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Abstract

We introduce a conceptual-mathematical model that simulates the
spread of information. We represent the states of the actors in the
information flow using compartments. The compartment diagram is
translated into a system of coupled ordinary differential equations. The
diversity of social groups (subpopulations) is incorporated in the model,
and the model is applicable for a heterogeneous community. We deter-
mine four possible spots that can be influenced to control the infor-
mation propagation such as (1) controlling the inflow and outflow of
people in each subpopulation, (2) regulating the media of communica-
tion, (3) influencing the belief system of the actors, and (4) introducing
an antithesis to the circulating information.
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1 Introduction

Social interaction is part of the ecology of humans. Communication is one of
the ways species interact. In humans, communication involves transfer of infor-
mation. Studying information propagation may help create decisions such as in
controlling organizational grapevines, minimizing damages caused by rumors,
regulating spread of wrong information during disasters, and disseminating
important news.
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The speed of information propagation depends on the significance of the
information to the receivers as well as on the level of awareness of the mem-
bers of the community (such as in the case of advertised information). The
truthfulness of the information based on evidences, the trustworthiness of the
spreader of information, the need of any information (whether true or false)
just to answer anxieties, and the degree of suggestibility and credulity of the
people often influence information spread. The paper [7] discusses how rumors,
gossips and urban legends are transmitted.

Various social scientists have already formulated theories about information
propagation, and some of these theories are based on intuition and qualitative
studies. However, experimental research is impractical and usually infeasible
to validate such theories. The application of mathematics, especially dynami-
cal systems, is one of the strategies in investigating social phenomenon — not
to replace experimental validation but to observe more the implications of the
existing theories and conjectures. Mathematical and computational simula-
tions are commonly used to investigate in a conceptual and theoretical level
the complex interactions during information flow.

Rumor spread is one of the common social phenomena that researchers
study. Rosnow and Foster [11] explain the basic principles behind rumors and
gossips. Various models were formulated to study rumor propagation, such as
the Daley-Kendall and Maki-Thompson models which are inspired by the S-I-
R (Susceptible-Infected-Removed) disease epidemics model [1, 2, 3, 6, 9]. Serge
Galam, the father of sociophysics, as well as Kawachi analyze the dynamics of
rumor spread using mathematics [4, 5, 8]. Umali and Rabajante [14], Salvania
and Pabico [12], Suo and Chen [13], and Nekovee et al. [10] investigate the
spread of information, such as gossips, in complex social networks. The study
of information propagation is also useful in analyzing the behavior of financial
markets [15].

We propose a new model that considers a community with different sub-

populations where people have a choice to believe the shared information. This
model also incorporates the possibility of introducing an information that op-
poses the circulating information.

In our model we consider a community of humans. We call the members
of the population as actors, which are likewise members of subpopulations. A
subpopulation can represent a clique in the social network or group of people
in a specific geographic location. We assume that the subpopulations are
mutually disjoint, that is, no member of one subpopulation is a member of the
other.

We also consider the closeness, nature of fidelity and belief systems of each
subpopulations. The interaction between two subpopulations may be more
frequent than the interaction with the other subpopulations. Moreover, some
subpopulations may consider the information from one subpopulation more
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believable than the information from the other.
We refer to the actors who have not yet heard the circulating information

as ignorants, actors who have believed the circulating information as believers,
and believers that spread the information as spreaders. We represented and
visualized the information propagation process using a compartment diagram,
and the compartments in the diagram represent the states of the actors.

2 Assumptions and Compartment Diagram

Our model illustrates the behavior of transferring information from spreaders
to other members of the community and the change in the states of the actors.
The model is based on the classical I-S-S (Ignorant-Spreader-Stifler) rumor
spreading model. The assumptions of the model are as follows:

• The model is deterministic and continuous in state space and time.

• There are only two circulated information that are unaltered during the
process. We focus on one main information, and the other information
is a total negation (opposite) of the main information. We refer to the
opposite information as the antithesis.

• The subpopulations (groups, cliques, factions or clusters) are mutually
disjoint; and no member can directly transfer to another group during
the time frame of the simulation.

