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Abstract 
 

This article explores the application of Forward-Backward Stochastic Differential Equations (FBSDEs) to cash flow optimization in 

uncertain financial environments. FBSDE provide a rigorous framework for modeling investment and payment dynamics, enabling the 

maximization of investor preferences while minimizing financial risks. The model considers a portfolio composed of both risky and risk-

free assets, incorporating constraints such as the balance between discounted payments and accumulated premiums. 

The analysis includes solving the optimization problem using the stochastic maximum principle and Lagrange multipliers. Optimal 

admissible strategies are defined as stochastic processes satisfying integrability conditions and backward differential equations. 

Numerical simulations assess the impact of key parameters, such as initial wealth, discount rate, volatility, and risk aversion, on 

investment and consumption decisions. 

The results demonstrate that the FBSDE approach effectively captures complex dynamics and facilitates the development of robust 

strategies under uncertainty. In conclusion, this article highlights the potential of FBSDEs for portfolio management, financial product 

pricing, and decision optimization in uncertain environments. Future research could expand this framework by integrating exogenous 

factors, such as macroeconomic conditions, thereby broadening its applicability and relevance. 
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1. Introduction 

In a financial world marked by uncertainty, optimal cash flow management remains a critical challenge for both financial institutions and 

corporations. Traditional optimization tools often fail to adequately address the complexities inherent in dynamic and uncertain 

environments. Forward-Backward stochastic differential equations (FBSDEs) present a powerful methodology for overcoming this 

challenge. 

FBSDEs enable the modeling and optimization of investment and consumption decisions while accounting for uncertainties such as market 

volatility and investor preferences. This mathematical framework, grounded in stochastic calculus and the stochastic maximum principle, 

provides robust solutions to challenges related to insurance contract pricing, portfolio management, and the formulation of optimal financial 

strategies. 

This article offers a comprehensive analysis of the application of FBSDEs to cash flow optimization. After establishing the theoretical 

foundations, we model a portfolio comprising both risky and risk-free assets and address the constrained optimization problem using 

Lagrange multipliers. Numerical simulations demonstrate the effects of financial parameters such as initial wealth, discount rate, and 

volatility on optimal strategies. 

Beyond providing practical recommendations, this study contributes to the academic literature by illustrating how FBSDEs can facilitate 

the development of robust and efficient strategies in uncertain environments. Future research directions include the integration of 

macroeconomic factors, thereby expanding the applicability and relevance of this innovative approach. 

2. Literature review 

Cash flow optimization in uncertain environments represents a critical area of study in mathematical finance. Forward-Backward Stochastic 

Differential Equations (FBSDEs) provide a robust framework for modeling the dynamics of financial decisions in uncertain contexts, 

accounting for both investor preferences and practical constraints. This literature review presents key theoretical and applied contributions 

to the field while situating this article's contributions within a broader context. 
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Stochastic differential equations, introduced by Merton [1] in his continuous-time optimization model, constitute a foundational pillar of 

mathematical finance. Karatzas and Shreve [2] expanded these concepts by developing rigorous frameworks for portfolio management, 

focusing on balancing return and risk in stochastic financial markets. 

The Black-Scholes model [3] significantly advanced the understanding of option pricing and derivative assets. These concepts are now 

embedded in modern stochastic dynamics and form the basis of many contemporary financial applications. 

More recently, Fleming and Soner [4] investigated the application of controlled Markov processes and viscosity solutions to complex 

market dynamics, while Bismut [5] employed Pontryagin's maximum principle to address stochastic control problems. These theoretical 

contributions laid the foundation for modern models leveraging FBSDEs to capture intricate dynamics. 

Ekeland and Taflin [6] proposed an innovative stochastic approach to risk management in financial markets, emphasizing the importance 

of uncertainty in decision-making. 

While these theoretical advancements established a strong foundation for the use of FBSDEs in finance, they often lack explicit 

consideration of the practical constraints imposed by market conditions. These limitations underscore the need for further exploration, 

particularly through integrating methodologies such as the Lagrange multiplier. 

