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Abstract 

Studies on two unit repairable standby system dealing with 
availability and profit analysis involving preventive maintenance are 
numerous. However little attention is paid on the study of evaluation 
of reliability characteristics such as availability, busy period and profit 
function of multi component system such as 3-out-of-4 system 
involving four types of failures . In this paper, we studied the 
availability and profit analysis of a repairable redundant 3-out-of-4 
system with preventive maintenance involving four types of failures 
and develop explicit expressions for steady-state availability and profit 
function for the system using Chapman-Kolmogorov equations. Some 
particular cases have also been obtained analytically and graphically to 
see the impact of preventive maintenance on some system measures of 
effectiveness .Certain important result have been evaluated as special 
cases. Results have shown that system with preventive maintenance is 
better in terms of system effectiveness than system without preventive 
maintenance. 
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1 Introduction 

Studies on redundant system are becoming more and richer day by day due to the 

fact that numbers of researchers in the field of reliability of redundant system are 

making huge contributions. Models of redundant systems as well as methods of 

evaluating system reliability indices such as mean time to system failure (MTSF), 
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system availability, busy period of repairman, profit analysis, etc have been 

studied in order to improve the system effectiveness. 

There are systems of three/four units in which two/three units are sufficient to 

perform the entire function of the system. Example of such systems are 2-out-of-

3,2-out-of-4, or  3-out-of-4 redundant systems. These systems have wide 

application in the real world. The communication system with three transmitters 

can be sited as a good example of 2-out-of-3 redundant system. Many research 

results have been reported on reliability of 2-out-of-3 redundant systems. For 

example, Chander and Bhardwaj[1], analyzed reliability models for 2-out-of-3 

redundant system subject to conditional arrival time of the server. Chander and 

Bhardwaj [2] present reliability and economic analysis of 2-out-of-3 redundant 

system with priority to repair. Bhardwaj and Malik [3] studied MTSF and cost 

effectiveness of 2-out-of-3 cold standby system with probability of repair and 

inspection.  

El-Said [5] and Haggag [6] examined the cost analysis of two unit cold standby 

system involving preventive maintenance respectively. Wang et al [4] examined 

the cost benefit analysis of series systems with cold standby components and 

repairable service station.  Haggag [7] analyzed cost analysis of repairable k-out-

of-n system with dependable failures and standby support. Wang and Kuo [8] 

studied the cost and probabilistic analysis of series system with mixed standby 

components. Wang et al [9] studied cost benefit analysis of series systems with 

warm standby components involving general repair time where the server is not 

subject to breakdowns.  

This study is an extension of the work of El-Said [5] and Haggag [6]. The system 

is attended by one repairman. In this study, we developed the explicit expressions 

for availability and profit function and perform simulations to see the behavior of 

the system and comparison is perform through simulations. 

 

1.1 Notations 

i     Constant repair rates for type 1,2,3,4i   

i     Constant failure rates for types 1,2,3,4i   

      Constant rate end of preventive maintenance 

       Constant rate of taking the unit into preventive maintenance 

A     System transition rate matrix  

1( ) 1A AV   System availability as time t   

2 ( ) 2A AV   System availability as time t   when there is no preventive 

maintenance 

1( )B   Busy period of repairman as t   

2 ( )B   Busy period of repairman as t   when there is no preventive 

maintenance 

( )F   Expected frequency of preventive maintenance as t   

P  Stationary probabilities vector given by  
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1 2 3 4 5 6 7 8 9 10[ , , , , , , , , , ]TP P P P P P P P P P P   

iP      State probabilities 

1PF   Profit function of the system 

2PF    Profit function of the system without preventive maintenance 

 

1.2 Assumptions 
 The system is 3-out-of-4 system 

 The system can be in Operation, Fail state or preventive maintenance 

 The system suffer four types of failures 

 The system is down when number of units failure goes beyond one 

 Failure rates and repairs follow exponential 

 Failure rates and repair rates are constant 

 The system is attended by one repairman 

 

2 Markov Modeling of the System 

In this section, the 3-out-of-4 redundant system is described. Through Markov 

assumption, the Chapman-Kolmogorov’s equations are obtained for the analysis 

of state probabilities. The system comprise of four units in which at least three 

units most be in operational for the system to work. Malfunctioning of two units 

above lead the system to go down. The units can work consecutively or randomly 

as can be seen in the states of the system given below.  The states of the system 

according Markov chain is shown in Fig. 1 below.  

