
International Journal of Applied Mathematical Research, 1 (4) (2012) 549-564 

©Science Publishing Corporation 

www.sciencepubco.com/index.php/IJAMR 
 

 

 

Nonlocal Parabolic Integro-differential Equations 

with Delays 

 
1
Kamalendra Kumar, 

2
Rakesh Kumar, 

3
R.K. Shukla 

 
1
Dept. of Mathematics, SRMS CET Bareilly-243 001, India 

Email: kamlendra.14kumar@gmail.com 
                           2

Dept. of Mathematics, Hindu College, Moradabad – 244 001, India 

Email: rakeshnaini@yahoo.co.in 
                   3

Dept. of Mathematics, Invertis University, Bareilly -243 123, India 

Email: rkshukla30@gmail.com 

 

Abstract 

In this paper we consider a parabolic integro-differential equation 
with delay and a nonlocal boundary condition. We apply the method of 
semidiscretization in time, also known as the method of lines, to 
establish the existence and uniqueness of the considered problem. We 
also establish the continuous dependence of the solution on the initial 
data. Finally, an application of the established results is demonstrated.  
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1 Introduction 

In certain physical situation we need to consider more complex type of initial 

boundary conditions which are different from the traditional type of such 

conditions. Such type of conditions is termed as nonlocal since these conditions 

involve several points or a part or the whole domain. We will consider abstract 

formulations of such type of problems and apply the method of time discretization 

to establish well-posedness. 

In this paper we consider the following parabolic integro-differential equation 

with delay and a nonlocal boundary condition, 

 

mailto:1kamlendra.14kumar@gmail.com


 

 

 

550 Kamalendra Kumar, Rakesh Kumar, R.K. Shukla 

 

    
  

  
      

   

   
                                                     

(1.1) 

subject to                ,                     ,             (1.2) 

            
  

  
       ,           ,                             (1.3) 

                   
 

 
,                     ,        (1.4) 

 

where K is a nonlinear Volterra operator given by 

 

                          
 

 
, 

 

in which   is a real-valued function defined on         and the map   is 

defined from     into  ,   is defined from               into  . The 

motivation for such problems comes from different branches such as physics, 

rheology and especially the theory of heat conduction in materials when the inner 

heat sources are of special types. For example, the hydrational heat, where the 

intensity of heat sources depends on the amount of heat already developed. 

Cannon and Van Der Hoek [6] have studied the heat diffusion equation with an 

integral boundary condition and have established the existence, uniqueness and 

continuous dependence on the data. The authors derive an equivalent Volterra 

integral equation of the second kind and treat the problem numerically. In [7] 

author has used the Galerkin method and analyzed the numerical solution of the 

heat equation with an integral condition. 

Boundary value problems with integral boundary conditions are an interesting and 

important class of problems. The starting work on the use of nonlocal boundary 

conditions has been done by Cannon [5]. Subsequently, similar studies have been 

done by Kamynin [9], Ionkin [11]. Beilin [15] has considered the wave equation 

with an integral condition using the method of separation of variables and Fourier 

series. The study of boundary value problems with integral boundary conditions 

can be found in the papers [3, 12, 13, 14, 5, 6, 7] and the references given in these 

papers. 

Pulkina [10] has dealt with a hyperbolic problem with two integral conditions and 

has established the existence and uniqueness of generalized solutions using the 

fixed point arguments.  