Applications of FBSDEs in portfolio management are diverse. For example, Chiarella and He [7] demonstrated how FBSDEs optimize 

asset allocation in volatile markets by highlighting the impact of stochastic parameters on investment decisions. Liu and Pang [8] added a 

behavioral perspective by incorporating investor preferences into optimization models, while Ma and Zhang [9] extended these approaches 

to financial product pricing and risk management. 

Devolder et al. [10] introduced a multi-parameter method for portfolio optimization in uncertain contexts. Their work complements that of 

Fouque and Papanicolaou [11], who proposed investment strategies tailored to stochastic volatility. These studies underscore the relevance 

of EDSPRs in modeling and optimizing cash flows in dynamic markets. 

Despite their potential, many applications lack an explicit focus on practical constraints. For instance, Chiarella and He [12] emphasized 

stochastic optimization but did not address dynamic investor preferences under specific market constraints, a gap this article aims to fill. 

In financial risk management, FBSDEs have also proven valuable. Peng and Wu [13] combined these equations with machine learning to 

enhance market dynamics predictions, while Driessen and Laeven [14] used FBSDEs to develop innovative hedging strategies for 

derivative asset fluctuations. 

Duffie and Epstein [15] explored stochastic utility theory for asset pricing, providing an analytical framework to integrate dynamic investor 

preferences into market modeling. Similarly, Yong [16] applied FBSDEs to systemic risk modeling, and Glas and Jain [17] optimized risk-

sensitive portfolios. He and Zhou [18] examined dynamic hedging models under stochastic volatility, proposing solutions for unstable 

market conditions. 

Although these studies highlight the potential of FBSDEs for robust solutions, the integration of practical constraints remains 

underexplored. For example, Peng and Wu [13] used machine learning for prediction improvements but did not consider market constraints. 

This article addresses this gap by explicitly integrating such constraints through the Lagrange multiplier. 

In their work, Tcheick T. Kayembe et al. [19] addressed an unconstrained optimization problem using FBSDEs to model investment and 

consumption decisions under economic uncertainty. This paper builds on that foundation by explicitly incorporating practical constraints 

and policyholder preferences into the FBSDE framework. It aims to optimize a constrained problem using the Lagrange multiplier, ensuring 

solutions align with market conditions while maximizing policyholder preferences. This methodology extends admissible strategies and 

integrates complex financial parameters into a stochastic framework. 

By coupling these equations with a representative utility function, this paper presents a unique methodology for cash flow optimization. 

Numerical simulations validate the theoretical assumptions and demonstrate how key parameters such as initial wealth, discount rate, and 

volatility affect optimal decisions. Additionally, this article enriches the literature by exploring the combined effects of these parameters, 

offering a comprehensive framework tailored to the needs of financial institutions. 

Unlike Chiarella and He [12], this paper incorporates investor preferences within a constrained framework. Compared to Peng and Wu 

[13], it explicitly integrates practical constraints using the Lagrange multiplier to ensure realistic solutions. Finally, differing from Duffie 

and Epstein [15], it proposes a specific utility function combined with robust simulations that validate the theoretical hypotheses.  

3. Modeling 

We address the modeling and optimization of a company's cash flows, based on Forward-Backward Stochastic Differential Equations 

(FBSDEs), a powerful and appropriate tool. We illustrate this application with an example of pricing an insurance contract involving a 

risk-free asset, assumed to be bounded and deterministic with interest rate 𝑟𝑡 and a risky asset, modeled by geometric Brownian motion 𝑆𝑡 

, with rate of return 𝜇𝑡 and volatility 𝜎𝑡 , which are bounded and deterministic functions of time, with condition σt ≥ ε > 0 for all t ∈ [0, T] 
In this market framework, the dynamics of portfolio wealth, noted (xt)t∈[0,T] is described by :  

 

{
dxt = (rtxt + ρtut)dt + σtutdWt,

x0 = p0 
 t ∈ [0, T]                                                                                                                                               (1) 

 

Where ut is the amount invested in the risky asset, and ρt = μt − rt  is the associated risk premium.  

