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Abstract 
 

This study investigates how stochastic optimization is applied to the management of a company's portfolio in order to maximize the ex-

pected utility of wealth over a given period. Inspired by Merton's research, this model involves random volatility in the financial markets, 

while maintaining a constant interest rate to take better account of real economic uncertainties. The aim is to formulate optimal investment 

and consumption strategies based on Pontryagin's maximum principle. Taking into account key factors such as economic growth and 

market volatility, as well as risk aversion in our financial considerations, we recommend an approach incorporating a quadratic penalty for 

excessive investment. This innovative method aims to adjust financial choices in line with economic fluctuations and ensure prudent man-

agement of the company's monetary resources. Finally, numerical simulations illustrate the influence of these factors on overall wealth, as 

well as on investment and consumption, underlining the importance of prudent portfolio management during periods of uncertainty. 
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1. Introduction 

Portfolio management in an uncertain environment is a central issue in financial mathematics. The latter, introduced by Markowitz [1] is 

a central framework for stochastic optimization applied to investment and consumption decisions. Inspired by the pioneering work of 

Merton this [2] model explores optimal strategies in continuous time for maximizing the expected utility of wealth, based on the assumption 

that asset prices follow a geometric Brownian motion. However, unlike Merton [3] which assumes constant interest rates and volatilities, 

we incorporate stochastic financial market volatility while keeping interest rates constant. This allows us to take better account of real 

economic uncertainties, such as economic crises, political adjustments and exogenous shocks like the COVID-19 pandemic, which directly 

influence investment decisions.  

The main objective is to maximize the investor's discounted expected utility over a given period, by applying Pontryagin's maximum 

principle in a stochastic framework. This framework offers a solution to the optimization problem through stochastic differential equations 

(SDEs) and adjoint equations, while taking into account unpredictable market fluctuations.  

Investment and consumption decisions depend on several key economic parameters. For example, higher economic growth encourages 

bolder investment, while greater volatility encourages a more cautious approach. In addition, higher capital productivity encourages more 

significant investment. Risk aversion, as reflected in the coefficient θ for consumption, directly influences the investor's consumption 

decisions, while a quadratic penalty controlled by the parameter γ parameter limits excess investment. This distinction enables risk aversion 

to be modulated independently in consumption and investment regulation, thus ensuring optimal portfolio management.  

Finally, numerical simulations are carried out to illustrate the impact of different economic parameters on wealth, investment and con-

sumption. These simulations provide an in-depth exploration of optimal strategies in various economic scenarios, highlighting the im-

portance of effective portfolio management in times of uncertainty.  

2. Literature review 

Stochastic optimization applied to investment and consumption decisions in an uncertain environment is a central topic in the mathematics 

of finance. It enables us to model the complex dynamics of financial markets and to propose appropriate strategies in the face of uncertainty. 

The foundations of this approach can be traced back to the work of Markowitz [1] who introduced modern portfolio management by 

maximizing expected returns for a given level of risk. Although revolutionary, this approach did not take into account temporal market 

fluctuations, which are essential for modeling continuous variations in financial asset prices.  

Merton [3] then enriched this theory by developing a continuous-time optimization model for investment and consumption decisions, 

assuming constant interest rates and volatility. This assumption of constancy, while effective for initial modeling, limits the model's ability 
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to represent financial behavior in periods of increased volatility. To overcome this limitation, researchers have introduced stochastic ele-

ments to better capture market variations, particularly during crises or exogenous shocks.  

The analytical framework of this work is inspired by the production and consumption model presented in Huyên Pham's book Optimisation 

et contrôle stochastique appliqués la finance, which explores in depth the applications of stochastic control to financial decisions. [4] 
Optimization and Stochastic Control Applied to Finance, which explores in depth the applications of stochastic control to financial deci-

sions. In this model, investment and consumption decisions are optimized according to the stochastic evolution of markets, making it 

possible to study how uncertainty affects portfolio and production management. This reference provides an important foundation for the 

modeling adopted in our study.  

Recent research has introduced stochastic volatility to better capture market uncertainties. For example, Benth [5] integrated Ornstein-

Uhlenbeck-type volatility into a portfolio model, to represent variations in risk. In the same vein, Sandjo et al. [6] combined a constant 

expected return with stochastic volatility, while Zhang and Shreve [7] have shown that this approach improves predictions of optimal 

decisions in investment and consumption strategies under uncertainty. These studies underline the importance of stochastic volatility for 

allocation strategies adapted to uncertain markets.  