The motivation for considering a nonlocal boundary value problem of the type 

(1.1)-(1.4) comes from the works of [12, 13, 14]. Problem (1.1)-(1.4) with     

has been considered by Merazga and Bouziani [14] where the authors have 

considered the two-dimensional diffusion equation and have transformed it into a 

one-dimensional problem. In [12, 13] authors study a linear heat equation and a 

semilinear heat equation with two integral boundary conditions. Recently Dao-

Quing and Yu [3] have established the well-posedness for a semilinear heat 

equation with integral conditions, on the basis of the solution of a Dirichlet 

problem for a parabolic equation and a Volterra integral equation. Bahuguna and 
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Raghavendra [4] have established the existence and uniqueness of a strong 

solution using Rothe’s method of the following parabolic integro-differential 

equation 

 
  

  
                                        

 

 
,            ,        (1.5) 

                          ,           ,                                                                 (1.6) 

 

where   is a nonlinear single-valued operator with the domain and the range in 

the Banach space whose dual is uniformly convex. The mapping   satisfies a 

growth condition, functions   and   are continuous having bounded variations 

on     . 
We plan to apply Rothe’s method to establish the existence and uniqueness result 

for (1.1)-(1.4). Rothe’s method, also known as the method of lines, is a powerful 

tool for proving the existence and uniqueness of solutions to evolution equations. 

This method is oriented towards the numerical approximations. For instance, we 

refer to Rektorys [8] for a rich illustration of method applied to various interesting 

physical problems. Bahuguna and Dabas [1, 2] have used the method of semi-

discretization in time to study a partial differential equation with an integral 

condition involving delay arising in population dynamics. 

 

2 Preliminaries and Main Result 

The problem (1.1)-(1.4) is considered in the real Hilbert space           of 

square-integrable functions defined from (0,1) into   with the inner product and 

the corresponding norm 

 

                   
 

 
,                  

 

 
       . 

 

Given a function                 such that for each 

                      , we may identify it with the function           

given by               . The integral condition (1.4) is adjoined with the 

space itself by taking     defined by  

 

                
 

 

   

 

V is closed subspace of H and hence is a Hilbert space itself with the inner 

product     , and the corresponding norm   . By         we denote the usual 

second order Sobolev space on      . For any Banach space  , with the norm 
     and an interval                 , we shall denote        the 

space of all continuous functions   from       into   with the norm 
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The space         consists of all square-Bochner integrable functions (equivalent 

classes)   such that with the norm 

 

          
          

    
 

 

 

 

Also, we need the space   
       introduced by Merazga and A. Bouziani [12] 

being the completion of the space         of all real continuous functions having 

compact supports in       with the inner product and the corresponding norm 

 

                  
 

 

         
 

 

   
 

 

            
           

 

 

 

 

  
 

 

  

 

It is clear that     
       if and only if                

 

 
. It follows that the 

following inequality       
  

 

 
     holds for every          , and the 

embedding           
       is continuous. 

We assume the following: 

(D1) The function   is continuous in both the variable and for all     and     

 
                         

 

where        are positive constants. 

(D2) For a.e.     and all       

 
                                 

 

where         is nonnegative. 

(D3)        
       also         , i.e.            

 

 
 

(D4) Functions            The functions   and   are Lipchitz continuous 

on    
The following defines a weak solution to (1.1)-(1.4). 

 

Definition 2.1 A weak solution   of (1.1)-(1.4) is a function        defined on 

            which has the following properties 

 

                
                                                                                     (2.7) 

          
                                                                                                    (2.8) 

                      
                                                                          (2.9)                    
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                   (2.10) 

 

Theorem 2.2 Suppose that (D1)-(D4) hold on          i.e.,    . Then (1.1)-

(1.4) has a unique weak solution on  . For the set of data    
     , the 

corresponding solutions   ,      , satisfy the following estimate 

 

                
                   

   
 

 

  

     
    

  
  
 

                    
                     

 
 

 

           

 

where               , and                     ,      . This shows the 

continuous dependence of the solutions on the data. 

In the next section we establish the existence, uniqueness of a weak solution to 

(1.1)-(1.4). We shall prove theorem 2.2 in the last section with the help of several 

lemmas. 

 

3 Discretization Scheme and A Priori Estimates 

Let   
  denote a partition of the interval         defined by   

        

          , where    
 

 
  for         . We set    

     for all    , and 

replace, at the point of division   
  the derivative 

  

  
 by the corresponding 

difference quotient and the integral by a sum. In this way, problem (1.1)-(1.4) 

reduced to the solutions of   elliptic problems. 