The assumptions used here are in line with the work of Merton (1971) and Karatzas and Shreve (1998), who laid the foundations for 

continuous-time financial modeling.  

The insurer must allocate the amounts ut optimally to achieve a target objective at the time T . The aim is to determine admissible strategies 

(c, u)  that maximize the policyholder's preferences, represented by a utility function F  applied to cash flows, discounted at the 

policyholder's personal rate β (assumed constant) and that minimize the variance of final wealth. This optimization is subject to the 

constraint that the total discounted value of payments is equal to the amount of accumulated premiums, p0 . In summary, the problem is as 

follows : 

 

max(c,u)𝔼 [∫ e−βtF(ctxt)dt − (xT − 𝔼[xT])2T

0
]   

 

Under the constraints of 𝔼[xT] = d and 𝔼 [∫ e− ∫ λsds
t

0 csxsds
T

0
] = p0  
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Using the Lagrange multiplier method, this constrained optimization problem can be reformulated as an unconstrained control problem 

[10] [15] : 

 

max(c,u)𝔼 [∫ e−βtF(ctxt)dt −
δ

2
(xT − a)2 + θ(y0 − d)

T

0
]                                                                                                                            (2) 

 

Where δ and θ are parameters weighting the importance of achieving objectives, and y0 represents the total present value of cash flows at 

the initial time: 

 

y0 = 𝔼 [∫ e− ∫ λτdτ
s

0 csxsds |ℱ0
T

t
]   

 

The definition of admissible strategies adapted to the problem imposes that the processes (ct, ut) satisfy the conditions of integrability 

necessary to guarantee the existence of a robust solution for the wealth process xt  and for the discounted cash flow yt  which is the 

generalization of y0 for any instant t ∈ [0, T]. 
 

yt = 𝔼 [∫ e− ∫ λτdτ
s

0 csxsds |ℱt
T

t
]                                                                                                                                                                     (3) 

3.1. Defining an strategy 

Before solving the optimization problem, it is essential to define admissible strategies that respect integrability constraints and guarantee 

robust solutions for FBSDEs.  

An admissible strategy is defined as a pair of adapted processes (ct, ut)t≥0 with respect to a filtration (ℱt)t≥0, such that the equation(4.1) 

admits a strong solution (xt)t∈[0,T]. This solution must satisfy the following integrability conditions : 

 

𝔼 ∫ |xt|2dt < ∞
T

0
                                                                                                                                                                                            (4) 

 

And 

 

𝔼 (∫ e− ∫ λsds
t

0  ctxt
T

0
)

2

< ∞                                                                                                                                                                            (5) 

 

For each admissible strategy (ct, ut), the value process (yt)t∈[0,T], defined by equation (3) , satisfies the following backward differential 

equation (BDE) : 

 

{
dyt = (λtyt − ctxt)dt + ztdWt

 yT = 0,
                                                                                                                                                                    (6) 

 

With𝑧𝑡 an adapted (ℱt)t≥0 process, square-integrable with respect to dt × P on the interval [0, T] × Ω.  

Given χt = exp (− ∫ λs ds
t

0
) and Mt = 𝔼 [∫ χtcsxsds|ℱt

T

0
], it follows from (5) that Mt is a suitable and integrable martingale (ℱt)t≥0 . By 

virtue of the martingale theorem, there is a unique stochastic process (φs)s≥0 such that : 

 

yt =
Mt

χt
−

1

χt
∫ χscsxsds

T

0
  

 

Consequently, yt also satisfies the following equation : 

 

dyt = (λtyt − ctxt)dt +
φt

χt
dWt.  

 

By positing zt =
φt

χt
 , it follows that (zt)t≥0 is a (ℱt)t≥0-adaptive, square-integrable process satisfying EDSR.  

