
International Journal of Applied Mathematical Research , 3 (4) (2014) 496-507
c⃝Science Publishing Corporation

www.sciencepubco.com/index.php/IJAMR
doi : 10.14419/ijamr.v3i4.3538
Research Paper

Integrating PSO with modified hybrid GA for
solving nonlinear optimal control problems

R. Ghanbari1, S. Nezhadhosein2∗, A. Heydari3

1Department of Applied Mathematics, Faculty of Mathematical science, Ferdowsi University of Mashhad, Mashhad, Iran
2,3Department of Applied Mathematics, Payame Noor University, Tehran, Iran

*Corresponding author E-mail:s nezhadhossin@yahoo.com

Abstract

Here, a two-phase algorithm based on integrating particle swarm optimization (PSO) with modified hybrid genetic algorithm
(MHGA) is proposed for solving the associated nonlinear programming problem of a nonlinear optimal control problem. In
the first phase, PSO starts with a completely random initial swarm of particles, where each of them contains two random
matrices in time nodes. After phase 1, to achieve more accurate solutions, the number of time nodes is increased. The values
of the associated new control inputs are estimated by linear or spline interpolations using the curves computed in the phase 1.
In addition, to maintain the diversity in the population, some additional individuals are added randomly. Next, in the second
phase, MHGA, starts by the new population constructed by the above procedure and tries to improve the obtained solutions at
the end of phase 1. MHGA combines a GA with a successive quadratic programming, SQP, as a local search.
Finally, we implement the proposed algorithm on some well-known nonlinear optimal control problems. The numerical results
show that the proposed algorithm can find almost better solution than other proposed algorithms.

Keywords: Optimal control problem, Hybrid genetic algorithm, particle swarm optimization, Spline interpolation.

1. Introduction
Nonlinear optimal control problems (NOCP) are dynamic optimization problems with many applications in industrial pro-
cesses such as airplane, robotic arm, bio-process system, biomedicine, electric power systems, plasma physics and etc., [17].
Many methods for solving NOCP, either direct or indirect, rely upon gradient information and therefore may converge to
a local optimum [1]. In direct methods [17], the original continuous-time problem is approximated by a finite-dimensional
nonlinear programming problem using discrete states and control variables. The major drawback of these methods is shortage
of accuracy. In indirect approaches, the problem through the use of the Pontryagins minimum principle (PMP), is converted to
two boundary value problems (TBVP) that can be solved by numerical methods such as shooting method [17]. These methods
have two major disadvantages. First, they may converge to a local optimum. Next, they require good initial guesses that lie
within the domain of convergence.
Metaheuristics as the global optimization methods can overcome these problems. They differ from classic methods. They
don’t really need good initial guesses and deterministic rules. Some of these methods are; Genetic algorithm (GA), see
[1, 23, 24], Genetic programming (GP), see [18], Particle swarm optimization (PSO), see [3, 4, 21], Ant colony optimization
(ACO), see [27] and Differential evolution (DE), see [8, 19, 28].
Many authors proposed many types of metaheuristics for solving NOCPs. Wang and Chiou [28] proposed a DE to solve
NOCPs described by differential-algebraic systems with nonlinear constraints. Lee et al. [19] used a modified DE algorithm
for dynamic optimization of a continuous polymer reactor. Sim et al. [24] combined a GA and the shooting method for solving
NOCP. Cruz et al. [8] used efficient DE algorithms for solving multi-modal NOCPs. Arumugam and Rao [4] considered the



International Journal of Applied Mathematical Research 497

popular GA operator, cross-over and root mean square variants into PSO algorithm to make a faster convergence. Arumugam
et al. [3] used various optimization algorithms, including PSO, with time varying inertia weight methods, and PSO with
globally and locally tuned parameters to solve the NOCPs for steel annealing processes. van Ast et al. [27] proposed a novel
ACO approach to solve NOCP. Kumar and Balasubramaniam [18], using GA, solved NOCP for a linear system with quadratic
performance.
Shi et al. [23] presented an improved GA with variable population-size inspired by the natural features of the variable size of
the population used to continuous optimization problems. Ghosh et al. [13] used an ecologically inspired optimization tech-
nique for solving NOCPs. They used Bézier curves to parameterize the control functions. Abo-Hammour et al. [1] applied
the continuous GA for solving NOCPs. They used smooth genetic operators to solve NOCPs.
To increase the quality of solutions and decrease the running time, hybrid methods were introduced, which used a local search
in the implementation of a population-based metaheuristics [5]. Modares and Naghibi-Sistani [21] proposed a hybrid algo-
rithm by integrating an improved PSO with successive quadratic programming (SQP) for solving NOCPs. Recently, Sun et
al. [25] proposed a hybrid improved GA, which used Simplex method (SM) to perform a local search, for solving NOCPs and
applied it for chemical processes.
Based on the success of the hybrid methods for solving NOCPs, mentioned above, we here use a modified hybrid Genetic
algorithm (MHGA), which combines GA with SQP, see [7], as a local search. SQP is an iterative algorithm for solving
nonlinear programming (NLP) problems, which uses gradient information. It can moreover be used for solving NOCPs, see
[10, 14, 26]. For decreasing the running time in the early generations (iterations) of MHGA, a less number of iterations for
SQP was used and then, when the promising region of search space was found, we increase the number of iterations of SQP,
gradually.
To perform the new algorithm, the time interval is uniformly divided by using a constant number of time nodes. Next, in each
of these time nodes, the control variable is approximated by a scaler vector of control input values. Thus, an infinite dimen-
sional NOCP is changed to a finite dimensional NLP. Now, we encounter two conflict situations: the quality of the global
solution and the needed computational time. In other words, when the number of time nodes is increased, then we expect the
quality of the global solution is also increased, but we know that in this situation the computational time is increased dramati-
cally. In other situation, if we consider less number of time nodes, then the computational time is decreased but we may find
a poor local solution. To conquer these problems, a two-phase algorithm is proposed. In the first phase (exploration phase), to
decrease the computational time and to find a promising regions of search space, PSO uses a less number of time nodes, which
is showed to converge rapidly to a near optimum solution [21]. After phase 1, to increase the quality of solutions obtained
from phase 1, the number of time nodes is increased. Using the population obtained in the phase 1, the values of the new
control inputs are estimated by Linear or Spline interpolations. Next, in the second phase (exploitation phase), MHGA uses
the solutions constructed by the above procedure, as an initial population. Finally, the best individual in the last population is
considered as an approximation of the optimal solution.
The paper is organized as follows: in Section 2, problem formulation is introduced. In Section 3, overview of the PSO and GA
are presented. In Section 4, we introduce the proposed algorithm for solving NOCP. In Section 5, we provide some numerical
NOCPs to examine the proposed algorithm. Results are compared with some numerical and heuristic methods. We conclude
in Section 6.

