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Abstract 
 

This study addresses an inverse problem for a time-fractional heat equation involving the Caputo derivative, where the objective is to 

determine an unknown time-dependent thermal coefficient. The governing equation incorporates a fractional order time derivative, a spa-

tially dependent diffusion term, and a known source term. To solve the inverse problem, we employ the Laplace Homotopy Analysis 

Method (LHAM)—a semi-analytical approach that combines the Laplace transform with the Homotopy Analysis Method. This technique 

allows for the construction of a convergent series solution for both the temperature distribution   and the unknown coefficient  . By appro-

priately selecting the initial guess  , the convergence-control parameter h becomes embedded in the solution process, reducing com-com-

putational effort. The proposed method is validated through an illustrative example, demonstrating the effectiveness and accuracy of LHAM 

in solving time-fractional inverse problems with a source term. 

 
Keywords: Fractional Derivatives; Heat Equation; Homotopy Analysis Method; Inverse Problems; Laplace Transforms; Laplace Homotopy Analysis 

Method. 

1. Introduction 

Classical integer-order differential equations often fall short in modeling the complex dynamics observed in real-world systems, particu-

larly those exhibiting memory effects, hereditary behavior, or anomalous diffusion. To overcome these limitations, fractional calculus—

which extends traditional differentiation and integration to non-integer orders—has emerged as a powerful tool for describing such phe-

nomena with greater accuracy [1], [2]. 

Fractional differential equations (FDEs) are now widely employed across disciplines such as engineering, mathematical physics, biosci-

ences, and epidemiology, due to their ability to account for long-term memory and spatial heterogeneity [3 - 5]. Time-fractional heat 

equations are extensively used to model anomalous diffusion and heat conduction in heterogeneous or porous media [6], [7]. 

Recent studies have shown that time-fractional differential equations and inverse problems naturally arise in various real-world systems. 

Examples include heat conduction in materials with memory, anomalous diffusion in groundwater flow, stress relaxation in viscoelastic 

solids, and dynamic response modeling in electrochemical batteries. In such problems, the Laplace Homotopy Analysis Method (LHAM) 

provides an effective semi-analytical framework for solving fractional inverse problems, particularly those involving unknown time-de-

pendent coefficients. 

Solving such equations—especially inverse problems where unknown parameters are estimated from observational data—poses significant 

analytical and computational challenges. A variety of solution techniques have been proposed. Classical methods such as Tikhonov regu-

larization and optimization-based techniques transform the inverse problem into a stable minimization framework [8, 9]. Numerical ap-

proaches, including the finite difference method (FDM), finite element method (FEM), and spectral methods, have been extensively used 

to solve direct and inverse fractional models [10], [11]. 

To overcome the limitations of purely numerical schemes, various semi-analytical methods have been introduced. These include the 

Adomian Decomposition Method (ADM) [12], the Homotopy Perturbation Method (HPM) [13], and more recently, the Homotopy Anal-

ysis Method (HAM) [14], which provides a flexible framework for constructing series solutions with guaranteed convergence. 

In this paper, we consider an inverse problem for a time-fractional heat equation involving the Caputo derivative, in which the objective is 

to determine an unknown time-dependent thermal coefficient. We adopt the Laplace Homotopy Analysis Method (LHAM)—a hybrid 

technique that combines the Laplace transform and HAM—to construct a convergent analytical series solution [15]. 

The structure of this paper is as follows: Section 2 introduces the governing time-fractional heat equation and the inverse problem. In 

Section 3, the LHAM-based solution methodology is developed. Section 4 presents a numerical example to illustrate the effectiveness of 

the approach. Finally, Section 5 concludes the paper with a summary. 
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2. Governing equation 

We consider the inverse coefficient problem for a time-fractional heat equation, where the objective is to determine the pair of unknown 

functions (u(x, t), g(t)). The governing equation is given by: 

 

D0
c

t
αu(x, t) − g(t)uxx(x, t) = F(x, t), (x, t)  ∈  (0, l) × (0, T]                                                                                                                        (1) 

 