• Each subpopulation is homogeneous, that is, the members of a subpop-
ulation share the same characteristics (e.g., ability to interact, fidelity,
credulity, suggestibility).

• Rates of flow from one state to another follow the conservation law, that
is, all actors in the model are accounted.

• All new members of the community are ignorants.

• Per unit of time, a person can only listen to a single spreader, but a
spreader can transfer information to several people simultaneously (such
as in the case of broadcast information). A spreader is always active in
sharing the information.

• Believers of the main information do not spread the antithesis as well as
non-believers do not spread the main information.

• A person decides to believe or not to believe the information immediately
once the information is conveyed.
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Let us define the following sets and parameters for i = 1, 2, . . . , n and j =
1, 2, . . . , n, where n is the number of mutually disjoint subpopulations in the
community (note that Pi, PiCS, PiB and PiNB compose the subpopulation
i):

Pi: the set of ignorants in subpopulation i;

PiCS: the set of ignorants in subpopulation i having contact with spreaders
of main information;

PiB: the set of individuals in subpopulation i believing the main information;

PiNB: the set of individuals in subpopulation i not believing the main infor-
mation (non-believers);

ai: the constant average number of new members of subpopulation i per unit
of time t;

bi: the expected proportion of Pi exiting the community per unit of time;

ci: the expected proportion of Pi having contact with spreaders of main
information from all subpopulations per unit of time;

probij : the probability that a spreader of main information from subpopula-
tion j will have a contact with an actor from subpopulation i per unit of
time;

qrobij: the probability that a spreader of antithesis from subpopulation j will
have a contact with a believer in PiB per unit of time;

Sji: the average proportion of PjB that are spreaders of main information
who can interact with actors from subpopulation i at time t;

Zji: the average proportion of PjNB that are spreaders of antithesis who can
interact with believers from PiB at time t;

Lij : the average number of members of subpopulation i that a spreader of
main information from subpopulation j can interact with per unit of
time;

Vij: the average number of members of subpopulation i that a spreader of
antithesis from subpopulation j can interact with per unit of time;

di: the probability that a person from PiCS will believe the conveyed main
information (or the expected proportion of PiCS that will believe the
main information per unit of time);
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ei: the probability that a person from PiCS will not believe the conveyed main
information (or the expected proportion of PiCS that will not believe the
main information per unit of time). Note that di + ei = 1;

pbi: the probability that a believer in PiB who had an interaction with a
spreader of antithesis will believe the antithesis (or the expected propor-
tion of PiB who had an interaction with a spreader of antithesis that
will believe the antithesis per unit of time);

fi: the expected proportion of PiB exiting the community per unit of time;

gi: the expected proportion of PiNB exiting the community per unit of time;

hi: the expected proportion of PiB who listen and believe the spreaders of
antithesis from all subpopulations per unit of time; and

ki: the expected proportion of PiNB having contact with spreaders of main
information from all subpopulations per unit of time.

Let [·] denote the cardinality of the set. We represent the states of the
actors in the information flow using compartments. The compartment model
of our information propagation model where the focus is the main information
(not the antithesis) is shown in Figure 1.

Figure 1: An Information Propagation Compartment Model. Solid lines denote
flow of actors from one state to another while dashed lines denote influence.

There are actors who enter and exit Pi, and some members of Pi move to
PiCS. Actors that transfer from Pi to PiCS are those who hear the main
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information shared by the spreaders. The set of spreaders of main information
is a subset of the set of believers.

Actors from PiCS move to either PiB or PiNB. Actors who believe the
main information transfer to PiB, or otherwise to PiNB.

There is a probability that a non-believer in PiNB may believe the main
information after interacting with a spreader. However, there is also a chance
that a believer in PiB may change his belief and transfer to PiNB after inter-
acting with a spreader of the antithesis. The set of spreaders of antithesis is a
subset of the set of non-believers.

Spreaders of the main information or of the antithesis can influence actors
in another subpopulation, e.g., a spreader from P1B can interact and share
the main information to an ignorant in P2. If [PiB] = 0 for all i then it means
the main information is no longer in circulation and we call this as “dead”
information.