Risk aversion is crucial for modeling investor behavior in the face of uncertainty. Campbell and Viceira [8] have highlighted the impact 

of risk aversion on consumption and asset allocation, while Epstein and Schneider [9] introduced long-term uncertainty to analyze risky 

investment choices. In a similar context, Drechsler and Yaron [10] have incorporated market uncertainty into long-term allocation deci-

sions, underlining the importance of flexible risk aversion. In our model, based on Pham's framework, a concave utility function represents 

consumption risk aversion, adding a realistic dimension to portfolio management decisions.  

To regulate risk-taking, several recent studies have introduced penalties for excessive investment. Korn and Kraft [11] have shown that 

penalty policies can control investment choices in a context of stochastic volatility. Our model, based on Pham's framework, applies a 

quadratic penalty to excessive investments. This unique approach favors more prudent management by limiting the risks associated with 

high investments during periods of large fluctuations. In addition, Ben-Tahar et al. [12] address optimal control in risk-averse consumption 

contexts by applying advanced stochastic control techniques to adjust strategies in response to frequent economic shocks.  

The Pontryagin maximum principle is commonly used to determine optimal investment strategies under uncertainty. Kraft and Seifried 
[13] have shown that this principle, combined with stochastic volatility models, improves asset management in the face of financial shocks. 

Zhang and Li [14] have used this same principle for stochastic interest rates, demonstrating that adding dynamics to models enhances 

portfolio resilience. Although our model retains a constant interest rate, in line with Pham's framework, the application of Pontryagin's 

principle in a stochastic volatility framework provides a balanced combination of complexity and realism. Hirtle and Kelleher [15] also 

point out that dynamic optimization strategies, taking into account changing investor preferences, play a crucial role in periods of economic 

instability, which justifies the dynamic approach of our model.  

This literature review highlights the advances made in stochastic optimization models and the contributions of various authors to the 

integration of dynamic risk factors. Based on Huyên Pham's model of production and consumption, our approach combines risk aversion 

for consumption and penalization for excessive investment in a context of stochastic volatility. It meets the needs of portfolio management 

in an uncertain context and makes a unique contribution to the current literature, offering a realistic representation of financial behavior in 

the face of economic uncertainty.  

3. Modeling 

We model the investor's decision-making process in a context of uncertainty, characterized by sources of volatility and risk.  

Consider a finite time horizon [0, T] and a complete probability space (Ω, ℱ, ℙ) with a filtration (ℱt)0≤t≤T generated by two independent 

Brownian motions Wt
1 and Wt

2 representing two sources of uncertainty, and satisfying the usual conditions of being continuous on the right 

and complete. All stochastic processes are assumed to be welldefined and adapted to this filtered probability space.  

Let's say an investor manages a company whose capital value Kt varies according to his investment decisions It. He seeks to maximize the 

value of the company by minimizing the costs associated with investment and consumption Ct while managing debt Lt  which depends on 

the interest rate r and the rate of capital productivity Pt. In this new approach, we incorporate risk aversion, assuming that the investor 

prefers to avoid excessive fluctuations in wealth. Note that the (kt, ct) is a consumption investment strategy.  

The main objective is to determine optimal controls kt  (relative investment rate) and ct (relative consumption rate) so as to meet the in-

vestor's expectations of profit, while taking into account economic hazards and risk aversion.  

3.1. System dynamics 

The stochastic dynamics below describe how investment and consumption choices influence investor wealth and debt over time. At each 

point in time 𝑡 ∈ [0, 𝑇] the investor makes decisions to optimize these variables over the given time interval. The dynamics of the system 

are governed by the following stochastic differential equations (SDEs): for capital Kt debt Lt and net wealth Xt (net wealth = capital - debt).  

 

Lemma 3.1: The dynamics of the investor's net wealth when faced with investment and intermediate consumption, as well as an interest 

rate 𝑟economic growth rate 𝜇 and stochastic volatility rates 𝜎1 (𝑡) and 𝜎2 (𝑡) evolve according to the following dynamics:  

 

dXt = Xt (kt (μ − r +
b

St
) + (r − ct)) dt + ktXtσ1dWt

1 + kt
Xt

St
σ2dWt

2                                                                                                     (1) 

 

Proof:  

In this Lemma, we prove the investor's net wealth model, including both intermediate investment and intermediate consumption, is modeled 

by the following stochastic differential equation:  

Net worth is the difference between the investor's total capital Kt and its debt Lt.  

let:  

 

Xt = Kt − Lt                                                                                                                                                                                                  (2) 
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The capital Kt varies according to investment decisions It while debt Lt evolves according to the interest rate r and capital productivity Pt.  