2. Formulation of problem

The bounded continuous-time NOCP is considered as finding the control input u(t) ∈ Rm, over the planning horizon [t0, t f ],
that minimizes the cost functional:

J = ϕ(x(t f ), t f )+
∫ t f

t0
g(x(t),u(t), t)dt (1)

subject to :

ẋ(t) = f (x(t),u(t), t), (2)
c(x,u, t) = 0, (3)
d(x,u, t)≤ 0, (4)
ψ(x(t f ), t f ) = 0, (5)
x(t0) = x0. (6)

where x(t) ∈ Rn denotes the state vector for the system and x0 ∈ Rn is the initial state. The functions f : Rn+m ×R →
Rn, g : Rn+m ×R → R, c : Rn+m ×R → Rnc , d : Rn+m ×R → Rnd , ψ : Rn ×R → Rnψ and ϕ : Rn ×R → R are assumed
to be sufficiently smooth on appropriate open sets. The cost function (1) must be minimized subject to dynamic (2), control



498 International Journal of Applied Mathematical Research

and state equality constraints (3) and control and state inequality constraints (4), the final state constraints (5) and the initial
condition (6). A special case of the NOCPs is the linear quadratic regulator (LQR) problem where the dynamic equations are
linear and the objective function is a quadratic function of x and u. The minimum time problems, tracking problem, terminal
control problem and minimum energy are another special cases of NOCPs.

3. Overview of the PSO and GA
Here, we introduce PSO and MHGA as subprocedures for the main algorithm. Firstly the control variables are parameterized.
Next, NOCP is changed into a finite dimensional NLP (See [11]). Now, we can imply an optimization algorithm to find the
global solution of the corresponding NLP.

3.1. PSO
PSO, introduced by Kennedy and Eberhart [16] in 1995, is an evolutionary computation technique motivated by simulation
of social individual and uses a population of random particles which flown through the problem space. Each particle has two
components: position and velocity.
Here, the underling PSO has the following steps:
Initialization: The time interval is divided into Nt −1 subintervals using time nodes t0, . . . , tNt−1 and then control input values
are computed (or selected randomly). This can be done by the following stages:

1. Let tk = t0 + kh, where h =
t f −t0
Nt−1 ,k = 0,1, . . . ,Nt −1 and t0 and t f are the initial and final times, respectively.

2. The corresponding control input value at each time node tk is an m× 1 vector, uk, as the position of particle with the
corresponding velocity, vk, which is similarly an m×1 vector. So, the k-th particle in the swarm has two m×Nt matrices,
by the following components:

(U(k))i j = ule f t,i +(uright,i −ule f t,i).ri j (7)
(V(k))i j = α.(ule f t,i +(uright,i −ule f t,i).ri j) (8)

where i = 1,2, . . . ,m, j = 1,2, . . . ,Nt ,k = 1,2, . . . ,Np, α ∈ [0,1] is constant parameter for confine the velocity, ri j is a
random number in [0,1] with a uniform distribution and ulelt ,uright ∈ Rm are the lower and the upper bound vectors
of control input values, which can be given by the problem’s definition or the user (e.g. see the NOCPs no. 5 and
6 in Appendix). Next, we let U(k) = [u0,u1, . . . ,uNt−1] = (ui j)m×Nt ,k = 1,2, . . . ,Np as k-th particle (individual) of the
population, control input matrix, which Np is the size of the population.

Evaluation: For each control input matrix, U (k),k = 1,2, . . . ,Np, the corresponding state variable is a n×Nt matrix, X (k), and
it can be computed by the forth Runge-Kutta method on dynamic system (2) with the initial condition (6), approximately.
Then, the performance index, J(U (k)), is approximated by a numerical method (denoted by J̃). If NOCP includes equality or
inequality constraints (3) or (4), then we add some penalty terms to the corresponding fitness value of the solution. Finally,
we assign I(U (k)) to U (k) as the fitness value as follows:

I(U (k)) = J̃+
nd

∑
l=1

Nt−1

∑
j=0

M1lmax{0,dl(x j,u j, t j)}+
nc

∑
h=1

Nt−1

∑
j=0

M2hc2
h(x j,u j, t j)+

nψ

∑
i=p

M3pψ2
p(xNt−1, tNt−1) (9)

where M1 = [M11, . . . ,M1nd ]
T , M2 = [M21, . . . ,M2nc ]