The formula for ci is as follows:

ci =

n
∑

j=1

(probij)(Sji)([PjB])(Lij)

[Pi]
if [Pi] 6= 0

ci = 0 if [Pi] = 0 (1)

i = 1, 2, . . . , n.

The contact rate ci and ki are proportional to the number of believers
present since we define Sj as the average proportion of PjB that are spreaders
of main information at time t. Lij can be interpreted as the broadcasting
capacity of a spreader of main information, e.g., if L12 = 4 then, on the
average, a spreader of main information from subpopulation 2 can talk to four
ignorants in subpopulation 1.

The product (probij)(Sji)([PjB])(Lij) represents the number of ignorants
in subpopulation i having interaction with spreaders of main information from
subpopulation j. Since we assume that an actor listens to at most one spreader
at time t then Wij1

⋂

Wij2 = ∅ for all i, j1 6= j2 (where Wij denotes the set of
ignorants in subpopulation i having interaction with spreaders of main infor-
mation from subpopulation j at time t). It follows that the total number of
ignorants in subpopulation i having interaction with spreaders of main infor-

mation from all subpopulations is
n

∑

j=1

(probij)(Sji)([PjB])(Lij).

Likewise, the formula for ki and hi are

ki =

n
∑

j=1

(probij)(Sji)([PjB])(Lij)

[PiNB]
if [PiNB] 6= 0
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ki = 0 if [PiNB] = 0 (2)

i = 1, 2, . . . , n, and

hi =

n
∑

j=1

(qrobij)(Zji)([PjNB])(Vij)(pbi)

[PiB]
if [PiB] 6= 0

hi = 0 if [PiB] = 0 (3)

i = 1, 2, . . . , n.

The rate at which an ignorant becomes a believer is dici and the rate at
which a non-believer becomes a believer is diki. Moreover, the rate at which an
individual exits PiB is fi +hi. Hence, the basic reproductive rate of the spread
of the main information is dici+diki

fi+hi

. It should be noted that the parameters ci,
ki and hi should not be greater than 1.

3 ODE Model and Control Spots

We translate the compartment diagram into an autonomous system of cou-
pled ordinary differential equations (ODEs) with [Pi], [PiB] and [PiNB], i =
1, 2, . . . , n as the state variables. The actors in PiCS, i = 1, 2, . . . , n are in
transient states, and we presume that a person decides to believe or not to
believe the information immediately once the information is conveyed (i.e.,
[PiCS] quickly vanishes at each time t). Thus, for simplicity, we disregard
PiCS in the diagram.

The system of ordinary differential equations that corresponds to our sim-
plified compartment model is

d[Pi]

dt
= ai − (bi + ci)[Pi] (4)

d[PiB]

dt
= di(ci[Pi] + ki[PiNB]) − (fi + hi)[PiB] (5)

d[PiNB]

dt
= ei(ci[Pi] + ki[PiNB]) − (gi + ki)[PiNB] + hi[PiB] (6)

i = 1, 2, . . . , n.

Substituting the formula of ci, ki and hi, we now have the following piece-
wise (conditional) linear system of ODEs:

d[Pi]

dt
= ai − bi[Pi] +

n
∑

j=1

(probij)(Sji)([PjB])(Lij), [Pi] 6= 0 (7)
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d[Pi]

dt
= ai, [Pi] = 0 (8)

d[PiB]

dt
= 2di

n
∑

j=1

(probij)(Sji)([PjB])(Lij) − fi[PiB] (9)

−
n

∑

j=1

(qrobij)(Zji)([PjNB])(Vij)(pbi),

[Pi] 6= 0, [PiB] 6= 0, [PiNB] 6= 0

d[PiB]

dt
= di

n
∑

j=1

(probij)(Sji)([PjB])(Lij) − fi[PiB] (10)

−
n

∑

j=1

(qrobij)(Zji)([PjNB])(Vij)(pbi),

[Pi] = 0, [PiB] 6= 0, [PiNB] 6= 0

d[PiB]

dt
= di

n
∑

j=1

(probij)(Sji)([PjB])(Lij) (11)