The stochastic differential equation for capital is given by:  

 

dKt = Kt
dSt

St
+ Itdt K(0) = K0                                                                                                                                                                     (3) 

 

With It is the investment rate and St is the unit price of capital. Using the equation given for dSt: 

 

dSt = μStdt + σ1StdWt
1 S(0) = S0                                                                                                                                                              (4) 

 

By replacing (4) in (3) we obtain:  

 

dKt = Kt(μStdt + σ1StdWt
1) + Itdt                                                                                                                                                             (5) 

 

Debt dynamics Lt is given by:  

 

dLt = rLtdt −
Kt

St
dPt + (It + Ct)dt L(0) = L0                                                                                                                                              (6) 

 

With Pt capital productivity. Using the equation for dPt :  

 

dPt = bdt + σ2dWt
2 P(0) = P0                                                                                                                                                                     (7) 

 

By replacing (7) in (6) this gives:  

 

dLt = rLtdt −
Kt

St
(bdt + σ2dWt

2) + (It + Ct)dt                                                                                                                                           (8) 

 

Finally, by combining (8) and (5) we obtain the dynamics of net worth Xt = Kt − Lt becomes:  

 

{
dXt = dKt − dLt = (Kt

dSt

St
+ Itdt) − (rLtdt −

Kt

St
dPt + (It + Ct)dt)

X(0) = X0 
 t ∈ [0, T]                                                                                       (9) 

 

Equation (9) shows how investment, intermediate consumption and stochastic factors (interest rates, volatility, capital productivity) influ-

ence net wealth. To understand investment and consumption decisions under uncertainty, we need to simplify stochastic dynamics. Net 

wealth Xt fluctuates with capital growth, interest rates and Brownian market movements. Investors adjust their decisions to maximize 

profits and minimize risks. For example, an increase in volatility σ1 may prompt a reduction in the investment rate kt. This method can be 

used to derive optimal strategies via Pontryagin's maximum principle.  

Simplifying, we obtain (1): 

a) The dynamics of net wealth Xt  

 

dXt = Xt (kt (μ − r +
b

St
) + (r − ct)) dt + ktXtσ1dWt

1 + kt
Xt

St
σ2dWt

2  

 

With:  

• kt =
Kt

Xt
 investment rate relative to net worth, where kt ∈ [0, 1]. This means that investment cannot exceed 100% of the production 

unit's net worth.  

• ct =
Ct

Xt
 consumption rate relative to net worth, where ct ∈ [0, 1] representing the proportion of net worth allocated to consumption.  

Thus, the two control variables kt and ct belong to the closed interval [0, 1] ensuring that investment and consumption are bounded by net 

worth Xt.  

With:  

• 𝜇 ∈ ℝ capital growth rate  
• 𝑟 ∈ ℝ+ Risk-free interest rate  
• 𝑏 ∈ ℝ+ capital productivity rate.  
• 𝜎1, 𝜎2 ∈ ℝ+Volatility due to Brownian motion 𝑊𝑡

1 and 𝑊𝑡
2  

• 𝑊𝑡
1 and 𝑊𝑡

2 two independent Brownian motions defined on a filtered probability space (𝛺, ℱ, (ℱ𝑡)𝑡≥0, ℙ).  
• 𝑆𝑡 the price of capital, which follows a stochastic dynamic.  

The dynamics of 𝑋𝑡 therefore depends on the relative investment rate 𝑘𝑡  relative consumption rate 𝑐𝑡  as well as uncertainties linked to the 

price of capital and productivity.  

b) Risk aversion 
We now introduce a utility function to reflect the investor's risk aversion. Utility is generally a concave function of consumption, for 

example a CRRA (Constant Relative Risk Aversion) function of the form:  

 

𝑈(𝐶𝑡) =
𝐶𝑡

1−𝜃

1−𝜃
 𝜃 > 0 𝑡 ∈ [0, 𝑇]                                                                                                                                                                    (10) 

 

With 𝜃 is the risk aversion coefficient its interpretation is as follows:  