T and M3 = [M31, . . . ,M3nψ ]
T are big numbers, as the penalty parameters

, ch(., .), h = 1,2, . . . ,nc, dl(., .), l = 1,2, . . . ,nd , and ψp(., .), p = 1,2, . . . ,nψ are defined in (3), (4) and (5), respectively.
Update: The new velocity and the new position for the k-th particle, in iter-th iteration, V iter+1

(k) and U iter+1
(k) , are calculated as

following:

V iter+1
(k) = wV iter

(k) + c1r1(Pbest iter
(k) −U iter

(k) )+ c2r2(Gbest iter −U iter
(k) ) (10)

U iter+1
(k) =U iter

(k) +V iter+1
(k) (11)

where k = 1,2, . . . ,Np, w is inertia weight, c1 and c2 are positive constants called cognitive and social parameters (or accel-
eration coefficients), respectively, r1 and r2 are random numbers in [0,1] and Pbest iter

(k) is the best previous position for the
k-th particle (personal best) and Gbest iter is the best previous position among all the particles in iter-th iteration (global best),
U1
(k) =U(k), V 1

(k) =V(k).



International Journal of Applied Mathematical Research 499

Also, we use time-varying inertia weight, TVIW, and time-varying acceleration coefficients, TVAC, for updating the inertia
weight, w, and acceleration coefficients, c1 and c2, which are done by the following equations [4]:

w = w f +(wi −w f )
Maxiter− iter

Maxiter
(12)

ck = ck f +(cki − ck f )
Maxiter− iter

Maxiter
, k = 1,2 (13)

where wi and w f are the initial and final values of the inertia weight, respectively, cki and ck f , for k = 1,2, are initial and
final values of the acceleration coefficients, respectively, and iter is the current iteration number and Maxiter is the maximum
number of allowable iterations.
Terminal conditions: The algorithm is terminated when one of the following conditions are met: the number of iterations is
equal to Maxiter, running time is equal to CPUT IME.
The PSO algorithm is given in Algorithm 1.

Algorithm 1 PSO algorithm

{Initialization} Input the number of time nodes Nt , the size of population Np, the initial and final values of the inertia
weight, wi and w f , the initial and final values of the acceleration coefficient, cki and ck f , for k = 1,2, the parameter for
control velocity, α , the maximum number of iterations Maxiter, the maximum running time CPUT IME and an initial
population consist of initial position, U , and initial velocity of particles, V .
Let iter = 1.
while stopping conditions are not satisfied do

{Evaluation} Evaluate the fitness value of each particle by (9).
{Update} Update the inertia weight and acceleration coefficients, w and ck,k = 1,2, by (12) and (13), new Gbest iter

and new position of particles by (11).
Let iter = iter+1

end while
Return the best particle of swarm as an approximate solution.

3.2. GA
GAs introduced by Holland in 1975, are a class of heuristics and probabilistic methods. These algorithms start with an initial
population of solutions. This population is evaluated by using genetic operators that include selection, crossover and mutation.
In the following, we introduce GA operators.

3.2.1. GA operators

Here, in MHGA, the underling GA has the following steps:
Initialization: The initial population is sequence random input matrices, similar to initialization in PSO, from previous section.
Evaluation: Similar to evaluation of particles of swarm in PSO, see (9).
Selection: To select two parents from population, we use a tournament operator with size 8 [9].
Crossover: When two parents U(1) and U(2) are selected, we use the following stages to construct an offspring:

1. Select the following numbers:

λ1 ∈ [0,1],λ2 ∈ [−λmax,0],λ3 ∈ [1,1+λmax] (14)

randomly, where λmax is a random number in [0,1].

2. Let:

o f k = λkU(1)+(1−λk)U(2), k = 1,2,3 (15)

where λk,k = 1,2,3 is defined in (14). For i = 1 . . .m and j = 1, . . . ,Nt , if (o f k)i j > uright,i, then let (o f k)i j = uright,i and
if (o f k)i j < ule f t,i, then let (o f k)i j = ule f t,i.

3. Let o f = o f ∗, where o f ∗ is the best o f i, i = 1,2,3 constructed by (15).



500 International Journal of Applied Mathematical Research

Mutation: We apply a perturbation on each component of the offspring as follows:

(o f )i j = (o f )i j + ri j.β , i = 1,2, . . . ,m, j = 1,2, . . . ,Nt (16)

where ri j is selected randomly in {−1,1} and β is a random number in [0,1]. If (o f )i j > uright,i, then let (o f )i j = uright,i and
if (o f )i j < ule f t,i, then let (o f )i j = ule f t,i.
Replacement: Here, in the underling GA, we use a traditional replacement strategy. The replacement is done, if the new
offspring has two properties: First, it is better than the worst person in the population. Second, it isn’t very similar to a person
in the population.
Termination conditions: Underlying GA is terminated when at least one of the following conditions is occurred: over a
specified number of generations, Ni, we don’t have any improvement (the best individual is not changed), the maximum
number of generations, Ng, is reached, or a predefined running time, CPUT IME, is achieved.

3.2.2. MHGA

In MHGA, GA uses a local search method to improve solutions. Here, we use SQP as a local search [7]. Using SQP as a local
search in the hybrid metaheuristic is common for example see [21].
In the beginning of MHGA, a less number of iterations for SQP was used. Then, when the promising regions of search space
were found, we increase the number of iterations of SQP gradually. Using this approach, we may decrease the needed running
time (in [6] the philosophy of this approach is discussed).
Finally, we give the MHGA, in Algorithm 2.