−
n

∑

j=1

(qrobij)(Zji)([PjNB])(Vij)(pbi),

[Pi] 6= 0, [PiB] = 0, [PiNB] 6= 0

d[PiB]

dt
= 2di

n
∑

j=1

(probij)(Sji)([PjB])(Lij) − fi[PiB], (12)

[Pi] 6= 0, [PiB] 6= 0, [PiNB] = 0

d[PiB]

dt
= −

n
∑

j=1

(qrobij)(Zji)([PjNB])(Vij)(pbi), (13)

[Pi] = 0, [PiB] = 0, [PiNB] 6= 0

d[PiB]

dt
= di

n
∑

j=1

(probij)(Sji)([PjB])(Lij) − fi[PiB], (14)

[Pi] = 0, [PiB] 6= 0, [PiNB] = 0

d[PiB]

dt
= di

n
∑

j=1

(probij)(Sji)([PjB])(Lij), (15)

[Pi] 6= 0, [PiB] = 0, [PiNB] = 0

d[PiB]

dt
= 0, [Pi] = 0, [PiB] = 0, [PiNB] = 0 (16)

d[PiNB]

dt
= 2ei

n
∑

j=1

(probij)(Sji)([PjB])(Lij) − gi[PiNB] (17)

−
n

∑

j=1

(probij)(Sji)([PjB])(Lij)
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+
n

∑

j=1

(qrobij)(Zji)([PjNB])(Vij)(pbi),

[Pi] 6= 0, [PiB] 6= 0, [PiNB] 6= 0

d[PiNB]

dt
= ei

n
∑

j=1

(probij)(Sji)([PjB])(Lij) − gi[PiNB] (18)

−
n

∑

j=1

(probij)(Sji)([PjB])(Lij)

+
n

∑

j=1

(qrobij)(Zji)([PjNB])(Vij)(pbi),

[Pi] = 0, [PiB] 6= 0, [PiNB] 6= 0

d[PiNB]

dt
= 2ei

n
∑

j=1

(probij)(Sji)([PjB])(Lij) − gi[PiNB] (19)

−
n

∑

j=1

(probij)(Sji)([PjB])(Lij),

[Pi] 6= 0, [PiB] = 0, [PiNB] 6= 0

d[PiNB]

dt
= ei

n
∑

j=1

(probij)(Sji)([PjB])(Lij) (20)

+
n

∑

j=1

(qrobij)(Zji)([PjNB])(Vij)(pbi),

[Pi] 6= 0, [PiB] 6= 0, [PiNB] = 0

d[PiNB]

dt
= ei

n
∑

j=1

(probij)(Sji)([PjB])(Lij) − gi[PiNB] (21)

−
n

∑

j=1

(probij)(Sji)([PjB])(Lij),

[Pi] = 0, [PiB] = 0, [PiNB] 6= 0

d[PiNB]

dt
=

n
∑

j=1

(qrobij)(Zji)([PjNB])(Vij)(pbi),

[Pi] = 0, [PiB] 6= 0, [PiNB] = 0

d[PiNB]

dt
= ei

n
∑

j=1

(probij)(Sji)([PjB])(Lij), (22)

[Pi] 6= 0, [PiB] = 0, [PiNB] = 0

d[PiNB]

dt
= 0, [Pi] = 0, [PiB] = 0, [PiNB] = 0 (23)

i = 1, 2, . . . , n.

If ai = 0 for all i, then we will have a non-homogeneous system of ODEs.
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However, we can redefine ai to be proportional to [Pi] + [PiB] + [PiNB], that
is, the number of new members entering the subpopulation is proportional to
the number of actors in the subpopulation. On the other hand, we can redefine
bi[Pi], fi[PiB] and gi[PiNB] to be constants.

We classify the parameters into four modules — the inflow and outflow
module, the communication (for the main information) module, the belief
module, and the counterattack module. See Figure 2 for the illustration. The
following is the list of the parameters belonging to each module:

• Inflow and outflow module: ai, bi, fi and gi

• Communication module: ci and ki

• Belief module: di and ei

• Counterattack module: hi

Figure 2: Possible Information Spread Control Spots.