• 𝜃 < 1 The investor is moderately risk-averse, accepting some volatility for higher returns.  
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• 𝜃 = 1 This corresponds to a logarithmic utility function, signifying risk neutrality. The investor evaluates investment options 

solely on the basis of expected returns.  
• 𝜃 > 1 The investor is highly risk-averse, favoring safe investments even at the expense of potentially higher returns. The 

higher 𝜃 is high, the greater the risk aversion.  
For investment, we use a quadratic penalty for excessive investment, modeled by the parameter 𝛾 which controls the investor's aversion to 

investment risk. This penalty is expressed as an investment cost in the form: 

 
𝛾

2
(𝑘𝑡𝑋𝑡)2 𝛾 > 0 𝑡 ∈ [0, 𝑇]                                                                                                                                                                           (11) 

 

With 𝛾 > 0 is the investment risk aversion coefficient. The higher 𝛾 is higher, the more reluctant the investor is to make risky investments. 

This leads to a stronger aversion to increasing the volatility of the asset portfolio.  

3.2. Stochastic retrograde differential equations (SRDE)  

To optimize investment and consumption decisions, we define a cost or value function 𝑌(𝑡, 𝑋𝑡 , 𝑆𝑡) which follows a backward stochastic 

differential equation (SRDE):  

 

𝑑𝑌𝑡 = −𝑓(𝑡, 𝑋𝑡 , 𝑆𝑡, 𝑘𝑡 , 𝑐𝑡)𝑑𝑡 + 𝑞𝑡
1𝑑𝑊𝑡

1 + 𝑞𝑡
2𝑑𝑊𝑡

2                                                                                                                                      (12) 

 

With terminal condition 𝑌𝑇 = ℎ(𝑋𝑇). The variables 𝑞𝑡
1 and 𝑞𝑡

2 represent the stochastic shocks (Brownian motion) influencing the controls 

𝑘𝑡 and 𝑐𝑡determined by minimizing 𝑓.  

The exogenous factor 𝑆𝑡 follows the dynamic:  

 

𝑑𝑆𝑡 = 𝜇𝑆𝑡𝑑𝑡 + 𝜎1𝑆𝑡𝑑𝑊𝑡
1  

 

This shows that 𝑆𝑡 is affected by Brownian motion 𝑊𝑡
1 thus influencing the dynamics of 𝑆𝑡.  

4. Cost function to minimize 

The objective of the model is to minimize the instantaneous cost function 𝑔(𝑋𝑡, 𝑘𝑡 , 𝑐𝑡) which represents the total cost of investment and 

consumption and applies to state and control variables over the time interval [0, 𝑇]. This cost function incorporates two key aspects: risk 

aversion for consumption, modeled by the parameter 𝜃 and a quadratic penalty on investment, controlled by the parameter 𝛾. This quadratic 

penalty limits excessive investment, enabling prudent, measured management of the investor's capital.  

 

𝑔 ∶ ℝ+ × [0,1] × [0,1] ⟶ ℝ  

 

Hence the cost functional to be minimized is of the form:  

 

𝐽(𝑘𝑡 , 𝑐𝑡) = 𝔼 [∫ 𝑔(𝑋𝑡 , 𝑘𝑡, 𝑐𝑡)𝑑𝑡 + ℎ(𝑋𝑇)|ℱ𝑡
𝑇

0
]                                                                                                                                            (13) 

 

With:  

• g(Xt, kt, ct) is the instantaneous cost function that includes consumption and investment costs.  

• h(XT) represents the terminal cost or gain associated with final wealth XT.  

With risk aversion, the instantaneous cost function becomes:  

 

𝑔(𝑋𝑡 , 𝑘𝑡, 𝑐𝑡) =
𝐶𝑡

1−𝜃

1−𝜃
+

𝛾

2
𝐼𝑡

2                                                                                                                                                                           (14) 

 

In terms of relative consumption and investment rates, we have:  

 

𝑔(𝑋𝑡 , 𝑘𝑡, 𝑐𝑡) =
(𝑐𝑡𝑋𝑡)1−𝜃

1−𝜃
+

𝛾

2
(𝑘𝑡𝑋𝑡)2                                                                                                                                                            (15) 

 

With: 

• ctXt represents consumption as a function of net wealth  

•  represents investment as a function of net wealth. 

