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Abstract

In this paper, I define the two parameter ADK divergence measure, as a generalized of Re’nyi divergence measure.
Also I introduce a goodness of fit tests for exponentiality based on the estimated ADK information. I use an
estimator for ADK distance in manner of Correa estimate. Critical values of the test are obtained by Monte Carlo
simulation. The power of the test is computed under gamma distribution.
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1. Introduction

The concept of Shannon’s entropy [8] is the central role of information theory sometimes referred as measure of
uncertainty. The entropy of a random variable is defined in terms of its probability distribution and can be shown
to be a good measure of randomness or uncertainty. The concept of entropy and entropy-like quantities have
proved to be instrumental in many fields of science. A large number of entropy-like quantities have appeared in
the scientific literature. All these new quantities share some but not all properties with the Shannon entropy. The
most important examples are the Renyi entropy and the Tsallis entropy. There are so many other definitions of
entropy-like quantities that Arndt [7] was able to write a whole book entitled ”Information Measures ”. The Renyi
entropy was introduced by Renyi [4,5] and soon after it found application in graph theory. The original reason
for Renyi to introduce his new entropy is said to be that he planned to use it in an information theoretic proof of
the central Limit Theorem. Aczel and Daroczy [12], Kapur [13], have introduced a general form of entropy,which
Khodabin [14,15] called it ADK entropy.

Furthermore, testing exponentiality is a long standing problem in statistics. The exponential distribution is
needed and used at least as often as the time-homogeneous Poisson process. Applications of the exponential
distribution in physics, and more so in survival analysis and reliability theory, are numerous and diverse [19].

Many authors such as Lillifors, H. W. [17], Van-Soset, J. [21], Finkelsein, J. and Schafer, R.E. [11] have introduced
different test statistics for exponentiality hypothesis testing. Ebrahimi et Al. [10] make use of the maximum entropy
characterization by considering the difference between a nonparametric estimator of entropy and the maximum
likelihood estimator of entropy under exponentiality. Other omnibus tests for exponentiality have been developed
by Henze [11], Baringhaus and Henze [6] who introduced tests of fit for exponentiality based on a characterization
via the mean residual life function.



International Journal of Applied Mathematical Research 447

Most recently, Zamanzadeh, E. and Arghami, N. R. [23] discussed normality and exponentiality tests based on
new entropy estimators. Yousefzadeh, F. and Arghami, N.R. [22] have been presented testing exponentiality based
on type II censored data and new cdf estimator. Alizadeh Noughabi H. and et al. [2,3] compare the different
entropy estimators and power of exponentiality tests based on entropy estimators. Abbasnejad, M. and Shakuri,
M. [1] propose a goodness of fit test for exponentiality based on estimated Renyi information.

Here, I extend their work and suggest ADK divergence measure and testing exponentiality based on estimated
ADK information as special case of Renyi information.

This paper is organized as follows:
In Section 2, the ADK entropy and joint ADK entropy are presented. In Section 3, the ADK divergence measure is
defined. In section 4, the Correa estimation of ADK divergence measure is introduced and is used as test statistics.
In section 5, the critical and power values of test are evaluated at 0.05 significant level for some different values of
α, β and n. Finally Section 6 briefly considers the conclusions.

2. ADK entropy

In information theory, the ADK entropy, as a generalization of Renyi and Shannon entropy, is one of a family of
functional for quantifying the diversity, uncertainty or randomness of a system. It is named ADK because Aczel,
Daroczy and Kapur initial works. For a review of earlier contributions, the interested reader is referred to [14,15].

Suppose that:

1. All integrals and sums exist.

2. α, β > 0 , α 6= 1.

3. log is to the base 2 and entropy is expressed in bits.

Let (S, βS , P )p ∈ ∆n be an statistical space, where S = {x1, x2, . . . , xn},∆n = {P = (p1, p2, . . . , pn), pi ≥
0,
∑n
i=1 pi = 1} and βS is the σ-field of all the subsets of S. [14] ADK entropy of any probability distribu-

tion P = (p1, p2, . . . , pn) of a random variable is defined as

Hα,β(X) ≡ Hα,β(P ) =
1

1− α
log

∑n
i=1 p

α+β−1
i∑n

i=1 p
β
i

. (1)

Two particular cases of this entropy can be written in the forms

Hα ,1(X) ≡ Hα(X) =
1

1− α
log

n∑
i=1

pαi ,

which is the Re’nyi entropy of order α, and

lim
α→1

Hα ,1(X) ≡ H1(X) = −
n∑
i=1

pi log pi,

which is the Shannon entropy. (The joint ADK entropy [14]): If X1, X2, . . . , Xn are distributed according to
p(x1, x2, . . . , xn) then