3.2. Formulation of the optimization problem 

Assuming that the policyholder's utility function follows a HARA-type structure[5][18] , i.e.  F(X) = Xγ

γ⁄  with𝛾 ∈  [0, 1] , k  the 

optimization problem is formulated as follows:  

 

max(c,u)𝔼 [g(xT) + h(y0) + ∫ e
−βt

(ctxt)γ

γ dt
T

0
]                                                                                                                                               (7) 

 

With the objective functions are defined by g(x) = −
δ

2
(x − a)2 , h(y) = θ(y − d) and (x, y) represents the solution of the linear FBSDE 

system given by the equations (1) and (3).  

Applying the results of the previous point, the Hamiltonian associated with the control problem is:  

 

H(t, x, y, z, u, c, p, q) =
e−βt(cx)γ

γ
+ (rtx + ρtu)p + σtuq + (λty + cx)q                                                                                                       (8) 

 

In this formulation, λt represents the risk premium The associated adjoint equations are :  
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 {
dpt = −(rtpt + e−βtγctxt

γ−1
− ctqt)dt + qtdWt,

pT = gx(xT) = −δ(xT − a) 
                                                                                                                                     (9) 

 

 {
dqt = λtqtdt,

q0 = hy(y0) = θ 
                                                                                                                                                                                      (10) 

 

Taking (ĉ, x̂) as candidates for an optimal strategy, and positing (x̂t,  ŷt, ẑt) as a solution of the associated FBSDE system, we obtain that 

the value of ĉ that maximizes the Hamiltonian verifies : 

 

ĉt = (e−βtx̂t
1−γ

q̂t)
1

(γ−1)⁄
                                                                                                                                                                            (11) 

 

Finally, since the process (λt)t≥0 is assumed to be non-negative, the integrability condition (5) is verified. Furthermore, since the term 

involving𝑢 should disappear, i.e. :  

 

P̂t = −
ρt

σt
p̂t                                                                                                                                                                                                  (12) 

 

Therefore, by (11) and (p̂t, q̂t) satisfies the following decouple FBSDE : 

 

{
dpt = −rtptdt −

ρt

σt
ptdWt

pT = gx(xT) 
,                                                                                                                                                                        (13) 

 

Similarly for qt, we have : 

 

{
dqt = λtqtdt

q0 = hy(y0) ,                                                                                                                                                                                              (14) 

 

The unique solution of the equation for q̂t is written : 

 

q̂t = hy(ŷ0) exp (∫ λs
t

0
ds)                                                                                                                                                                          (15) 

 

To solve the p̂t, equation, we assume a solution in the form : 

 

pt = f(t)x̂t + g(t),  
 

With f and g deterministic functions. This choice is motivated by the linear relationship of the final value p̂T with x̂t . Applying Itô's lemma 

and identifying the coefficients in the equations (1) and (13), we obtain the following conditions for f and g 

 

(f(t) + 2rtf(t))x̂t + ρtûtf(t) + g(t) + rtg(t) = 0                                                                                                                                      (16) 

 

And 

 

−
ρt

σt
(f(t)x̂t + g(t)) = f(t)σtût                                                                                                                                                                    (17) 

 

This leads to the differential equations for f and g: 

 

{
ḟ(t) = (

ρt
2

σt
2 − 2rt) f(t)

f(T) = −δ 
,                                                                                                                                                                                (18) 

 

And 

 

{
ġ(t) = (

ρt
2

σt
2 − rt) g(t),

g(T) = δa 
                                                                                                                                                                                 (19) 

 

The solutions of these equations are: 

 

f(t) = −δ exp (∫ (
ρs

2

σs
2 − 2rs) ds

T

t
) , t ∈ [0, T],                                                                                                                                             (20) 

 

And 

 

g(t) = δa exp (∫ (
ρs

2

σs
2 − rs) ds

T

t
) , t ∈ [0, T]                                                                                                                                                (21) 

 

Finally, the expression for ût is written : 
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ût = −
ρt

σt
2 x̂t −

g(t)

f(t)σt
t                                                                                                                                                                                      (22) 

 

Since ût is linear in x̂t , this gives rise to a linear EDS with bounded coefficients for x̂ , thus satisfying the integrability condition (4). In 

summary, an admissible optimal strategy (ĉ, û) for optimization problem (7) subject to dynamics (1) and (2) is defined by expressions (11) 

and (22).  