 

State 0: initial state, all the three units work, one unit in standby, and the system is 

working 

State 1:  units 1, 2, and 4 are working; unit 3 is down and under repair, and the 

system is working 

State 2: units 1, 3 and 4 are working, unit 2 is down and under repair, and the 

system is working 

State 3: units 2, 3 and 4 are working, unit 1 is down and under repair, and the 

system is working 

State 4: units one is down, under repair, units 2 is down and waiting for repair, 

units 3 and 4 are good, and the system failed 

State 5: unit 1 is down, under repair, unit 3 is down, waiting for repair, units 2 and 

4 are good, and the system failed 

State 6: unit 1 and 2 are good, unit 3 is down, and waiting for repair, unit 4 is 

down, under repair, and the system failed 

State 7: unit 1 is down, waiting for repair, units 2 and 3 are good, unit 4 is down, 

under repair, and the system failed 
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State 8: units 1 and 4 are good, unit 2 is down, and waiting for repair, unit 3 is 

down, under repair, and the system failed 

State 9: units 1 and 3 are good, unit 2 is down, and waiting for repair, unit 4 is 

down, under repair, and the system failed 

State 10: all the units are under preventive maintenance, and the system is 

working 

 

 
Fig. 1: schematic diagram of the system 

 

2.1 Availability Analysis for System  
Let ( )iP t  be the probability that the system is in state i at time t . The 

corresponding set of kolmogorov’s differential equations is:  

 

0 1 2 3 0 3 1 2 2 1 3 10( ) ( ) ( ) ( ) ( ) ( ) ( )P t P t P t P t P t P t                  

1 3 1 2 4 1 3 0 1 5 4 6 2 8( ) ( ) ( ) ( ) ( ) ( ) ( )P t P t P t P t P t P t                  

2 2 1 3 4 2 2 0 1 4 3 8 4 9( ) ( ) ( ) ( ) ( ) ( ) ( )P t P t P t P t P t P t                  

3 1 2 3 4 3 1 0 2 4 3 5 4 7( ) ( ) ( ) ( ) ( ) ( ) ( )P t P t P t P t P t P t                  

4 1 2 4 1 2 2 3( ) ( ) ( ) ( ) ( )P t P t P t P t          

5 1 3 5 1 1 3 3( ) ( ) ( ) ( ) ( )P t P t P t P t                                                                     (1) 

S0 

S1 

S2 

S3 

S8 

S7 
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S6 

S5 

4  4  

1  
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1  

1  

4  

4  

2  
2  

1  

1  

2  2  
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4  

3  3  

3  
3  

S10 

  

  
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6 4 6 4 1( ) ( ) ( )P t P t P t      

7 4 7 4 3( ) ( ) ( )P t P t P t      

8 2 3 8 2 1 3 2( ) ( ) ( ) ( ) ( )P t P t P t P t          

9 4 9 4 2( ) ( ) ( )P t P t P t      

10 10 0( ) ( ) ( )P t P t P t      

 

For the availability case of Fig. 1 following Wang et al [4], El-said [5] and 

Haggag [6], the initial conditions for this system are: 

 

1 2 3 4 5 6 7 8 9 10(0) [ (0), (0), (0), (0), (0), (0), (0), (0), (0), (0)]P P P P P P P P P P P   

[1,0,0,0,0,0,0,0,0,0,0]                (2) 

 

From the states of the system describes above, it is possible to identify which state 

is working and which state is failure. Through the state transition diagram in Fig. 

1 above, we can obtain the availability of the system.  This is done by solving the 

Chapman-Kolmogorov’ equation in (1) to evaluate the state probabilities. 