Algorithm 2 MHGA algorithm

{Initialization} Input the number of time nodes Nt , the size of population Np, the maximum number of generations without
improvement Ni, the maximum number of generations Ng, the maximum running time CPUT IME, the mutation implemen-
tation probability Pm, the initial value of the maximum number of iterations in SQP, sqpmaxiter and an initial population.
{Evaluation} Evaluate the fitness of each individual by (9).
{Local search} Perform SQP on each individual of the population when the maximum number of iteration is sqpmaxiter.
while stopping conditions are not satisfied do

{Selection} Select two parents U(1) and U(2) by using an eight tournament from the population.
{Crossover} Construct a new offspring, o f , using (14) and (15).
{Mutation} Apply (16) on o f with probability Pm.
{Local search} Perform SQP on o f when the maximum number of iteration is sqpmaxiter.
{Replacement}
if replacement conditions are satisfied (see Section 3.2.1) then replace o f with the worst individual of the papulation.
end if
Let: sqpmaxiter := sqpmaxiter+1

end while
Return the best individual in the final population as an approximate solution of NOCP.

4. The proposed algorithm
Here, we propose a two-phase algorithm based on PSO and MHGA for solving NOCP, which is a direct approach. The main
idea of the algorithm is to find promising regions of search space (converge rapidly to a near optimum solution) with a few
number of time nodes, using PSO. Then, after finding good solutions, we increase the number of time nodes to improve the
approximation of the optimal solution.
In the first phase, we perform PSO (Algorithm 1) with a completely random initial particles. Each particle has two matrices,
a position matrix which contain control input values and a velocity matrix. Since the main goal in the first phase is to find the
promising regions of the search space in a less running time, we use a few numbers of time nodes, here. In addition, to have a
faster converged PSO, the size of the population of PSO in the first phase is usually less than the size of the population.
After phase 1, to maintain the property of individuals in the last iteration of the phase 1 and to increase the accurately of
solutions, we add some additional time nodes. Thus, we increase time nodes from Nt1 in the phase 1 to Nt2 in the phase 2.
The corresponding control input values of the new time nodes are added to individuals. To use the information of the obtained
solutions from phase 1 in the construction of the initial population of the phase 2, we use either linear or spline interpolations
to estimate the value of the control inputs in the new time nodes in each individual of the last population of phase 1. Moreover,



International Journal of Applied Mathematical Research 501

to maintain the diversity in the initial population of the phase 2, we add new random individuals to the population using (7).
In the second phase, MHGA starts with this population and new parameters.
Finally, the proposed algorithm is given in Algorithm 3.

Algorithm 3 The proposed algorithm

{Initialization} Input CPUT IME and let CPUT T IME1 := CPUT IME
2

{Phase 1} Perform PSO (Algorithm 1) with random particles, position, U , velocity, V , and the parameters
Nt1 , Np1 , wi, w f , cki, ck f , k = 1,2, α, CPUT IME1 and Maxiter.
{Construction of the initial population of the phase 2} Increase time nodes uniformly to Nt2 and estimate the corre-
sponding control input values of the new time nodes in each individual obtained from phase 1, using either linear or spline
interpolations.
Create Np2 −Np1 new different individuals with Nt2 time nodes, randomly.
Let CPUT IME2 :=CPUT IME - the running time of the Phase 1.
{Phase 2} Perform MHGA (Algorithm 2) with the constructed random population and Nt2 , Np2 , Ni, Ng, CPUT IME2, Pm
and sqpmaxiter.

5. Numerical experiments
In this section, in order to show the feasibility of the proposed algorithm, 23 NOCPs, which are described in Appendix in
terms of eqns (1)-(6), are considered. These NOCPs are selected with single control signal and multi control signals, which
will be demonstrated in a general manner. Numerical results for these problems, are summarized in Tables 1. The parameters,
for each problem, are reported in Table 2.
The algorithm was implemented in Matlab R2011a environment on a Notebook with Windows 7 Ultimate, CPU 2.53 GHz and
4.00 GB RAM. Also, to implement SQP in the proposed algorithm, we used ‘fmincon’ in Matlab when the ‘Algorithm’ was
set to ‘SQP’. To set the parameters of the proposed algorithms, we ran them with different values of parameters and selected
the best of them.
The notation φ f , in Table 1, shows the norm of error in the final condition, i.e. φ f = ∥ψ(x∗(tNt−1), tNt−1)∥∞, where ψ = [ψi]

nψ
i=1;

see (6). Moreover, we used Gap to compare the cost function’s values, as follows:

Gap(J) = |J− J∗

J∗
| (17)

where J∗ is the best value obtained for the cost function.

Remark 5.1 We use the following abbreviations to show the used interpolation method in the proposed algorithm:

1. LI: linear interpolation.

2. SI: spline interpolation.

Remark 5.2 In first phase of Algorithm 3, in PSO, we let Maxiter = 1000, α = 0.1, c1i = c2 f = 2.5, c1 f = c2i = 0.5, wi =
0.9, w f = 0.4 and in second phase, in MHGA, we let sqpmaxiter = 4, Pm = 0.8. Also, we use the composite Simpson method
to approximate (1).

Table 1, shows the numerical results (the cost function, J, the norm of error in the final condition, φ f and Gap) for NOCPs
given in Appendix. the proposed algorithm is compared with some recently proposed algorithms. These methods consist
of SUMT and SQP, proposed in [11], continuous genetic algorithm, CGA [1], (better than SUMT), IPSO-SQP [21], (more
accurate than some heuristic algorithms such as GA [22], DE [8], and PSO [15]) and some numerical methods [12, 14, 29].
Because of the stochastic nature of the proposed algorithm, 10 different runs were made for each result. From Table 1, the
following observations can be achieved:

1. The proposed algorithm could find the best cost function’s value. It is seen that SI could find the best solution among
all algorithms in 52 percent of test problems, also LI could find the best solution among all algorithms in 17 percent of
test problems and for the other cases are equal.