Hα,β(X1, X2, . . . , Xn) =
1

1− α
log

∑
x1,x2,...,xn

p(x1, x2, . . . , xn)α+β−1∑
x1,x2,...,xn

p(x1, x2, . . . , xn)β−1
(2)

Let X be a random variable having an absolutely continuous distribution with density function f(x).
[15] The ADK entropy of order α and β for continuous random variable is defined as

Hα,β(X) =
1

1− α
log

∫ +∞
−∞ fα+β−1(x)dx∫ +∞
−∞ fβ(x)dx

. (3)

Two particular cases of this family can be given by

Hα,1(X) =
1

1− α
log

∫ +∞

−∞
fα(x)dx, (4)
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which is the Renyi entropy of order α, and

H(X) = lim
α→1

Hα,1(X) = −
∫ +∞

−∞
f(x) log f(x)dx, (5)

is the Shannon entropy. [15] If (X1, . . . , Xn) be a random vector with density function f(x1, . . . , xn) then

Hα,β(X1, . . . , Xn) =
1

1− α
log

∫
Rn

fα+β−1(x1, . . . , xn)dx1 . . . dxn∫
Rn

fβ(x1, . . . , xn)dx1 . . . dxn
. (6)

3. ADK divergence measure

Unless otherwise specified, it is understood that 0 log 0 = 0 log 0
0 = 0, If qi = 0 for some i, the corresponding pi is

also zero. Kullback-Leibler divergence (K-L divergence)[16] is a non-symmetric measure of the difference between
two probability distributions P and Q. For probability distributions P and Q (of a discrete random variable) their
K-L divergence is defined to be

DKL(P‖Q) =

n∑
i=1

p(i) log
P (i)

q(i)
.

In words, it is the average of the logarithmic difference between the probabilities P and Q, where the average is
taken using the probabilities P .

For continuous random variable, K-L divergence is defined to be the integral

DKL(f‖g) =

∫ ∞
−∞

f(x) log
f(x)

g(x)
dx,

where f(x) and g(x) denote the densities functions. Renyi divergence measure of a discrete random variable (of
order α) is defined [4] as

Dα(p ‖ q) =
1

1− α
log

n∑
i=1

pαi
qα−1
i

.

For continuous random variable, Renyi divergence is defined to be the integral

Dα(f ‖ g) =
1

1− α
log

∫ +∞

−∞

fα(x)

gα−1(x)
dx.

Now, in this correspondence, I introduce a new divergence measure that overcomes the previous definitions. (ADK
divergence measure). The regular relations for ADK divergence measure of two type distributions are given by

Dα,β(p ‖ q) =
1

1− α
log

∑n
i=1

pα+β−1
i

qα+β−2
i∑n

i=1
pβi
qβ−1
i

, (7)

and

Dα,β(f ‖ g) =
1

1− α
log

∫ +∞
−∞

fα+β−1(x)
gα+β−2(x)

dx∫ +∞
−∞

fβ(x)
gβ−1(x)

dx
, (8)

respectively. Its explicit that, if we put β = 1 we get Renyi divergence measure and if moreover α → 1 we have
KL-divergence measure.
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4. Test of exponentiality

The exponential distribution occurs naturally when describing the lengths of the inter arrival times in a homogeneous
Poisson process. Exponential variables can also be used to model situations where certain events occur with a
constant probability per unit length, such as the distance between mutations on a DNA strand, or between road
kills on a given road. In queuing theory, the service times of agents in a system (e.g. how long it takes for a bank
teller etc. to serve a customer) are often modeled as exponentially distributed variables. Reliability theory and
reliability engineering also make extensive use of the exponential distribution. Because of the memoryless property
of this distribution, it is well-suited to model the constant hazard rate portion of the bathtub curve used in reliability
theory.

Let X be a nonnegative random variable with distribution function F . Consider the following hypothesis

H0 : f(x) = f0(x, θ) versus H1 : f(x) 6= f0(x, θ), (9)

where,

f0(x, θ) = θe−θx, x > 0, θ > 0.

The ADK distance between f(x) and f0(x, θ) is given by

Dα,β(f ‖ f0) = − log θ +
1

α− 1
log

∫ 1

0

[ d
dp
F−1(p)

]2−α−β
exp{θ(α+ β − 2)F−1(p)}dp

− 1

α− 1
log

∫ 1

0

[ d
dp
F−1(p)

]1−β
exp{θ(β − 1)F−1(p)}dp (10)

Proof: From(3.2) we have

Dα,β(f ‖ f0) =
1

α− 1
log

∫ ∞
0

fα+β−1(x)

(θe−θx)α+β−2
dx− 1

α− 1
log

∫ ∞
0

fβ(x)

(θe−θx)β−1
dx.