Computation of state probabilities involves solving the normalized Chapman-

kolmogorov system linear differential equations: 

 

0AP                                                                 (3) 

 

Subject to 
10

0

( ) 1i

i

P


                     (4) 

 

Following Wang et al [4], El-Said [5] and Haggag [6] the system availability can 

be obtained from the solutions for ( ), 0,1,2,...,10iP t i  . States 0,1,2,3 and 10 in 

Fig. 1 above are the only working, putting (4) in one of the redundant rows of (3) 

the system availability is given by: 

 

1

1 0 1 2 3 10

1

( ) ( ) ( ) ( ) ( ) ( )
N

A P P P P P
D

                          (5) 

1 1 2 3 4 1 2 4 3 1 3 4 2 2 3 4 1 1 2 3 4N                               

1 1 2 3 4 1 2 4 3 1 2 3 4 1 2 3 4 1 3 4 2

1 3 2 4 1 4 2 3 2 3 4 1 2 3 1 4 2 4 1 3 3 4 1 2

    

     

D                         

                             
 

 

2.2 Busy period analysis 
Units failure can be observed in states 2,3,4,…,9 from the states of the system 

described above. In these states, it can be observed that the available repairman is 

busy repairing the failed unit. Where there is more than one unit failure, one unit 
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will be under repair and the one unit is waiting for repair while the remaining unit 

are good and stay as standby. The repair is therefore busy in the states 2,3,4,…,9 

From equation  (3) and (4) using the same initial condition in  (2) above , the busy 

period is given by: 

 

2

1 0 10

1

( ) 1 [ ( ) ( )]
N

B P t P t
D

                        (6) 

3 4 1 2

2 1 2 4 3 1 2 3 4 1 3 4 2 1 3 2 4 1 4 2 3 2 3 4 1

2 3 1 4 2 4 1 3

     

  

N

    

                          

         
 

 

2.3 Expected frequency of Frequency of preventive maintenance 
The expected frequency of preventive maintenance per unit in steady state is 

given by: 

 

3

10

1

( ) ( )
N

F P
D

                                                   (7) 

 

The state probability 10 ( )P  is obtained by substituting (4) in one of the redundant 

rows of (3). Thus 

 

3 1 2 3 4N       

 

2.4 Profit analysis 
The units are subjected to repairs  as can be observed in state 2, 3,4,5,6,7,8 and 9     

from  Fig. 1 the repairman  performed repairs to failed units in state 2,3,4,5,6,7,8 

and 9. Let 0C , 1C  and 2C  be the revenue generated when the system is in working 

state and no income when in failed state, cost of each repairs and cost per 

preventive maintenance. Following El-said [5] and Haggag [6] the expected profit 

per unit time incurred to the system in the steady-state is given by:          

 

1PF    = 0 1 2( ) ( ) ( )C A C B C F                             (8) 

 

Where 1PF : is the profit incurred to the system 

              0C : is the revenue per unit up time of the system 

              1C : is the cost per unit time which the system is under repair 

              2C : is the cost due to preventive maintenance 

 

2.5 Special case when preventive maintenance is not allowed: 
Through the state transition diagram in Fig. 1 above, we can obtain the 

availability of the system.  This is done by solving the Chapman-Kolmogorov’ 
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equation in (1) to evaluate the state probabilities when there is no preventive 

maintenance. Thus there is no state 10. 

 Computation of state probabilities involves solving the normalized Chapman-

kolmogorov system linear differential equations: 

 

0AP                                                            (9) 

 

Subject to 
9

0

( ) 1i

i

P


             (10) 

Where 0 1 2 3 4 5 6 7 8 9[ , , , , , , , , , ]TP P P P P P P P P P P  

 

The steady-state availability when preventive maintenance is not allowed is given 

by :   

4

2 0 1 2 3

2

( ) ( ) ( ) ( ) ( )
N

A P P P P
D

                     (10) 

4 1 2 3 4 1 2 4 3 1 3 4 2 2 3 4 1N                     

2 1 2 3 4 1 2 3 4 1 2 4 3 1 3 4 2 1 4 2 3 1 3 2 4

2 4 1 3 2 3 1 4 2 3 4 1 3 4 1 2

     

   

D                        

               
 

 