2. Unfortunately, the final condition didn’t report in many previous works. Thus, we only used the available results of
other algorithms. Only in 70 percent of NOCPs given in Appendix the final condition is exist (see (5)), and among them



502 International Journal of Applied Mathematical Research

only in 37 percent it is reported. The proposed algorithm in 87 percent of them give better results.
Table 1, also shows the proposed algorithm was a robust algorithm from the final condition perspective with respect to
the other algorithm on the available data.

3. The value of Gap for the proposed algorithm, LI or SI methods, is better than other methods. From this point of view,
the proposed algorithm could find the best cost function.

Table 1: Numerical results for NOCPs described in Appendix.

Problem Algorithm J φ f Gap
VDPO Abo-Hammour et al. [1] 1.7404 2.67×10−11 0.0687

LI 1.6322 1.01×10−4 0.0023
SI 1.6284 1.02×10−4 0

CRP Abo-Hammour et al. [1] 0.0163 7.5×10−10 0.0251
LI 0.0160 1.45×10−7 0.0062
SI 0.0159 1.31×10−8 0

FFRP Abo-Hammour et al. [1] 83.63 3×10−4 0.6213
LI 51.58 2×10−4 0
SI 54.14 0.0014 0.0496

CSTCR Modares and Naghibi-Sistani [21] 0.1354 0.0025 0.0407
Ali et al. [2] J ∈ [0.135,0.245] NRa 0.0376b

Cruz et al. [8] J ∈ [0.1358,0.1449] NR 0.0438b

LI 0.1332 2×10−4 0.007
SI 0.1301 0.0029 0

MSNIC Modares and Naghibi-Sistani [21] 0.1727 — 0.0069
Goh and Teo [14] 0.1816 — 0.0588
Mekarapiruk and Luus[20] 0.1769 — 0.0314
LI 0.1719 — 0.0023
SI 0.1715 — 0

NOCP no. 6 Zhang and He-ping [29] 0.0266 — 0.0114
LI 0.0263 — 0
SI 0.0263 — 0

NOCP no. 7 Ghomanjani et al. [12] -5.3898 0.1387 0.0358
LI −5.5902 0.0617 0
SI -5.4926 0.0360 0.0174

NOCP no. 8 Ghomanjani et al. [12] 0.1713 0.0021 0.0076
LI 0.1700 0.0007 0
SI 0.1717 0.0009 0.01

NOCP no. 9 SUMT [11] 5.15×10−6 — 1.33×10−14

SQP [11] 6.57×10−6 — 1.70×10−14

LI 7.19×10−8 — 8.72×10−17

SI 3.84×10−8 — 0
NOCP no. 10 SUMT [11] 1.7980 — 0.0697

SQP [11] 1.7950 — 0.0680
LI 1.7342 — 0.0268
SI 1.6807 — 0

NOCP no. 11 SUMT [11] 0.1703 — 2.0410
SQP [11] 0.2163 — 2.8625
LI 0.0561 — 0.0017
SI 0.0560 — 0

NOCP no. 12 SUMT [11] 3.2500 NR 0
SQP [11] 3.2500 NR 0
LI 3.2500 7.62×10−7 0
SI 3.2500 1.57×10−6 0

NOCP no. 13 SUMT [11] −0.2490 NR 0.0016
SQP [11] −0.2490 NR 0.0016

Continued on next page



International Journal of Applied Mathematical Research 503

Table 1 – Continued from previous page
Problem Algorithm J φ f Gap

LI −0.2494 4.11×10−8 0
SI −0.2494 4.11×10−9 0

NOCP no. 14 SUMT [11] 0.0167 NR 0.2189
SQP [11] 0.0168 NR 0.2262
LI 0.0137 4.91×10−8 0
SI 0.0137 7.52×10−7 0

NOCP no. 15 SUMT [11] 3.7700 NR 0.1406
SQP [11] 3.7220 NR 0.1261
LI 0.3052 5.34×10−7 0
SI 0.3053 1.03×10−5 0

NOCP no. 16 SUMT [11] 9.29×10−4 NR 5.09×10−10

SQP [11] 1.01×10−3 NR 1.42×10−9

LI 8.84×10−4 5.73×10−9 0
SI 8.91×10−4 4.84×10−8 7.91×10−11

NOCP no. 17 SUMT [11] 2.2080 NR 0.0420
SQP [11] 2.2120 NR 0.0439
LI 2.1313 10−5 0.0058
SI 2.1189 10−6 0

NOCP no. 18 SUMT [11] −8.8690 NR 2.25×10−5

SQP [11] −8.8690 NR 2.25×10−5

LI −8.8692 1.96×10−7 0
SI −8.8692 8.46×10−6 0

NOCP no. 19 SUMT [11] 0.0368 — 0.1288
SQP [11] 0.0368 — 0.1288
LI 0.0326 — 0
SI 0.0326 — 0

NOCP no. 20 SUMT [11] 76.83 NR 0.1477
SQP [11] 77.52 NR 0.1581
LI 70.03 0.0170 0.0462
SI 66.94 0.7001 0

NOCP no. 21 SUMT [11] 0.3428 NR 13.1069
SQP [11] 0.3439 NR 13.1522
LI 0.0377 0.0023 0.0134
SI 0.0243 0.0071 0

NOCP no. 22 SUMT [11] 5.27×10−3 NR 0.1285
SQP [11] 5.19×10−3 NR 0.1133
LI 4.84×10−3 3.7780 0.0364
SI 4.67×10−3 3.8508 0

NOCP no. 23 SUMT [11] 5.22×10−3 NR 0.0610
SQP [11] 5.19×10−3 NR 0.0549
LI 4.92×10−3 2.4898 0
SI 5.01×10−3 2.4105 0.0183

a Not reported.
b Gap is calculated by lower bound of interval.