 
  
      

 

  
 

    
 

   
   

         
    

      
    

                
   
                 (3.11) 

 
   

 

  
                                                                                                           (3.12) 

 

   
         

 

 
                                                                                                (3.13) 

 

for            . We shall denote, for        , by 

 

    
  

  
      

 

  
                                                                                                   (3.14) 
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                                                                                        (3.15)                                                            

    
      

    
                                                                                                 (3.16) 

 

and  

 

  
      

    
                                                                                                    (3.17) 

 

The existence of a unique   
          satisfying (3.11)-(3.13) is ensured as 

established in theorem 3.2 of [8]. 

 

Definition 3.1 Define the “Rothe sequence”         of functions from   into 

        defined by 

 

          
  

 

  
       

     
      

              
    

                                (3.18) 

 

for              . Further, we define the sequence         of step functions 

from    into         by 

 

                
       

              
    

                                          (3.19) 

 

We prove the convergence of the sequence      to the unique solution of the 

problem as     using some a priori estimates on   . We first prove the 

estimates for   
  and    

  using (D1)-(D4). To establish the estimates first we take 

the variational formulations of the discretized problem (3.11)-(3.13). For any   be 

in  , we have 

 

      
  

  
     

    
 

   
 
  
 
      

  
  
           

   
 
    

  
                          (3.20) 

 

Using (3.12), the second term in left hand side of (3.20) become 

 

   
    

 

   
 
  
 

   
   

 

  
    

   
 

  
            

 

 

   
 

 

 

   
   

 

  

 

 

           
 

 

    

                                           
             

 

 

  
   

   

    
          

 

 

      

                                                      
                                                                         (3.21) 

 

Finally (3.20) becomes, 
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In the next lemma we find the estimates by using variational inequality (3.22). 

Throughout,   will represent a generic constant independent of      and   and 

         etc., are again replaced by  . 

Lemma 3.2 Assume the hypothesis (D1)-(D4) are satisfied then there exists a 

positive constant  , independent of      and   such that. 

 

                            
                                                                                            

                  
  

  
                                                                                    

    and             
 

Proof. In (3.22) let     and      
   we have 

    
     

            
     

       
       

   
    

          
    

                 

 

From relation (3.21), we have 

 

    
    

        
  
    
   

 
  
 

  

 

Hence, from (3.25), we have the estimate 

 

    
            

             
       

    
 

   
 
  
 

                                         

 

Using identity (3.22) for   and    , by subtraction, we obtain 

 

    
     

  
  
       

     
  

     
       

  
  
        

       
     

  
  
                                           

                   
       

       
  

   

   

  
  

  
 

     
    

      
  

  
   

 

Taking the norm, we get 
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Repeating the inequality (3.27), leads to the estimate 

 

    
  

  
      

                

 

   

     
      

                                    

 

   

 

   

   

   
          

      
      

 

   

             

 

Making use of (D1) and (D4) in inequality (3.28), we obtain 

 

    
  

  
      

          

              
                 

 

   

       
         

   

   

       

                     
                     

   

   

            

 

where                 and             are the total variations of   and   

respectively. Using the fact that           and all constant term by generic 

positive constant     we have 

 

    
  

  
         

       

   

   

  

             
             

 

   

   

   

   

     

                                                                                                       

   

   

 

 

Using the discrete version of Gronwall’s inequality (see Rektorys [8], Remark 

15.3, p. 286) in (3.29) we obtain the desired estimate (3.24) of the lemma. Now 

taking     
      

  in (3.22) and using the identity, 
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we get 

      
  

  
 

 
 
 

 
   

      
  

 
 
 

 
   

  
 

    
      

    
  

  
  

 

 
     

  
 
       

        
   

 

   

   

 

  
 

  

 

Ignoring the first two terms in the left hand side, we have 

 

   
  

 
       

  
  
     

  
  
       

  
 
   

      
     

     

   

   

    
  

  
  

                    
  

 
    

     
                                                                     

   

   

 

 

Repeating the above inequality and using the similar arguments as above we get 

the required estimate (3.23). This completes the proof of the lemma. 