4. Numerical example and simulations 

This section analyses how different parameters affect optimal strategies.  

Numerical simulations aim to validate theoretical hypotheses by analyzing the impact of key parameters on optimal strategies. They also 

serve to illustrate the effectiveness of the EDSPRbased approach, and are carried out following these characteristics:  

• Software and algorithms: Simulations were carried out using Python. FBSDE resolution used the Euler-Maruyama method for 

numerical approximation, with a time step fixed at ∆t = 0.01. The algorithm was implemented to handle specific initial and terminal 

conditions  

• Parameters used : Each trajectory was simulated over a time interval of [0, T] ,T = 1 year, and 10,000 trajectories were generated 

to guarantee reliable statistical convergence.  

• Analysis of results: "The results obtained show a rapid convergence of the simulated trajectories towards a single solution, thus 

validating the theoretical hypotheses. The figures below illustrate the dispersion of trajectories and average simulated yields. 

4.1. Effects of wealth 𝐱𝐭 on optimal strategies 𝐮𝐭
∗ and 𝐜𝐭

∗ 

a) Assumptions  

We analyze how variations in wealth xt influence the sensitivities of optimal investment strategies (ut
∗) and consumption strategies (ct

∗) . 

Formulas used :  

• Optimum investment: 

 

ut
∗ = −

ρt

σt
2 xt −

g(t)

f(t)σt
2,  

 

With ρt = μt − rt (risk premium),f(t) and g(t) are deterministic functions related to adjoint dynamics.  

• Optimum consumption : 

 

ct
∗ = (e−βtxt

1−γ
qt)

1
(γ−1)⁄

  

With qt = q0e∫ λsds
t

0  is a solution of the associated adjoint equation.  

Fixed parameters:  

  

• rt = 0.02, μt = 0.05, σt = 0.1, λt = 0.03 

• γ =  0.5 (consumption risk aversion),β =  0.03 (discount rate)  

•  q0 = 0.5, δ = 0.1, a = 5.0 

Wealth interval:  

xt ∈ [0.1, 10] (100 points evenly spaced to avoid divisions by zero at low richness).  

b) Calculating sensitivities  

• Risk premium  

 

ρt = μt − rt = 0.05 − 0.02 = 0.03  

 

• Deterministic functions f(t) and g(t)  
 

f(t) = −δ exp (∫ (
ρt

2

σt
2 − 2rt) ds

T

t
)  

 

g(t) = δa exp (∫ (
ρt

2

σt
2 − rt) ds

T

t
)  

 

To simplify our simulation, we set T =  1.0 and calculate the numerical values. 

c) Sensitivity of ut
∗ : 

• 
∂ut

∗

∂xt
= −

−ρt

σt
2   

• ut
∗ decreases linearly with xt 

d) Optimum consumption ct
∗:  

• includes a non-linear dependence of xt
1−γ
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Fig. 1: Effects of Wealth XT On Optimal Strategies UT

∗  and CT
∗ . 

 

e) Interpretation of results.  

• Investment strategy ut
∗:  

• Decreases linearly with xt.  

• As wealth increases, the optimal share allocated to risky investment decreases, as marginal returns fall.  

• Consumer strategy ct
∗:  

• Increases non-linearly with xt.  

• For low levels of wealth, consumption is limited, but becomes more important as𝑡 increases.  

4.2. Impact of the expected return 𝛍𝐭 on the optimal strategies 𝐮𝐭
∗ and 𝐜𝐭

∗ 

The μt yield has a direct impact on the ρt = μt − rt risk premium.  

• An increase μtis an incentive to invest more in the risky asset, as the risk premium ρt becomes more attractive.  