6. Conclusions

In this paper, we gave a two-phase algorithm based on integrating PSO with MHGA for solving the associated NLP of a
NOCP. In the first phase, PSO started with a completely random initial swarm of particles, where each of them had two
random matrices; a position matrix, or solution, which contain control input values in time nodes and a velocity matrix. After
phase 1, to achieved more accurate solutions, we increased the number of time nodes. The values of the associated new control
inputs were estimated by linear or spline interpolations using the curves computed in the phase 1. In addition, to maintain



504 International Journal of Applied Mathematical Research

Table 2: The parameters of the proposed algorithm for the NOCPs in Appendix.

Problem Parameters
Np1 Np2 Nt1 Nt2 Ng Ni ule f t uright CPUT IME

1 25 30 51 121 7000 5500 -2 2 60
2 12 15 31 41 5000 4000 -1.5 2 80
3 9 15 21 35 5000 2800 -15 10 90
4 12 15 31 151 2000 1300 -7 7 70
5 12 15 41 51 2000 1200 -20 20 60
6 11 15 41 51 2000 1200 -1 1 20
7 11 15 71 251 2000 1200 -2 2 40
8 11 15 31 131 3000 2200 -5 15 150
9 25 35 21 91 7000 5500 0 2 30

10 35 45 21 51 5000 3500 -1 1 30
11 25 35 21 91 7000 5500 −20 20 30
12 35 45 21 51 5000 3500 −3 3 30
13 15 25 31 71 7000 5500 −1 1 30
14 15 20 31 61 7000 5500 −2 2 30
15 25 35 21 51 7000 5500 −π π 30
16 42 55 9 13 7000 5500 −1 1 30
17 15 25 31 131 5000 4000 −3 3 40
18 25 35 31 131 5000 4000 −30 30 40
19 9 15 51 91 5000 4000 −2 2 50
20 9 15 21 35 5000 2800 -15 10 90
21 9 12 9 11 5000 2800 -2 2 90

22 9 12 15 21 5000 3600
[
−2.8
−0.8

] [
2.8
0.7

]
130

23 9 15 11 15 6000 4600
[
−2.8
−0.8

] [
2.8
0.7

]
150



International Journal of Applied Mathematical Research 505

the diversity in the population, some additional individuals were added randomly. Next, in the second phase, MHGA, started
by the new population constructed by the above procedure and tried to improve the obtained solutions at the end of phase
1. MHGA combined a GA with a SQP, as a local search. In MHGA, to decrease the running time in the early iterations, a
less number of iterations of SQP was used. Then, after finding the promising regions of the search space, we increased the
number of iterations for SQP gradually. Finally, we implemented the proposed algorithm on some well-known NOCPs. The
numerical results showed that we can find almost better solution than other proposed algorithms.

References
[1] Zaer S. Abo-Hammour, Ali Ghaleb Asasfeh, Adnan M. Al-Smadi, and Othman M. K. Alsmadi, A novel continuous

genetic algorithm for the solution of optimal control problems, Optimal Control Applications and Methods 32 (2011),
no. 4, 414–432.

[2] M.M. Ali, C. Storey, and A. Törn, Application of stochastic global optimization algorithms to practical problems, Journal
of Optimization Theory and Applications 95 (1997), no. 3, 545–563 (English).

[3] M. Senthil Arumugam, G. Ramana Murthy, and C. K. Loo, On the optimal control of the steel annealing processes as a
two stage hybrid systems via PSO algorithms, International Journal Bio-Inspired Computing 1 (2009), no. 3, 198–209.

[4] M. Senthil Arumugam and M. V. C. Rao, On the improved performances of the particle swarm optimization algorithms
with adaptive parameters, cross-over operators and root mean square (RMS) variants for computing optimal control of
a class of hybrid systems, Application Soft Computing 8 (2008), no. 1, 324–336.

[5] Saman Babaie-Kafaki, Reza Ghanbari, and Nezam Mahdavi-Amiri, Two effective hybrid metaheuristic algorithms for
minimization of multimodal functions, International Journal Computing Mathematics 88 (2011), no. 11, 2415–2428.

[6] Saman Babaie-Kafaki, Reza Ghanbari, and Nezam Mahdavi-Amiri, An efficient and practically robust hybrid meta-
heuristic algorithm for solving fuzzy bus terminal location problems, Asia-Pacific Journal of Operational Research 29
(2012), no. 2, 1–25.

[7] J.J.F. Bonnans, J.C. Gilbert, C. Lemaréchal, and C.A. Sagastizábal, Numerical optimization: Theoretical and practical
aspects, Springer London, Limited, 2006.

[8] I.L. Lopez Cruz, L.G. Van Willigenburg, and G. Van Straten, Efficient differential evolution algorithms for multimodal
optimal control problems, Applied Soft Computing 3 (2003), no. 2, 97 – 122.

[9] A.P. Engelbrecht, Computational intelligence: An introduction, Wiley, 2007.

[10] Brian C. Fabien, Numerical solution of constrained optimal control problems with parameters, Applied Mathematics
and Computation 80 (1996), no. 1, 43 – 62.

[11] Brian C. Fabien, Some tools for the direct solution of optimal control problems, Advances Engineering Software 29
(1998), no. 1, 45–61.