Remark 3.3 From Lemma 3.2 it follows that the function    is Lipschitz 

continuous on        The sequence         and         are uniformly bounded 

 
                                                                                            (3.31) 

              as     uniformly on   .                                               (3.32) 

 

Lemma 3.4 There exists a function                 
        with 

  

  
 

       
        and subsequence        of       and        of       such that  

 

          and              in                                            (3.33) 

  
    

  
 

  

  
   in         

                                                        (3.34) 

 

where     denotes the weak convergence. 

Proof. Remark (3.3) implies that the Rothe sequence         and the sequence 

        of step functions are bounded in the space        . Since these are in a 

Hilbert space, subsequence          and          can be found weakly 

convergent in the space to abstract functions              respectively, 

 

          and             in        .                                   (3.35) 

 

To show that     we have to show, that 
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The convergence in (3.36) follows from Remark 3.3 and the following inequality 

 

                                                  
              (3.37) 

 

Passing to the limit in (3.37) we have    . We define a sequence of abstract 

functions                 by 

 

                
                

               
    

               . 

 

From Lemma 3.2 it follows that the sequence          is bounded in the space  

       
       , a subsequence           can be found converging weakly to a 

function          
       , 

 

        in             
       .                                                                         (3.38) 

 

Thus the integral 

            
 

 

 

 

exists it follows that in the space        
        we have 

 

                   
 

 
.                                                                             (3.39) 

 

From (3.35) and (3.38) we have     in        
        and 

  

  
         in 

       
       . Since 

    

  
     it follows that 

 
    

  
 

  

  
    in          

       .                                                                        (3.40) 

 

This completes the proof of the lemma. 

Remark 3.5 The function      from Lemma 3.4 possesses the following 

properties: 

(a) Since           we have for almost all          The integral 

boundary condition (1.4) of the problem satisfied. The initial condition is 

fulfilled in the sense of (3.39). 

(b)    is strongly differentiable a.e. in   and 
  

  
        

         

(c)        and             in        
        for all      
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(d) 
       

  
 

  

  
 in        

         

Definition 3.6 Further, we define the sequence         and         of step 

functions from   into    by 

 

           
         

       
                  

    
                  (3.41) 

 

And 

 

           
        

           
       

   
           

    
                   (3.42) 

 

Integral identity (3.20) may be rewritten as  

 

      
  

  
      

  
 
                          

  
              

  
      (3.43) 

 

for all     and a.e.            where 
  

  
 denote the left hand derivative. 

 

Lemma 3.7 Let         be the sequence of functions defined by (3.42) and  

 

               
 

 

             

 

where   is determined from Lemma 3.4. Then 

 

                
 

uniformly on       as      
 

Proof. Let         denote the integral 

 

               
 

 

             

 

where       is a piecewise continuous function. We first show that 

                 , uniformly on        as      
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hence                  , uniformly on        as      We now show that 

                   as     uniformly on  . For      
   

    
 

      we have 

 

                     
  

    

   

   

        
 

 

               

                    
  

                         
 
 

  

 
   

  

   

   

   

                                            
     

                   
 

 
   

  
               

 

Remark 3.3 and assumptions (D1) and (D4) imply that the last two terms on the 

right hand side tend to zero strongly and uniformly on   as      Since   and   

are continuous, for every     we can choose a positive integer   sufficiently 

large such that for              , and              , we have 

 

  
  

                         
  
 
 
 

 
  

 

Therefore  

 

     
  

                           
 
 

  

 
   

  

   

   

 

  
 

    
 

 
   

 

which show that                    as    , uniformly on      . This 

completes the proof of the lemma. 