In our case, the functional becomes:  

 

𝐽(𝑘𝑡 , 𝑐𝑡) = 𝔼 [∫ 𝑒−𝜌𝑡 (
(𝑐𝑡𝑋𝑡)1−𝜃

1−𝜃
+

𝛾

2
(𝑘𝑡𝑋𝑡)2) 𝑑𝑡|ℱ𝑡

𝑇

0
]                                                                                                                                 (16) 

 

With 𝛾 ∈ ℝ+penalizes high investments and 𝜌 ∈ ℝ+ is the discount rate. Optimal strategies 𝑘𝑡
∗ and 𝑐𝑡

∗ minimize this functional while re-

specting the dynamics of the system. The Pontryagin maximum principle is used to solve this optimal control problem.  

We know that a strategy is optimal if:  

 

𝐽(𝑘𝑡
∗, 𝑐𝑡

∗) = 𝑚𝑖𝑛(𝑘𝑡,𝑐𝑡)∈𝐴 𝐽(𝑘𝑡 , 𝑐𝑡)                                                                                                                                                                 (17) 

 

To solve this optimal control problem, we use the Pontryagin maximum principle.  
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5. Stochastic optimization 

In this stochastic control framework, the Hamiltonian represents a central function that helps optimize decisions by integrating instantane-

ous cost and adjoint variables linked to future decisions. These adjoint variables directly influence investment and consumption decisions. 

The Hamiltonian is defined as:  

 

ℋ(𝑡, 𝑋𝑡 , 𝑌𝑡, , 𝑘𝑡 , 𝑐𝑡 , 𝑞𝑡
1, 𝑞𝑡

2) = 𝑓(𝑡, 𝑋𝑡, 𝑆𝑡, 𝑘𝑡 , 𝑐𝑡) + 𝑝𝑡. 𝔸(𝑋𝑡, 𝑘𝑡 , 𝑐𝑡) + 𝑞𝑡
1 . 𝑘𝑡𝑋𝑡𝜎1 + 𝑞𝑡

2. 𝑘𝑡
𝑋𝑡𝜎2

𝑆𝑡
  

 

With:  

• pt the assistant process associated with Xt 

• qt
1 and qt

2 are the adjoint processes associated with Brownian terms.  

 

𝔸(𝑋𝑡, 𝑘𝑡 , 𝑐𝑡) = 𝑋𝑡 (𝑘𝑡 (𝜇 − 𝑟 +
𝑏

𝑆𝑡
) + (𝑟 − 𝑐𝑡))                                                                                                                                        (18) 

 

By replacing (19) and the dynamics in ℋ we obtain:  

 

ℋ(𝑡, 𝑋𝑡 , 𝑆𝑡, 𝑃𝑡, 𝑘𝑡 , 𝑐𝑡 , 𝑞𝑡
1, 𝑞𝑡

2) = 𝑒−𝜌𝑡 (
(𝑐𝑡𝑋𝑡)1−𝜃

1−𝜃
+

𝛾

2
(𝑘𝑡𝑋𝑡)2) + 𝑝𝑡 (𝑋𝑡 (𝑘𝑡 (𝜇 − 𝑟 +

𝑏

𝑆𝑡
) + (𝑟 − 𝑐𝑡))) + 𝑞𝑡

1𝑘𝑡𝑋𝑡𝜎1 + 𝑞𝑡
2𝑘𝑡

𝑋𝑡𝜎2

𝑆𝑡
            (19) 

 

Adjunct variables 𝑝𝑡, 𝑞𝑡
1, 𝑞𝑡

2 follow backward differential equations (BDEs), and their role is crucial in accounting for economic fluctuations 

and market uncertainties. These variables capture the sensitivity of system states to stochastic shocks represented by Brownian motion 𝑊𝑡
1 

and 𝑊𝑡
2.  

5.1. Equation for 𝒑𝒕 

The adjoint variable 𝑝𝑡 has the following dynamics:  

 

𝑑𝑝𝑡 = −
𝜕ℋ

𝜕𝑋𝑡
𝑑𝑡 + 𝑞𝑡

1𝑑𝑊𝑡
2 + 𝑞𝑡

2𝑑𝑊𝑡
2 𝑡 ∈ [0, 𝑇]                                                                                                                                          (20) 

 

We get:  

Step 1: Derive terms from 𝐻 with respect to 𝑋𝑡 . 