[12] F Ghomanjani, M.H Farahi, and M Gachpazan, Bézier control points method to solve constrained quadratic optimal
control of time varying linear systems , Computational and Applied Mathematics 31 (2012), 433 – 456 (en).

[13] Arnob Ghosh, Swagatam Das, Aritra Chowdhury, and Ritwik Giri, An ecologically inspired direct search method for
solving optimal control problems with Bézier parameterization, Engineering Applications of Artificial Intelligence 24
(2011), no. 7, 1195 – 1203.

[14] C.J. Goh and K.L. Teo, Control parametrization: A unified approach to optimal control problems with general con-
straints, Automatica 24 (1988), no. 1, 3 – 18.

[15] Fernando Herrera and Jie Zhang, Optimal control of batch processes using particle swam optimisation with stacked
neural network models, Computers and Chemical Engineering 33 (2009), no. 10, 1593 – 1601.

[16] J. Kennedy and R. Eberhart, Particle swarm optimization, Neural Networks, 1995. Proceedings., IEEE International
Conference on, vol. 4, 1995, pp. 1942–1948.

[17] Donald E. Kirk, Optimal control theory: An introduction, Dover Publications, 2004.



506 International Journal of Applied Mathematical Research

[18] A. Vincent Antony Kumar and P. Balasubramaniam, Optimal control for linear system using genetic programming,
Optimal Control Applications and Methods 30 (2009), no. 1, 47–60.

[19] Moo Ho Lee, Chonghun Han, and Kun Soo Chang, Dynamic optimization of a continuous polymer reactor using a
modified differential evolution algorithm, Industrial and Engineering Chemistry Research 38 (1999), no. 12, 4825–4831.

[20] Wichaya Mekarapiruk and Rein Luus, Optimal control of inequality state constrained systems, Industrial and Engineer-
ing Chemistry Research 36 (1997), no. 5, 1686–1694.

[21] Hamidreza Modares and Mohammad-Bagher Naghibi-Sistani, Solving nonlinear optimal control problems using a hy-
brid IPSO - SQP algorithm, Engineering Applications of Artificial Intelligence 24 (2011), no. 3, 476 – 484.

[22] Debasis Sarkar and Jayant M. Modak, Optimization of fed-batch bioreactors using genetic algorithm: multiple control
variables., Computers and Chemical Engineering 28 (2009), no. 5, 789–798.

[23] X. H. Shi, L. M. Wan, H. P. Lee, X. W. Yang, L. M. Wang, and Y. C. Liang, An improved genetic algorithm with
variable population-size and a PSO-GA based hybrid evolutionary algorithm, Machine Learning and Cybernetics, 2003
International Conference on, vol. 3, 2003, pp. 1735–1740.

[24] Y. C. Sim, S. B. Leng, and V. Subramaniam, A combined genetic algorithms-shooting method approach to solving
optimal control problems, International Journal of Systems Science 31 (2000), no. 1, 83–89.

[25] Fan SUN, Wenli DU, Rongbin QI, Feng QIAN, and Weimin ZHONG, A hybrid improved genetic algorithm and its ap-
plication in dynamic optimization problems of chemical processes, Chinese Journal of Chemical Engineering 21 (2013),
no. 2, 144 – 154.

[26] K.L. Teo, C.J. Goh, and K.H. Wong, A unified computational approach to optimal control problems, Pitman monographs
and surveys in pure and applied mathematics, Longman Scientific and Technical, 1991.

[27] Jelmer Marinus van Ast, Robert Babuška, and Bart De Schutter, Novel ant colony optimization approach to optimal
control, International Journal of Intelligent Computing and Cybernetics 2 (2009), no. 3, 414–434.

[28] Feng-Sheng Wang and Ji-Pyng Chiou, Optimal control and optimal time location problems of differential-algebraic
systems by differential evolution, Industrial and Engineering Chemistry Research 36 (1997), no. 12, 5348–5357.

[29] Wen Zhang and He-ping Ma, Chebyshev-legendre method for discretizing optimal control problems, Journal of Shanghai
University (English Edition) 13 (2009), no. 2, 113–118.

Appendix
The following NOCPs are described using (1)-(6).

1. [1, 10] (Van Der Pol oscillator problem (VDPO)) g=(x2
1+x2

2+u2)/2, t0 = 0, t f = 5, f = [x2,−x2+(1−x2
1)x2+u]T ,x0 =

[1,0]T ,ψ = x1 − x2 +1.

2. [1, 17] (Chemical reactor problem (CRP)) g = (x2
1 + x2

2 + 0.1u2)/2, t0 = 0, t f = 0.78, f = [x1 − 2(x1 + 0.25)+ (x2 +
0.5)exp(25x1/(x1 +2))− (x1 +0.25)u,0.5− x2 − (x2 +0.5)exp(25x1/(x1 +2))]T ,x0 = [0.05,0]T ,ψ = [x1,x2]

T .

3. [1, 11] (Free floating robot problem (FFRP)) g = (u2
1 +u2

2 +u2
3 +u2

4)/2, t0 = 0, t f = 5, f = [x2,((u1 +u2)cosx5 − (u2 +
u4)sinx5)/M,x4,((u1 + u3)sinx5 +(u2 + u4)cosx5)/M,x6,(D(u1 + u3)− Le(u2 + u4))/I]T ,x0 = [0,0,0,0,0,0]T ,ψ =
[x1 −4,x2,x3 −4,x4,x5,x6]

T ,M = 10,D = 5, I = 12,Le = 5.