These four modules are control spots that can be influenced to regulate
the propagation of the main information. The inflow and outflow module
describes the migration of actors in the community. As more new members
continually enter the community through Pi, the longer the main information
may circulate because Pi is the source of possible new believers. However, it
is usually infeasible or impractical to control the migration of people inside a
community.

If we increase ci and ki in the communication module, more actors will
hear the main information and thus, the larger the chance [PiB] will increase.
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Effective advertising and communication media can increase the value of ci and
ki. On the other hand, in controlling rumor spread, inhibiting communication
among actors (e.g., decreasing the value of ci and ki) may result to a bigger
problem. Absence of communication drives the actors to create other stories
to answer their curiosities and anxieties.

If we influence the belief module, such as decreasing di and increasing ei,
then we can regulate the flow of people to PiB and PiNB. However, it is
very difficult to change the belief of people unless effective (usually costly)
advertising campaigns and debates are done.

One strategy to decrease the number of believers is to introduce an antithe-
sis to the main information. This strategy entails increased effort in broadcast-
ing the antithesis and convincing the believers. In our model, increasing the
number of non-believers may result to an effective antithesis campaign. The
Conflict Research Consortium, University of Colorado [16] suggested strate-
gies to control rumors, and one of these strategies is the introduction of an
antithesis:

“The key to effective rumor control efforts is an ability to perform three

functions. First, some mechanism is needed for determining what rumors are

actually circulating. Second, an effective strategy is needed for determining

which rumors are true, and which are false. Finally, mechanisms are needed

for correcting inaccurate rumors and replacing them with reliable

information.”

3.1 Simulation

Consider two subpopulations (n = 2). We numerically solved the system
(Equations 7 to 23) for a given set of parameters. Figures 6 to 15 show some
simulations in time series where the value of a specific parameter is varied.

Some of our numerical simulations (see Figure 3 for an illustration) show
that the time series of [PiB] fluctuates at an early period and levels (usually
approaching an equilibria) at a later period.

In some cases, the parameters ai and bi in the inflow and outflow module do
not significantly affect [PiB] and [PiNB] unlike the other parameters. Based
on our system (Equations 7 to 23), increasing ai and decreasing bi do not
necessarily increase the number of believers and non-believers because the
parameters ai and bi do not appear in d[PiB]

dt
and d[PiNB]

dt
. However, ai and

bi affect [Pi] and as we increase ai and decrease bi, the number of ignorants
increases. As the number of ignorants increases, the life span of the main
information may increase since Pi is the source of possible new believers and
spreaders. The effect of the inflow of new members is significantly noticeable
when there is minimal number of actors exiting the community (outflow). As
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Figure 3: An example where the time series of [PiB] fluctuates at an early
period and levels at a later period.

shown in Figure 4, the change in the value of ai may induce variation in the
behavior of [PiB] especially when there is inhibited outflow.

Figure 4: An instance when ai affects [PiB].

In our system (Equations 7 to 23) where the number of ignorants is large,
the propagation of the main information does not significantly depend on the
number of ignorants but on the number of spreaders and their ability to dis-
seminate the information. It also depends on the chance that actors would
listen and believe the spreaders. However, if we use another formula for ci

(e.g., ci is equal to a positive constant) then we can make the number of igno-
rants matter. In reality, sometimes the number of ignorants may or may not
matter in information propagation.

We investigate another case where we assumed ci, ki and hi are constants.
This assumption is only valid when [PiB] is always nonzero if ci > 0 or ki > 0
because if [PiB] = 0 then there will be no spreader of main information.
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Solving the equilibrium points ([Pi]
∗, [PiB]∗, [PiNB]∗) of our system (Equations

4 to 6) leads to [Pi]
∗ = ai

bi+ci

where either bi or ci is nonzero. It follows that

diciai

bi + ci

+ diki[PiNB]∗ − (fi + hi)[PiB]∗ = 0 (24)

eiciai

bi + ci

+ (eiki − gi − ki)[PiNB]∗ + hi[PiB]∗ = 0. (25)

which imply that

[PiB]∗ =
diciai

bi+ci

+ diki[PiNB]∗

fi + hi

(26)