• First term: 𝑒−𝜌𝑡 𝐶𝑡
1−𝜃

1−𝜃
 

 
𝜕

𝜕𝑋𝑡
(𝑒−𝜌𝑡 (𝑐𝑡𝑋𝑡)1−𝜃

1−𝜃
) = 𝑒−𝜌𝑡 .

(1−𝜃)(𝑐𝑡𝑋𝑡)−𝜃.𝑐𝑡

1−𝜃
= 𝑒−𝜌𝑡𝑐𝑡(𝑐𝑡𝑋𝑡)−𝜃                                                                                                                   (21) 

 

• Second term: 𝑒−𝜌𝑡.
𝛾

2
(𝑘𝑡𝑋𝑡)2 

 
𝜕

𝜕𝑋𝑡
(𝑒−𝜌𝑡.

𝛾

2
(𝑘𝑡𝑋𝑡)2) = 𝑒−𝜌𝑡.

𝛾

2
. 2𝑘𝑡

2𝑋𝑡 = 𝑒−𝜌𝑡𝛾𝑘𝑡
2𝑋𝑡                                                                                                                                 (22) 

 

• Third term: 𝑝𝑡 (𝑋𝑡 (𝑘𝑡 (𝜇 − 𝑟 +
𝑏

𝑆𝑡
) + (𝑟 − 𝑐𝑡)))  

 

𝜕

𝜕𝑋𝑡
(𝑝𝑡 (𝑋𝑡 (𝑘𝑡 (𝜇 − 𝑟 +

𝑏

𝑆𝑡
) + (𝑟 − 𝑐𝑡)))) = 𝑝𝑡 (𝑘𝑡 (𝜇 − 𝑟 +

𝑏

𝑆𝑡
) + (𝑟 − 𝑐𝑡))                                                                                    (23) 

 

• Fourth term: 𝑞𝑡
1𝑘𝑡𝑋𝑡𝜎1  

 
𝜕

𝜕𝑋𝑡
(𝑞𝑡

1𝑘𝑡𝑋𝑡𝜎1) = 𝑞𝑡
1𝑘𝑡𝜎1                                                                                                                                                                            (24) 

 

• Fifth term: 𝑞𝑡
2𝑘𝑡

𝑋𝑡𝜎2

𝑆𝑡
 

 
𝜕

𝜕𝑋𝑡
( 𝑞𝑡

2𝑘𝑡
𝑋𝑡𝜎2

𝑆𝑡
) =  𝑞𝑡

2𝑘𝑡
𝜎2

𝑆𝑡
                                                                                                                                                                           (25) 

 

Step 2: by grouping (21), (22) (23), (24), (25) we obtain  

 

𝑑𝑝𝑡 = − (𝑒−𝜌𝑡(𝑐𝑡(𝑐𝑡𝑋𝑡)−𝜃 + 𝛾𝑘𝑡
2𝑋𝑡) + 𝑝𝑡 (𝑘𝑡 (𝜇 − 𝑟 +

𝑏

𝑆𝑡
) + (𝑟 − 𝑐𝑡)) + 𝑞𝑡

1𝑘𝑡𝜎1 + 𝑞𝑡
2𝑘𝑡

𝜎2

𝑆𝑡
+ 𝑞𝑡

1𝑑𝑊𝑡
1 + 𝑞𝑡

2𝑑𝑊𝑡
2) 𝑑𝑡 𝑡 ∈  [0, 𝑇]    (26) 

 

This equation (26) describes the impact of 𝑋𝑡 on system dynamics via adjoint covariables 𝑝𝑡, 𝑞𝑡
1 , 𝑞𝑡

2 and controls 𝑘𝑡 , 𝑐𝑡 .  
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5.2. Equations for 𝐪𝐭

𝟏, 𝐪𝐭
𝟏 and terminal conditions 

The adjoint co-variables 𝑞𝑡
1 and 𝑞𝑡

2 measure the Hamiltonian's sensitivity to stochastic shocks 𝑑𝑊𝑡
1 and 𝑑𝑊𝑡

2. They are calculated by de-

riving the Hamiltonian with respect to these processes. Thus, we obtain:  

 

• 
𝜕𝐻

𝜕𝑑𝑊𝑡
1 = 𝑘𝑡𝑋𝑡𝜎1                                                                                                                                                                                   (27) 

 

• 
𝜕𝐻

𝜕𝑑𝑊𝑡
2 =

𝑘𝑡𝑋𝑡𝜎2

𝑆𝑡
                                                                                                                                                                                     (28) 

 

The adjoint co-variables depend on the control 𝑘𝑡  state 𝑋𝑡 volatilities 𝜎1 and 𝜎2 and the external factor 𝑆𝑡.  