• Optimal consumption ct
∗ could be relatively less sensitive to ct

∗ , as it depends more on wealth xt and preferences γ  

a) Objectives  

• Quantify the effect of μtvariations on the sensitivities of ut
∗ and ct

∗ strategies.  

• Observe whether changes in μt favor a riskier or more conservative approach. 

b) Calculations  

• Optimum investment :  

 

ut
∗ = −

ρt

σt
2 xt −

g(t)

f(t)σt
2,  

 

• Optimum consumption :  

 

ct
∗ = (e−βtxt

1−γ
qt)

1
(γ−1)⁄

  

 

• Fixed parameters :  

• rt = 0.002 (Risk-free rate)  

• σt = 0.1, λt = 0.03,  
• xt = 5.0 (Fixed wealth for this scenario),  

• γ = 0.5, β = 0.03, q0 = 0.5, δ = 0.1, a = 5.0 

• μt variation range: μt ∈ [0.03, 0.10] (7 equidistant points)  
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Fig. 2: Impact of the Expected Return μt on the Optimal Strategies ut

∗ and ct
∗. 

 

c) Interpretation of results  

Optimal investment (ut
∗):  

• The curve shows a linear increase of μt
∗ with μt  

• A high expected return (μt) makes investing in risky assets more attractive, as the risk premium (ρt)increases.  
Optimum consumption (ct

∗):  

• The curve remains relatively stable at μt  
• Consumption depends more on wealth (xt) and preferences (γ) and is little influenced by variations in expected yield.  

Decision-makers significantly increase their investments in risky assets when μt increases, but their consumption decisions remain virtually 

unchanged, and this reflects rational behavior: the additional resources generated by higher returns are prioritized for investment.  

4.3. Effect of volatility 𝛔𝐭 on optimal strategies 𝐮𝐭
∗ and 𝐜𝐭

∗ 

• Assumptions  
Volatility σt measures the uncertainty or risk associated with the risky asset.  

• An increase in𝜎𝑡 may make investment in the risky asset less attractive, due to the reduction in the risk-adjusted risk 
premium.  

• Optimal consumption ct
∗ is indirectly affected, since it depends mainly on wealth xt and preferences (γ) and not directly on 

σt 
• Objectives  
• Study how variations in σt influence the investment strategy ut

∗ 
• Quantify the indirect impact of σt on ct

∗ 
• Identify critical thresholds where σt significantly reduces ut

∗ 
• Calculations  
• Optimum investment :  

 

ut
∗ = −

ρt

σt
2 xt −

g(t)

f(t)σt
2  

 

The term −
ρt

σt
2 indicates that𝑢𝑡∗ decreases rapidly with an increase in σt  

• Optimum consumption :  

 

ct
∗ = (e−βtxt

1−γ
qt)

1
(γ−1)⁄

  

 

σt does not appear explicitly, but a decrease in ut
∗ could affect future wealth xt and, consequently, ct

∗ 

Fixed parameters:  

• rt = 0.02, μt = 0.05, ρt = 0.03, λt = 0.0.3, 
• xt = 5.0 (Wealth set for this scenario)  
• γ = 0.5, β = 0.03, q0 = 0.5, δ = 0.1, a = 5.0  

σt variation range:  

σt ∈ [0.05,0.2] (8 points equidistant)  
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Fig. 3: Effect of Volatility ΣT on Optimal Strategies UT

∗  and CT
∗ . 

 

Interpreting the results:  

Optimum investment:  

• ut
∗ decreases significantly with σt , illustrating increased risk aversion as volatility rises.  

• High volatility σt = 0.2 drastically reduces investment in risky assets.  
• This reflects investors' cautious attitude in the face of uncertainty.  
• Optimum consumption:  
• Consumption ct

∗ remains virtually constant as σt increases.  
• This confirms that ct

∗ depends primarily on wealth xt and preferences (γ) rather than volatility conditions.  

4.4. Impact of risk aversion (𝛄) on optimal strategies 𝐮𝐭
∗ and 𝐜𝐭

∗ 

• Assumptions  
Risk aversion (γ) is a key parameter in the utility function.  