[PiNB]∗ =
eiciai

bi+ci

(fi + hi) + hi
diciai

bi+ci

−((eiki − gi − ki)(fi + hi) + hidiki)
. (27)

Notice that it is necessary for either fi or hi to be nonzero for the above
[PiB]∗ to be defined. It can easily be seen that if either bi = ci = 0 or
fi = hi = 0 then no equilibrium exists (assuming ai > 0, ci > 0 and di > 0).
Moreover, (eiki − gi − ki)(fi + hi) + hidiki < 0 for [PiNB]∗ to be nonnegative
and defined.

From our analytic investigation we can observe that all parameters affect
the behavior of our system. Notice that [PiB]∗ and [PiNB]∗ are in terms of
all the parameters. However, note that ([Pi]

∗, [PiB]∗, [PiNB]∗) may be stable
or unstable given some parameter values.

The representative Jacobian of the system (Equations 4, 5 and 6) where ci,
ki and hi are constants is as follows:







−(bi + ci) 0 0
dici −(fi + hi) diki

eici hi eiki − gi − ki






. (28)

There are three eigenvalues of the above Jacobian matrix which will give us
an idea if ([Pi]

∗, [PiB]∗, [PiNB]∗) is stable. If the real part of the eigenvalues
are all negative then the equilibrium point is stable. The eigenvalues are

λ1 = −bi − ci (29)

λ2 = −
1

2
gi −

1

2
hi −

1

2
ki −

1

2
fi +

1

2
kiei +

1

2
A (30)

λ3 = −
1

2
gi −

1

2
hi −

1

2
ki −

1

2
fi +

1

2
kiei −

1

2
A (31)

where
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A =
(

k2
i e

2
i − 2k2

i ei − 2figi + 2fihi − 2gihi − 2fiki + 2giki − 2hiki + f 2
i

+g2
i + h2

i + k2
i + 4dihiki + 2fikiei − 2gikiei + 2hikiei

)
1

2

.

We can explore other possible formulas for computing ci, such as hyperbolic
and sigmoidal (Hill) equations. However, if we use a hyperbolic or a sigmoidal
equation then our system (Equations 4, 5 and 6) will be nonlinear. A possible
formula for ci is

ci =

[Pi] +
n

∑

j=1

Sji[PjB]

1 + [Pi] +
n

∑

j=1

Sji[PjB]

. (32)

Notice that the above formula incorporates the effect of the number of igno-
rants and spreaders in communicating the main information. Similar formula
can also be used for ki and hi. A sample simulation is shown in Figure 5 where
ci, ki and hi are of hyperbolic-type.

Figure 5: An example simulation where ci, ki and hi are of hyperbolic-type.

4 Concluding Remarks

Even without performing an actual experiment to study information propaga-
tion, theoretical and conceptual modeling help us understand the general be-
havior of the information propagation process. In this research, we determined
four possible control spots to regulate information spread — the migration of
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actors, the interaction with spreaders, the degree of skepticism of receivers,
and the introduction of an opposite information. However, one of the difficult
tasks in using theoretical models is the determination of the actual values of
the parameters and input values. Furthermore, we did not include the effect
of time delays and presence of stochastic noise. We recommend to extend our
mathematical model to include more social factors, such as presence of multiple
information, to further understand the propagation and death of information.
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Figure 6: An example where varying the value of ai does not affect [PiB].
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Figure 7: An example where varying the value of bi does not affect [PiB].

Figure 8: An example where varying the value of di affects [PiB].

Figure 9: An example where varying the value of dj j 6= i affects [PiB].
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Figure 10: An example where varying the value of fi affects [PiB].

Figure 11: An example where varying the value of gi affects [PiB].

Figure 12: An example where varying the value of pbi affects [PiB].



Investigating Propagation and Death of Information 451

Figure 13: An example where varying the value of probii affects [PiB].

Figure 14: An example where varying the value of qrobij j 6= i affects [PiB].

Figure 15: An example where varying the value of Sii affects [PiB].