Terminal conditions set the value of co-variables at the final horizon 𝑇. For 𝑝𝑇 we have:  

 

𝑝𝑇 =
𝜕𝑔(𝑋𝑇)

𝜕𝑋𝑇
                                                                                                                                                                                                  (29) 

 

If no explicit function is given for 𝑔(𝑋𝑇) we often assume 𝑝𝑇 indicating that there is no additional gain or cost to 𝑇. Similarly, for 𝑞𝑇
1 =

0 and 𝑞𝑇
2 = 0 if no shock is expected at the end.  

5.3. Minimization condition and retrograde equations 

Let's assume that the set of all admissible strategies is denoted by not 𝐴  

Definition: an admissible strategy is a pair of adapted processes (𝑘𝑡 , 𝑐𝑡) ∈ 𝐴 such that the following conditions are satisfied:  

1) The pair (𝑘𝑡, 𝑐𝑡) is progressively t-measurable, i.e. both processes are adapted to filtration ℱ𝑡 and depend measurably on the infor-

mation available at each instant 𝑡.  

2) The expected values of the squared variables 𝑘𝑡 (investment rate) and 𝑐𝑡 (consumption rate) are finite for all 𝑡 > 0.  

3) 𝔼[|𝑘𝑡|2] < ∞, 𝔼[|𝑐𝑡|2] < ∞ ∀ 𝑡 > 0  

Furthermore, for all stochastic volatilities 𝜎1 and 𝜎2 it must be the case that:  

 

∫ 𝑘𝑡
2𝑇

0
𝜎1(𝑡)𝑑𝑡 < ∞ 𝑒𝑡 ∫ 𝑐𝑡

2𝑇

0
𝜎1(𝑡)𝑑𝑡 < ∞  

 

This criterion imposes a limit on the scale of investment 𝑘𝑡 and consumption 𝑐𝑡 based on market volatilities, ensuring that strategies are 

not overly risky in highvolatility environments.  

1) For any admissible pair (𝑘𝑡 , 𝑐𝑡) the wealth process 𝑋𝑡  defined by the dynamic wealth equation in the article, with 𝑋(0) = 𝑥0 > 0 has 

a unique solution for each trajectory.  

To guarantee the consistency of the model, the existence and uniqueness of the solutions of the wealth EDS are ensured by assuming the 

regularity of the control functions and the continuity of the Brownian processes. Thus, for any pair of admissible strategies (𝑘𝑡 , 𝑐𝑡) respect-

ing the measurability conditions, a unique solution of the wealth equation exists.  

To minimize the cost function, Pontryagin's maximum conditions require that the partial derivatives of the Hamiltonian with respect to 𝑘𝑡 

and 𝑐𝑡 to be zero.  

Optimum investment strategy 𝑘𝑡
∗:  

The derivative of the Hamiltonian with respect to 𝑘𝑡
∗ gives:  

Let's calculate 
𝜕ℋ

𝜕𝑘𝑡
 by deriving each term containing 𝑘𝑡 separately.  

1) Derivative of term : 𝑒−𝜌𝑡 (𝑐𝑡𝑋𝑡)1−𝜃

1−𝜃
  

 
𝜕

𝜕𝑘𝑡
( 𝑒−𝜌𝑡.

𝛾

2
(𝑘𝑡𝑋𝑡)2) = 𝑒−𝜌𝑡𝛾𝑘𝑡𝑋𝑡

2                                                                                                                                                            (30) 

 

2) Derivative of term : 𝑝𝑡 (𝑋𝑡 (𝑘𝑡 (𝜇 − 𝑟 +
𝑏

𝑆𝑡
) + (𝑟 − 𝑐𝑡)))  

 

𝜕

𝜕𝑘𝑡
(𝑝𝑡 (𝑋𝑡 (𝑘𝑡 (𝜇 − 𝑟 +

𝑏

𝑆𝑡
) + (𝑟 − 𝑐𝑡)))) = 𝑝𝑡𝑋𝑡 ((𝜇 − 𝑟 +

𝑏

𝑆𝑡
))                                                                                                       (31) 

 