Subject to the initial condition 

 

u(x, 0) = φ(x), x ∈ [0, l]                                                                                                                                                                               (2) 

 

And boundary conditions 

 

u(0, t) = a(t) , u(l, t) = b(t) , t ∈ [0, T]                                                                                                                                                        (3) 

 

An additional overspecified boundary condition is given at x = 0: 

 

g(t)ux(0, t) = μ(t), 0 ≤ t ≤ T                                                                                                                                                                      (4) 

 

Where F(x, t), φ(x) and μ(t) are known functions, u(x, t) is the unknown temperature distribution and g(t) > 0 is an unknown time-

dependent thermal coefficient. 

The Caputo fractional derivative of order α ∈ (0, 1] is defined as: 

 

D0
c

t
αu(x, t) =

1

Γ(1−α)
∫ (t − s)−αt

0

∂u(x,s)

∂s
ds, 0 ≤ t ≤ T                                                                                                                                   (5) 

3. Solution of the model via LHAM 

Applying the Laplace transform to the governing equations (1) − (4), we obtain: 

 

ℒ[ Dt
αu(x, t)] − ℒ[g(t)uxx(x, t)] = ℒ[F(x, t)]0

c                                                                                                                                               (6) 

 

Where 

 

ℒ[ Dt
αu(x, t)] = sαU(x, s) − sα−1U(x, 0)0

c                                                                                                                                                      (7) 

 

sαU(x, s) − sα−1U(x, 0) − ℒ[g(t)uxx(x, t)] = ℒ[F(x, t)]                                                                                                                             (8) 

 

And 

 

U(x, s) =
U(x,0)

s
+

ℒ[g(t)uxx(x,t)]+ℒ[F(x,t)]

sα                                                                                                                                                          (9) 

 

Using the Homotopy Analysis Method (HAM), the zeroth-order deformation equation of 

The Laplacian equation (9) has the form: 

 

(1 − q)(ϕ(x, s; q) − U0(x, s)) = qh(ϕ(x, s; q) −
U(x,0)

s
−

ℒ[g(t)uxx(x,t)]+ℒ[F(x,t)]

sα                                                                                        (10) 

 

Where q ∈ [0,1] is the embedding parameter, h ≠ 0 is the convergence-control parameter, U0(x, s) is the Laplace transform of the initial 

best guess u0(x, t) for the actual solution u(x, t). 
Expanding ϕ(x, s; q) in Taylor series for q we obtain 

 

ϕ(x, s; q) = U0(x, s) + ∑ Um(x, s)qm∞
m=1                                                                                                                                                   (11) 

 

Where 

 

Um(x, s) =
1

m!

∂m

∂xm ϕ(x, s; q)|
q=0

                                                                                                                                                                  (12) 

 

When q = 0 and q = 1 respectively, equation (11) becomes 

 

ϕ(x, s; 0) = U0(x, s), ϕ(x, s; 1) = U(x, s)                                                                                                                                                   (13) 

 

Differentiating equation (9) m times concerning q and then dividing it by m!; then setting q = 0, we obtain an mth − order deformation 

equation 

 

Um(x, s) − χmUm−1(x, s) = hRm[Um−1(x, s)]                                                                                                                                           (14) 

 

Where 
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Rm[Um−1(x, s)] = χmUm−1(x, s) − h ((Um−1(x, s) −
ℒ[g(t)(um−1(x,t))

xx
]+ℒ[F(x,t)

sα
− (1 − χm)

U0(x,s)

s
)                                                      (15) 

 

Note that 

 

χm = {
0, m ≤ 1
1, m > 1

                                                                                                                                                                                           (16) 

 

And 

 

g0(t) =
μ(t)

∂

∂x
u0(x,t)|

x=0

                                                                                                                                                                                       (17) 

 

When m ≥ 1 

 

gm(t) =
D0

c
t
αum(x,t)−F(x,t)

(um(x,t))xx
                                                                                                                                                                              (18) 

 

Finally, applying the inverse Laplace Transform to both sides of equation (15), we have the following power series 

 

u(x, t) = ∑ um(x, t)N
m=0                                                                                                                                                                                (19) 

