
4 8 12 6 4 5 3 0.9 0.1 0 1.822547049 0.303836536
4 8 12 6 4 5 3 0.9 0.2 0.5 1.840693563 0.306857905
4 8 12 6 4 5 3 0.8 0.1 0.5 1.646901126 0.274501922
4 8 12 6 4 5 3 0.8 0.2 0.5 1.801099121 0.300220585
4 8 12 6 4 6 3 0.9 0.2 0.5 1.704395464 0.284099702

6. Conclusion

It is observed from the tables 1 and 2 that when λ0 increases keeping the other parameters fixed, P0,0,0 and P0

decrease but P1 and Lq increase. When λ1 increases keeping the other parameters fixed, P0,0,0 and P0 decrease but
P1 and Lq increase. When θ increases keeping the other parameters fixed, P0,0,0 and P0 increase but P1 and Lq

decrease. when ε increases keeping the other parameters fixed, P0,0,0 and P0 increase but P1 and Lq decrease. when
µ increases keeping the other parameters fixed, P0,0,0 and P0 increase but P1 and Lq decrease. When H1 decreases
keeping the other parameters fixed, P0,0,0 and P0 increase but P1 and Lq decrease. When H2 increases keeping the
other parameters fixed, P0,0,0 and P0 decrease but P1 and Lq increase.
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