In the steady state, the derivatives of the state probabilities become zero this will 

enable us to compute steady state busy when preventive maintenance is not 

allowed. The steady state busy period 2 ( )B   is therefore: 

 

5

2 0

2

( ) 1 ( )
N

B P
D

                            (11) 

5 1 2 3 4 1 2 4 3 1 3 4 2 1 4 2 3 1 3 2 4

2 4 1 3 2 3 1 4 2 3 4 1 3 4 1 2

    

   

N                    

               
 

 

The units are subjected to repairs  as can be observed in state 2, 3,4,5,6,7,8 and 9     

from  Fig. 1 the repairman  performed repairs to failed units in state 2,3,4,5,6,7,8 

and 9. Let 0C  and 1C   be the revenue generated when the system is in working 

state and no income when in failed state and cost of each repair (corrective 

maintenance), a [1, 2,4]. Following [1, 2] the expected total profit per unit time 

incurred to the system in the steady-state when preventive maintenance is not 

allowed is 

 

2PF    = 0 2 1 2( ) ( )C A C B                         (12) 

 

Where 2PF : is the profit incurred to the system 
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              0C : is the revenue per unit up time of the system 

              1C : is the cost per unit time which the system is under repair 

3 Graphical Study of System Behavior 

Graphs were plotted in figures 2 to 5 for the availability and expected profit with 

respect to both 1  and 1 .  Fig. 2 shows the effect of 1 on expected profit; Fig. 3 

shows the effect of 1 on system availability, Fig. 4 shows the effect of 1  on 

system availability while Fig. 5 shows the effect of 1  on expected profit.  

For simulation in Fig. 2and Fig.3 we fixed 0 1000C  , 1 100C  and 2 50C  for 

Fig.2 and fixed 2 0.6,  3 0.7  , 4 0.9  , 1 0.2  , 

2 0.1,  3 0.3,  4 0.5  , 0.8   and 0.05   and vary 1  for both Fi2. and 

Fig. 3. The simulations in Fig. 2 have shown that the expected profits for both 

systems with and without preventive maintenance increase with increase in type I 

repair rate 1 . It is clear from Fig. 2 that the expected profit of system with 

preventive maintenance increases slightly with respect to type I repair rate 1  

than the expected profit of system without preventive maintenance. In Fig.3, it is 

clear that the system availability increases for both systems with and without 

preventive maintenance. Here also the system availability of system with 

preventive maintenance increases slightly than system availability of system 

without preventive maintenance.  

For simulation in Fig.4 we fixed: 1 0.01,   2 0,02,   3 0.03,   

4 0.001,   2 0.1,   3 0.3,  4 0.5,  0.04,  0.05,  and vary 1 . The 

simulations have shown that system availability decreases for both systems with 

and without preventive maintenance with respect to type I failure rate 1  . The 

system availability for the system without preventive maintenance decrease 

slightly than the system with preventive maintenance.  

 Fig. 5 provides the comparison of profit functions for the systems with and 

without preventive maintenance, we fixed 0 1000,C  1 100,C  2 50,C   

1 0.7,   2 0.9,   3 0.8  , 

4 0.9,  2 0.1,  3 0.3,  4 0.5,  0.9,  0.05   and vary 1 . The 

simulation have shown that expected profit decreases for both systems with and 

without preventive maintenance with respect to type I failure rate 1  . The 

expected profit for the system without preventive maintenance decrease slightly 

than the expected profit of the system with preventive maintenance.  
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Fig.2: effect of 1 on expected profit 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.45

0.5

0.55

0.6

0.65

0.7

0.75


1

Av
ai
la
bi
lit
y

 

 

AV1

AV2

 

Fig. 3: effect of 1 on system availability 
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Fig. 4: effect of 1  on system availability 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
500

550

600

650

700

750

800

Pr
of
it

 

 


1

PF1

PF2

 
Fig. 5: effect of 1  on expected profit 
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4 Conclusion 

In this study, we developed the explicit expressions for availability and profit 

function of 3-out-of-4 repairable system and perform comparative analysis. 

Through the analysis, we conclude that system with preventive maintenance is 

more effective than system without preventive maintenance.  
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