4. [21] (Continuous stirred-tank chemical reactor (CSTCR)) g = x2
1 + x2

2 + 0.1u2, t0 = 0, t f = 0.78, f = [−(2+ u)(x1 +
0.25)+(x2 +0.5)exp(25x1/(x1 +2)),0.5− x2 − (x2 +0.5)exp(25x1/(x1 +2))]T ,x0 = [0.09,0.09]T .

5. [21] (Mathematical system with nonlinear inequality constraint (MSNIC)) ϕ = x3, t0 = 0, t f = 1, f = [x2,−x2 +u,x2
1 +

x2
2 +0.005u2]T ,d = [−(20−u)(20+u),x2 +0.5−8(t −0.5)2]T ,x0 = [0,−1,0]T .

6. [29] g= 0.39(x2
1+x2

2+0.1u2), t0 =−1, t f = 1, f = [0.39(−2(x1+0.25)+(x2+0.5)exp(25x1/(x1+2))−(x1+0.25)u),0.39(0.5−
x2 − (x2 +0.5)exp(25x1/(x1 +2)))]T ,x0 = [0.05,0]T .

7. [12] g = 2x1, t0 = 0, t f = 3, f = [x2,u]T ,d = [−(2−u)(2+u),−6− x1]
T ,x0 = [2,0]T .



International Journal of Applied Mathematical Research 507

8. [12] g = x2
1 + x2

2 +0.005u2, t0 = 0, t f = 1, f = [x2,−x2 +u]T ,d = x2 +0.5−8(t −0.5)2,x0 = [0,−1]T .

9. [11] g = x2 cos2 u, t0 = 0, t f = π, f = sinu/2,x0 = π/2.

10. [11] g = (x2
1 + x2

2 +u2)/2, t0 = 0, t f = 5, f = [x2,−x1 +(1− x2
1)x2 +u]T ,d =−(x2 +0.25),x0 = [1,0]T .

11. [11] g = x2
1 + x2

2 + 0.005u2, t0 = 0, t f = 1, f = [x2,−x2 + u]T ,d = [−(20− u)(20+ u),0.5+ x2 − (8(t − 0.5)2]T ,x0 =
[0,−1]T .

12. [11] g = u2/2, t0 = 0, t f = 2, f = [x2,u]T ,x0 = [1,1]T ,ψ = [x1,x2]
T .

13. [11] g =−x2, t0 = 0, t f = 1, f = [x2,u]T ,d =−(1−u)(1+u),x0 = [0,0]T ,ψ = x2.

14. [11] g = (x2
1 +x2

2 +0.1u2)/2, t0 = 0, t f = 0.78, f = [−2(x1 +0.25)+(x2 +0.5)exp(25x1/(x1 +2))− (x1 +0.25)u,0.5−
x2 − (x2 +0.5)exp(25x1/(x1 +2))]T ,x0 = [0.05,0]T ,ψ = [x1,x2]

T .

15. [11] g = u2/2, t0 = 0, t f = 10, f = [cosu− x2,sinu]T ,d =−(π −u)(π +u),x0 = [3.66,−1.86]T ,ψ = [x1,x2]
T .

16. [11] g = (x2
1 + x2

2)/2, t0 = 0, t f = 0.78, f = [−2(x1 + 0.25)+ (x2 + 0.5)exp(25x1/(x1 + 2))− (x1 + 0.25)u,0.5− x2 −
(x2 +0.5)exp(25x1/(x1 +2))]T ,d =−(1−u)(1+u),x0 = [0.05,0]T ,ψ = [x1,x2]

T .

17. [11] ϕ = x3, t0 = 0, t f = 1, f = [x2,u,u2/2]T ,d = x1 −1.9,x0 = [0,0,0]T ,ψ = [x1,x2 +1]T .

18. [11] ϕ =−x3, t0 = 0, t f = 5, f = [x2,−2+u/x3,−0.01u]T ,d =−(30−u)(30+u),x0 = [10,−2,10]T ,ψ = [x1,x2]
T .

19. [11] ϕ = (x1 −1)2 + x2
2 + x2

3,g = u2/2, t0 = 0, t f = 5, f = [x3 cosu,x3 sinu,sinu]T ,x0 = [0,0,0]T .

20. [11] g = (u2
1+u2

2+u2
3+u2

4)/2, t0 = 0, t f = 5, f = [x2,((u1+u3)cosx5− (u2+u4)sinx5)/M,x4,((u1+u3)sinx5+(u2+
u4)cosx5)/M,x6,(D(u1 + u3)− Le(u2 + u4))/I]T ,x0 = [0,0,0,0,0,0]T ,ψ = [x1 − 4,x2,x3 − 4,x4,x5 − π/4,x6]

T ,M =
10,D = 5, I = 12,Le = 5.

21. [11] g= 4.5(x2
3+x2

6)+0.5(u2
1+u2

2), t0 = 0, t f = 1, f = [9x4,9x5,9x6,9(u1+17.25x3),9u2,−9(u1−27.0756x3+2x5x6)/x2]
T ,x0 =

[0,22,0,0,−1,0]T ,ψ = [x1 −10,x2 −14,x3,x4 −2.5,x5,x6]
T .

22. [11] Same as problem 21 with d = [−(2.83374−u1)(2.83374+u1),−(0.71265−u2)(0.80865+u2)]
T .

23. [11] Same as problem 21 with d = [−(2.83374−u1)(2.83374+u1),−(0.71265−u2)(0.80865+u2),−(2.5−x4)(2.5+
x4),−(1− x5)(1+ x5)]

T .


	Introduction
	Formulation of problem
	Overview of the PSO and GA
	PSO
	GA
	GA operators
	MHGA


	The proposed algorithm
	Numerical experiments
	Conclusions