By putting F (x) = p and somedeal simplification we get (4.2).
Suppose that X1, X2, ..., Xn, be a random sample of size n from a continuous distribution function F (x). Let

us set X(1), X(2), . . . , X(n) for the order statistics that is defined by sorting the values X1, X2, ..., Xn in increasing
order. The Correa estimation of Dα,β(f ‖ f0) consist of

Dc(α, β) = − log X̄ +
1

α− 1
log
[ 1

n

n∑
i=1

{wi exp(X(i)X̄)}α+β−2
]

− 1

α− 1
log
[ 1

n

n∑
i=1

{wi exp(X(i)X̄)}β−1
]
, (11)

where,

X̄(i) =

∑i+m
j=i−mX(j)

2m+ 1
,

and

wj =

∑i+m
j=i−m(X(j) − X̄(i))(j − i)
n
∑i+m
j=i−m(X(j) − X̄(i))2

.

Also

X(j) = X(1) for j < 1 and X(j) = X(n) for j > n.

Proof: By using Correa [1] estimation of entropy for (4.2)we get (4.3).
H0 is rejected at the level ε for for sufficiently large value of Dc(α, β), i.e. H0 is rejected if

Dc(α, β) ≥ d(ε),

where the critical value d(ε) is obtained from ε th quartile under H0.
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5. Critical values and powers of the test

The test statistics derived in the previous sections is too complicated to allow deriving it exact distribution under
the null hypothesis analytically. The critical values of the test are obtained by a simulation using 10,000 samples
of sizes 10,20,30,50,100. The results are tabulated for α = 0.05 in tables 1, 3, 5, 7 and 9.

The powers of the test for gamma alternative are also tabulated in tables 2, 4, 6, 8 and 10.

Table 1: Critical values of the test statistics at some different values α and β for n=10.

α \ β 0.2 0.5 0.9 1 1.2
0.2 0.803591 0.8302 0.903887 0.949262 1.107318
0.5 0.807452 0.840762 0.961392 1.032446 1.247746
0.9 0.832644 0.883796 1.096901 1.240068 1.684263
0.99 0.831725 0.898237 1.163079 1.289637 1.786265
0.999 0.83778 0.894969 1.162233 1.310809 1.834924
1.1 0.84943 0.916316 1.220923 1.416044 2.045871
1.3 0.858195 0.958164 1.43453 1.748441 2.493469
1.5 0.8826 1.030367 1.786868 2.121369 3.107706

Table 2: Power of the test statistics at some different values α and β for n=10.

α \ β 0.2 0.5 0.9 1 1.2
0.2 0.9868 0.9734 0.793 0.5818 0.1136
0.5 0.9864 0.965 0.5187 0.2757 0.0205
0.9 0.9694 0.8734 0.134 0.0225 0
0.99 0.9748 0.82 0.0612 0.0133 0
0.999 0.9665 0.8327 0.0566 0.0089 0
1.1 0.9484 0.7445 0.0303 0.0018 0
1.3 0.9398 0.5433 0.0012 0 0
1.5 0.8816 0.2787 0 0 0

Table 3: Critical values of the test statistics at some different values α and β for n=20.

α \ β 0.2 0.5 0.9 1 1.2
0.2 0.617612 0.645722 0.703835 0.725462 0.803851
0.5 0.630272 0.6633 0.73444 0.774155 0.874317
0.9 0.647323 0.687574 0.801435 0.864544 1.070318
0.99 0.649255 0.698442 0.829386 0.896908 1.160357
0.999 0.651827 0.701768 0.83493 0.905643 1.158742
1.1 0.657161 0.712093 0.867486 0.96143 1.266109
1.2 0.672906 0.735791 0.966313 1.08155 1.580651
1.5 0.691403 0.769994 1.134302 1.368023 2.044367

Table 4: Power of the test statistics at some different values α and β for n=20.

α \ β 0.2 0.5 0.9 1 1.2
0.2 1 1 1 1 1
0.5 1 1 1 1 0.9802
0.9 1 1 1 0.9893 0.1369
0.99 1 1 0.999 0.9434 0.0298
0.999 1 1 0.9989 0.9162 0.0323
1.1 1 1 0.9869 0.626 0.0071
1.2 1 1 0.5986 0.1077 0.0002
1.5 1 1 0.0427 0.0024 0
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Table 5: Critical values of the test statistics at some different values α and β for n=30.

α \ β 0.2 0.5 0.9 1 1.2
0.2 0.540659 0.565438 0.622921 0.642392 0.705734
0.5 0.554531 0.5847 0.649142 0.678615 0.756976
0.9 0.568029 0.606536 0.708125 0.754242 0.911599
0.99 0.574473 0.618336 0.723519 0.772528 0.949633
0.999 0.572643 0.617668 0.730179 0.779016 0.955915
1.1 0.57859 0.625259 0.75059 0.810281 1.029024
1.2 0.59262 0.648213 0.81841 0.903993 1.230523
1.5 0.611542 0.677173 0.93446 1.085828 1.605678

Table 6: Power of the test statistics at some different values α and β for n=30.