• A higher value of γ reflects greater caution, favoring conservative strategies.  
• A lower value indicates greater risk tolerance, favoring risky investments and higher consumption levels.  
• Objectives  
• Study how variations in𝛾 influence optimal investment strategies (ut

∗) and consumption (ct
∗) 

• Identify whether increased risk aversion (γ high) significantly limits risky strategies or consumption adjustments.  
Calculations  

Formulas used :  

• Optimum investment :  

 

ut
∗ = −

ρt

σt
2 xt −

g(t)

f(t)σt
2  

 

γ does not appear explicitly, but it influences decisions indirectly via the terms f(t) and g(t), as these are linked to total utility.  

• Optimum consumption :  

 

ct
∗ = (e−βtxt

1−γ
qt)

1
(γ−1)⁄

  

 

An increase in γ directly reduces ct
∗ , because xt

1−γ
decreases as γ increases.  

Fixed parameters:  

• rt = 0.02, μt = 0.05, σt = 0.1, λt = 0.03,  

• xt = 5.0 (Wealth set for this scenario),  

• β = 0.03, q0 = 0.5, δ = 0.1, a = 5.0. γ variation range:  

• γ ∈ [0.1, 0.9] (9 equidistant points)  
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Fig. 4: Impact of Risk Aversion (Γ) on Optimal Strategies UT

∗  and CT
∗ . 

 

Interpretation of results  

Optimum investment (ut
∗)  

• The curve remains relatively stable with variations in γ as ut
∗ is mainly influenced by ρt, xt and σt  

• A slight drop is observed for high values of γ , indicating increased caution in risky investments.  
• Optimum consumption (ct

∗)  
• Optimal consumption ct

∗  decreases rapidly with𝛾 , as risk aversion directly reduces the allocation of financial flows to 
immediate consumption.  

• At low , γ = 0.1 is high(≈ 6.0) , indicating a preference for consumption.  
• At low , γ = 0.9 becomes minimal (≈ 2.5) , reflecting a conservative approach.  

4.5. Effects of the 𝛌𝐭 discount rate on 𝐲𝐭 discounted cash flows 𝐮𝐭
∗ and 𝐜𝐭

∗ optimal strategies.  

• Assumptions  
The discount rate λt plays a key role in the valuation of future cash flows, representing the loss in value over time.  

• An increase in λt reduces the value of future cash flows (yt), making long-term payments or investments less attractive.  
• This reduction could indirectly influence consumption and investment strategies.  
• Objectives  
• Study how changes in λt affect the value of discounted cash flows yt  
• Observe the adjustment of ut

∗ (investment) and ct
∗ (consumption) strategies to changes in λt  

Calculations  

Updated flows (yt)  

The present value of future cash flows is given by:  

 

yt = 𝔼 [∫ e− ∫ λτdτ
s

0 csxs ds |ℱt
T

t
].  

 

• As 𝜆𝑡 increases, the e− ∫ λτdτ
s

0  factor decreases, reducing yt  
• At λt, discounted cash flows lose their relative importance in strategy optimization.  
• Optimal strategies Optimum investment :  

 

ut
∗ = −

ρt

σt
2 xt −

g(t)

f(t)σt
2  

 

The terms f(t) and g(t) depend indirectly on λt, influencing investment decisions...  

• Optimum consumption :  

 

  
l 

With qt = q0e∫ λs
t

0
 ds , an increase of λt reduces  , thus decreasing. ct

∗  

Fixed parameters:  

• rt = 0.02, μt = 0.05, σt = 0.1,  
• xt = 5.0 (fixed wealth), γ = 0.5, β = 0.03, q0 = 0.5, a = 5.0 

λt variation range:  

λt ∈ [0.01, 0.1] (10 points equidistant)  
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Fig. 5: Effects of the ΛT Discount Rate on YT Discounted Cash Flows and Optimal Strategies UT

∗  and CT
∗ . 