4. LHAM solution to some examples 

Solving equations (1) – (4) with the following input data; 

 Example 1 

 

φ(x) = x − x2, x ∈ [0,1]                                                                                                                                                                             (20) 

 

μ(t) = (t + 1)2, t ∈ [0,1]                                                                                                                                                                            (21) 

 

F(x, t) =
1

Γ(2−α)
(x − x2)t1−α + 2(t + 1)2, (x, t) ∈ [0,1] × [0,1]                                                                                                               (22) 

 

where 

 

u0(x, t) = φ(x)                                                                                                                                                                                            (23) 

 

Going through the solution process in Section 3, the following solutions were obtained 

 

u(x, t) = (x − x2)(t + 1)                                                                                                                                                                            (24) 

 

g(t) = (t + 1)                                                                                                                                                                                              (25) 

 

Equations (24) and (25) correspond to the exact solutions presented by Q. W. Ibrahim and M. S. Hussein [16], [17]. 

 

Example 2: We have the following 

 

φ(x) = x − x2, x ∈ [0,1]                                                                                                                                                                             (26) 

 

μ(t) = (1 + |t − 0.5|)(t + 1), t ∈ [0,1]                                                                                                                                                      (27) 

 

F(x, t) =
1

Γ(2−α)
(x − x2)t1−α + (2|t − 0.5| + 2)(1 + t), (x, t) ∈ [0,1] × [0,1]                                                                                        (28) 

 

Going through the solution process in Section 3, the following solutions were obtained 

 

u(x, t) = (x − x2)(t + 1)                                                                                                                                                                            (29) 

 

g(t) = 1 + |t − 0.5|                                                                                                                                                                                     (30) 

 

Equations (29) and (30) correspond to the exact solutions presented by Q.W. Ibrahim and M.S. Hussein [16], [17]. 

 

Example 3: We have the following properties 

 

φ(x) = x3, x ∈ [0,1]                                                                                                                                                                                    (31) 

 

b(t) =
1

8
+ t2, t ∈ [0,1]                                                                                                                                                                                (32) 
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where 

 

l =
1

2
                                                                                                                                                                                                             (33) 

And equation (4) is replaced with the following condition 

 

g(t)uxx(l, t) = ω(t)                                                                                                                                                                                     (34) 

 

Where 

 

ω(t) = 3 + 3t, t ∈ [0,1]                                                                                                                                                                              (35) 

 

And g0(t) is calculated as follows 

 

g0(t) =
ω(t)

u0xx(l,t)
                                                                                                                                                                                            (36) 

 

F(x, t) =
2t2−α

Γ(3−α)
− 6x(1 + t), (x, t) ∈ [0,1] × [0,1]                                                                                                                                     (37) 

 

Going through the solution process in Section 3, the following solutions were obtained 

 

u(x, t) = x3 +  t2                                                                                                                                                                                         (38) 

 

g(t) = 1 + t                                                                                                                                                                                      (39) 

 

Equations (38) and (39) correspond to the exact solutions presented by Mimi Li, Gongsheng Li, Zhiyun Li, and Xianzheng Jia [18]. 

5. Analysis and conclusion 

The results demonstrate that the choice of the initial guess u0(x, t)plays a significant role in the convergence behavior of the homotopy 

series solution. When u0(x, t) is selected judiciously—typically based on the initial or boundary conditions—the convergence-control pa-

rameter h does not need to be explicitly computed, as it becomes inherently absorbed during the solution process. The absorption of h 

occurs because of he residual term Rm(x, s) the deformation equations becomes structured in such a way that the contributions of h can be 

factored or normalized during recursion. As a result, no explicit tuning of h is necessary; the method still converges, and we avoid the need 

for h-curve plotting or parameter sweeping. This property reduces computational complexity and simplifies the application of the Laplace 

Homotopy Analysis Method (LHAM). Moreover, LHAM proves to be an effective semi-analytical tool for accurately determining both 

the primary solution u(x, t) and the time-dependent coefficient g(t), even in the presence of a fractional source term. 
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