α \ β 0.2 0.5 0.9 1 1.2
0.2 1 1 1 1 1
0.5 1 1 1 1 1
0.9 1 1 1 1 0.9357
0.99 1 1 1 1 0.7583
0.999 1 1 1 1 0.7222
1.1 1 1 1 1 0.2273
1.2 1 1 1 0.9603 0.0066
1.5 1 1 0.8445 0.0648 0

Table 7: Critical values of the test statistics at some different values α and β for n=50.

α \ β 0.2 0.5 0.9 1 1.2
0.2 0.467814 0.495983 0.545806 0.564894 0.616745
0.5 0.478874 0.508411 0.570922 0.594333 0.665378
0.9 0.4961 0.533694 0.623415 0.657909 0.76766
0.99 0.503115 0.539602 0.635884 0.67711 0.801938
0.999 0.499412 0.541323 0.635479 0.682642 0.808344
1.1 0.507584 0.549387 0.659474 0.706458 0.853206
1.2 0.520215 0.569823 0.709839 0.777926 0.98735
1.5 0.536557 0.596974 0.790137 0.883672 1.218955

Table 8: Power of the test statistics at some different values α and β for n=50.

α \ β 0.2 0.5 0.9 1 1.2
0.2 1 1 1 1 1
0.5 1 1 1 1 1
0.9 1 1 1 1 1
0.99 1 1 1 1 1
0.999 1 1 1 1 1
1.1 1 1 1 1 1
1.2 1 1 1 1 0.514
1.5 1 1 1 0.9977 0.0025

Table 9: Critical values of the test statistics at some different values α and β for n=100.

α \ β 0.2 0.5 0.9 1 1.2
0.2 0.395754 0.421483 0.472232 0.491045 0.534749
0.5 0.406919 0.437238 0.496413 0.518442 0.577834
0.9 0.424957 0.460256 0.540542 0.569828 0.662374
0.99 0.429322 0.467234 0.552902 0.589397 0.68971
0.999 0.428159 0.467135 0.554794 0.591341 0.691894
1.1 0.432718 0.476208 0.57253 0.609951 0.725397
1.2 0.446727 0.493305 0.613218 0.666919 0.814188
1.5 0.460665 0.518232 0.676025 0.74367 0.934898
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Table 10: Power of the test statistics at some different values α and β for n=100.

α \ β 0.2 0.5 0.9 1 1.2
0.2 1 1 1 1 1
0.5 1 1 1 1 1
0.9 1 1 1 1 1
0.99 1 1 1 1 1
0.999 1 1 1 1 1
1.1 1 1 1 1 1
1.2 1 1 1 1 1
1.5 1 1 1 1 0.976

6. Conclusion

I introduced the ADK divergence measure as a generalization of Renyi distance and used it as a test statistics for
goodness of fit test for exponentioality. In general we can say, since this test statistics has two paprameters in
comparison with estimated Renyi information, we can select a tests with high powers. Furthermore, look at the
below table which summarize above tables.

Table 11: The status of test for n=10, 20, 30, 50, 100.

α \ β 0.2 0.5 0.9 1 1.2
0.2 (+,+,+,+,+) (+,+,+,+,+) (-,+,+,+,+) (-,+,+,+,+) (-,+,+,+,+)
0.5 (+,+,+,+,+) (+,+,+,+,+) (-,+,+,+,+) (-,+,+,+,+) (-,+,+,+,+)
0.9 (+,+,+,+,+) (-,+,+,+,+) (-,+,+,+,+) (-,+,+,+,+) (-,-,-,+,+)
0.99 (+,+,+,+,+) (-,+,+,+,+) (-,+,+,+,+) (-,+,+,+,+) (-,-,-,+,+)
0.999 (+,+,+,+,+) (-,+,+,+,+) (-,+,+,+,+) (-,+,+,+,+) (-,-,-,+,+)
1.1 (+,+,+,+,+) (-,+,+,+,+) (-,+,+,+,+) (-,-,+,+,+) (-,-,-,+,+)
1.2 (+,+,+,+,+) (-,+,+,+,+) (-,-,+,+,+) (-,-,+,+,+) (-,-,-,-,+)
1.5 (-,+,+,+,+) (-,+,+,+,+) (-,-,-,+,+) (-,-,-,+,+) (-,-,-,-,+)

In the five-ply (., ., ., ., .), the + sign shows that the test has a high power (power > 0.9) and is accessible. The first
component is used for n = 10, the second is used for n = 20 and so on. From these signs we can conclude that :

For a large sample size (n ≥ 50), the test has a high power for all values of α and β, but for a small sample
size ( Here n =10, 20, 30), the test has a high power only for some values of α and β.algorithm in this paper for
calculating stresses around tunnels.
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