 

Interpretation of results  

Updated flows (λt) :  

• yt decreases rapidly with λt  
• When λt = 0.01, yt ≈ 15 , but at λt = 0.1, yt ≈ 5 
• This reduction reflects the direct impact of λt on the valuation of future cash flows.  

Optimum investment (ut
∗) 

• ut
∗ remains relatively stable with variations from λt 

• This indicates that investment decisions are less sensitive to short-term discount rates.  
Optimum consumption (ct

∗)  

• ct
∗ decreases progressively with λt  

• This reduction is moderate because ct
∗ also depends on the initial richness xt and preferences (γ) 

4.6. Combined impact of parameters 𝐫𝐭, 𝛍𝐭, 𝛔𝐭, 𝛄 on optimal strategies 𝐮𝐭
∗ and 𝐜𝐭

∗  

• Assumptions  
The interaction between several parameters rt, μt, σt, γ creates complex dynamics influencing optimal strategies.  

• The risk-free rate rt and the expected return𝜇𝑡 directly influence the risk premium ρt = μt − rt 
• Volatility σt makes risky assets less attractive.  
• Risk aversion γ modulates investment decisions ut

∗ and consumption ct
∗  

• Objectives  
• Analyze the combined effects of parameters on ut

∗ and ct
∗ strategies.  

• Identify synergies or antagonisms between parameters influencing decisions Assuming that the lessee's utility function is 
optimal. 

• Calculations  
Optimal strategies  

Optimum investment : 

 

ut
∗ = −

ρt

σt
2 xt −

g(t)

f(t)σt
2  

 

With ρt = μt − rt 

• The combined effect of μt, rt module ρt  
• σt acts as an attenuating factor on ρt  

Optimum consumption :  

 

ct
∗ = (e−βtxt

1−γ
qt)

1
(γ−1)⁄

  

 

ct
∗ depends directly on xt and γ , but is indirectly influenced by investment dynamics.  

  

Fixed parameters and variations :  

• rt ∈ [0.01, 0.05] (risk-free rate).  
• μt ∈ [0.03, 0.1] (expected return).  
• σt ∈ [0.05, 0.2] (volatility)  
• γ ∈ [0.1, .09] (risk aversion)  
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For simplicity, we consider a representative combination of parameters (5 levels each, 125 combinations in all). 

 

 
Fig. 7: Combined Impact of Parameters (𝑟𝑡, 𝜇𝑡, 𝜎𝑡, 𝛾 ) on Optimal Strategies UT

∗  and CT
∗  . 

 

Interpretations :  

Optimum investment ut
∗  

• ut
∗ is strongly influenced by ρt , which combines the effects of rt, μt 

• An increase in μt increases ut
∗ , while increased volatility σt reduces ut

∗  
Optimum consumption ct

∗ 

• ct
∗ is mainly influenced by γ , with a marked decrease as γ increases.  

• The other (μt, rt) parameters have moderate and indirect effects via xt 
Numerical simulations confirm that FBSDEs offer dynamic and robust portfolio management in the face of market uncertainties. Compared 

with deterministic approaches, these models better capture random fluctuations and provide more appropriate strategies. The use of the 

EulerMaruyama method enabled accurate approximation while ensuring rapid convergence.  

5. Conclusion and perspectives 

This paper has demonstrated the effectiveness of backward stepwise stochastic differential equations (FBSDEs) for optimizing cash flows 

in uncertain environments. By incorporating practical constraints and a utility function reflecting policyholder preferences, it proposed an 

innovative framework for modeling and optimizing investment and consumption decisions. Simulations revealed the impact of key 

parameters such as initial wealth, discount rate and volatility on optimal strategies, offering concrete tools for financial risk management. 

This work enriches the literature by combining theoretical rigor with practical relevance.  

Going further, the integration of exogenous factors, such as macroeconomic conditions, and the exploration of markets with frictions or 

transaction costs could strengthen the model. The application of FBSDEs to other fields, such as climate or energy risk management, and 

the use of machine learning for more complex simulations are promising prospects. This framework opens up new avenues for future 

research in financial optimization.  
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