 

4 Proof of the Theorem 2.2 

Proof. In view of Remark 3.5, it remains to show that integral identity (2.10) is 

satisfied by     . We consider the integral identity (3.43) written for   : 

 

   
  

  
       

  
 
                      

  
            

  
           (4.44) 

 

Integrating (4.44) between   and  . We obtain 
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               (4.45) 

 

Now, as     , we have  

 
  

  
       

  

  
    in        

                                                                      (4.46) 

 

and  

 

    
  

  
       

  
 
       

  

  
     

  
 
  

 

 

 

 
     for                              (4.47) 

 

Further, for a fixed           the linear functional           is uniformly 

bounded on        , and from the convergence result in Lemma 3.4, we have 

 

           
 

 
               

 

 
    for                                     (4.48) 

 

Now using Lemma 3.7, (4.47) and (4.48), passing to the limit in (4.45) as     , 

we have 

 

    
     

  
 
  
 

                                       
  
 
   

 

 

 

 

 

 

 

 

for all          . 
 

Uniqueness: Let two weak solutions             exist. Denote their difference 

by                 . Then      satisfies 

 

       
     

  
 
  
 
                 

 

 

 

 
       

                                       
 

 
   

  
 
  

 

 
,      (4.49) 

 

for all          . We have to show that    . Let us divide the interval   into 

a finite number of subintervals of lengths  , with   satisfying  

     
         

 

 

 

 
  where    max              

The function        is continuous in   and in         . Consequently,        

attains its maximum on certain point      , 
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Take 

      
                                  

                                        
   

as a test function in (4.49), we obtain 

 

       
     

  
 
  
 

  
  

 

         
  

 

     

                                                 

               
 

 

                          
  
 

   
  

 

 

 

According to assumption (D2), we have 

 

 

 
       

         
    

         
 

 
       

 
 

 

  

 

and so        on      . Similar argument are repeated to show that     on 
                     which yields     on  . 
 

Continuous dependence: Let    and    be two weak solutions of (1.1)-(1.4), 

corresponding to    
      and     

     , respectively, and the initial data satisfy the 

given assumptions, from (2.10), putting        , and the assumption on 

       we have  

 
 

  
          

             

                                                     
  
 
            

                 
 

                            
  
 

 
          

                
   

where          and             
 

 
. 

 

Integrating over       for         and using the fact that         
 , for 

       we get 
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Taking the supremum and applying Gronwall’s inequality we obtain 

 

                
                   

   
 

 

 

     
    

  
  
 

                    
                     

 
 

 

           

 

This shows the continuous dependence of the solution on the initial data. This 

completes the proof of the theorem. 

 

Remark 4.1 Uniqueness of the weak solution      implies that not only the 

sequence          converges weakly to     , but the whole sequence         
converges weakly to     . This can be proved as follows. Suppose that         
does not converge weakly to      in        . Then there exists at least one 

function           and an     such that 

 

                        
 

 
                                                                       (4.50) 

 

for infinitely many values of  . Let          be a sequence satisfying (4.50). This 

sequence, being a subsequence of         is bounded in        . Consequently a 

subsequence        can be found converging weakly in         to a function 

         . This function have all the properties of the solution of the problem, 

thus it is also the weak solution of the problem (1.1)-(1.4) and     in        . 
This contradicts the fact that the problem has a unique weak solution. 

 

Example 4.2 Consider the initial and nonlocal boundary value problem for the 

heat equation 

 

  

  
      

   

   
            

    

 
    

     
                     

                     
 

 

                            

                                                                                                                  

 
  

  
                                                                                                              

              
 

 

                                                                                                      

 

It may be seen that all the assumption of theorem 2.2 are satisfied for the 

functions appearing in the above example. Hence this problem has a unique 

solution. We may verify that           
        is the solution of (4.51)-

(4.54). 
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