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Abstract 

 

In this paper, we study a new subclass of univalent analytic functions with positive coefficients in the unit disk; we 

obtain main result, distortion theorem and some properties of this subclass. 
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1. Introduction 

Let R  denote the class of functions of the form: 
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Which are analytic and univalent in the unit disk  : 1U z C z   ? 

Let 
R  be a subclass of a class H  consisting of functions of the form: 
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A function 
Rf
 is said to be starlike function of order   if and only if  
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Definition 1: A function f H   is said to be in the class ( , , )RM B    if f  satisfies the condition: 
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Where, 0 1B  , 0 1  , 0 1   . 

In the following theorem, we obtain a sufficient condition for the function f  to be in the class ( , , )RM B   . 

 

Theorem 1: A function f  defined by (2) be in the class ( , , )RM B    if  
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The result is sharp. 
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Proof: For 1z  , we have  ( ) ( )( ) ( ) ( )zf z f z B zf z f z          

 ( )(1 ) ( ) ( )f z zf z f z       

2

( 1)( ) n

n
n

n B a z 




     

 
2

(1 ) ( 2) 1 n

n
n

z n a z 




      

 
2

( 2) 1 ( 1)( (1 ) 0n
n

n n B a   




          . 

This by maximum modulus theorem ( , , )f RM B    

The result is sharp for the function f  given by the form  
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There are many authors who have studied the various interesting properties of the classes, H. Silvrerman [4], H. J. A. 

Hussein and R. H. Buti[3], K. K. Dixit and Y.K. Mishra[2] , N. E. Cho , S. H. Lee and S. Owa [1]. 

In the next, we obtain distortion theorem for the class ( , , )RM B   . 

 

Theorem 2: Let ( )f z  defined by (2) be in the class ( , , )RM B   .  Then  
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and  
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The inequalities in (7) and (8) are attuned for the function  
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Proof: By using Theorem 1, we have  
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So by using (2) and (10), we have  
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Which gives (7), we also have  
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Which gives (8)? 

Now, we shall prove that class ( , , )RM B   is closed under convex linear combinations.  

Let the function 
kf  ( 1,2,..., )k m be defined by  
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Theorem 3: Let the function ( )kf z defined by (11) be in the class ( , , )RM B   , (0 1)  .Then the following function g  

defined by  
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Is in the class ( , , )RM B   , where   
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Proof: Since ( , , )kf RM B    for each ( 1,2,..., )k m , we note that  
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Therefore 
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Thus, we get  
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Hence, by Theorem 1, we have ( , , )g RM B   . 

In the next we show that the integral operator in the class ( , , )RM B   . 
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