3) Derivative of term : 𝑞𝑡
1𝑘𝑡𝑋𝑡𝜎1  

 
𝜕

𝜕𝑘𝑡
(𝑞𝑡

1𝑘𝑡𝑋𝑡𝜎1) = 𝑞𝑡
1𝑋𝑡𝜎1                                                                                                                                                                            (32) 

 

4) Derivative of term : 𝑞𝑡
2𝑘𝑡

𝑋𝑡𝜎2

𝑆𝑡
  

 
𝜕

𝜕𝑘𝑡
(𝑞𝑡

2𝑘𝑡
𝑋𝑡𝜎2

𝑆𝑡
) = 𝑞𝑡

2 𝑋𝑡𝜎2

𝑆𝑡
                                                                                                                                                                             (33) 

 

The partial derivative equation with respect to 𝑘𝑡is obtained by combining (30), (31), (32), (33) we have:  
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𝑒−𝜌𝑡𝛾𝑘𝑡𝑋𝑡
2 + 𝑝𝑡𝑋𝑡 ((𝜇 − 𝑟 +

𝑏

𝑆𝑡
)) + 𝑞𝑡

1𝑋𝑡𝜎1 + 𝑞𝑡
2 𝑋𝑡𝜎2

𝑆𝑡
 𝑡 ∈ [0, 𝑇]                                                                                                            (34) 

 

Resolution for 𝑘𝑡  

To find the optimal value of 𝑘𝑡∗ we pose 
𝜕𝐻

𝜕𝑘𝑡
= 0  

 

𝑒−𝜌𝑡𝛾𝑘𝑡𝑋𝑡
2 + 𝑝𝑡𝑋𝑡 ((𝜇 − 𝑟 +

𝑏

𝑆𝑡
)) + 𝑞𝑡

1𝑋𝑡𝜎1 + 𝑞𝑡
2 𝑋𝑡𝜎2

𝑆𝑡
= 0  

 

Simplifying the equation  

Our aim is to solve this equation for 𝑘𝑡. To simplify, let's divide each term by 𝑋𝑡
2 (assuming that 𝑋𝑡 ≠ 0) to isolate 𝑘𝑡.  

 

𝑒−𝜌𝑡𝛾𝑘𝑡 +
𝑝𝑡𝑋𝑡((𝜇−𝑟+

𝑏

𝑆𝑡
))

𝑋𝑡
+

𝑞𝑡
1𝜎1

𝑋𝑡
+ 𝑞𝑡

2 𝜎2

𝑆𝑡𝑋𝑡
= 0  

 

By isolating 𝑘𝑡  we obtain: 

 

𝑘𝑡
∗ = −

1

𝑒−𝜌𝑡.𝛾 
[𝑝𝑡 ((𝜇 − 𝑟 +

𝑏

𝑆𝑡
) + 𝑞𝑡

1𝜎1 + 𝑞𝑡
2 𝜎2

𝑆𝑡
)]  𝑡 ∈ [0, 𝑇]                                                                                                                    (35) 

 

This strategy depends on the adjoint co-variables 𝑞𝑡
1 , 𝑞𝑡

2, 𝜌 the intertemporal discount rate and economic parameters: capital growth 𝜇 risk-

free interest rate 𝑟 capital productivity 𝑏 and volatilities associated with stochastic shocks 𝜎1 and 𝜎2 to adjust investment according to prof-

itability and risk.  

Optimum consumption strategy 𝑐𝑡
∗:  

The derivative of the Hamiltonian with respect to 𝑐𝑡
∗.  

We will differentiate each of these terms in relation to 𝑐𝑡.  

1) Derivative of term: 𝑒−𝜌𝑡 (𝑐𝑡𝑋𝑡)1−𝜃

1−𝜃
  

 
𝜕

𝜕𝑐𝑡
(𝑒−𝜌𝑡 (𝑐𝑡𝑋𝑡)1−𝜃

1−𝜃
) = 𝑒−𝜌𝑡 .

𝜕

𝜕𝑐𝑡
(

(𝑐𝑡𝑋𝑡)1−𝜃

1−𝜃
)  

 

We get:  

 
𝜕

𝜕𝑐𝑡
(

(𝑐𝑡𝑋𝑡)1−𝜃

1−𝜃
) =

1

1−𝜃
. (1 − 𝜃)(𝑐𝑡𝑋𝑡)−𝜃 . 𝑋𝑡 = 𝑋𝑡

1−𝜃𝑐𝑡
−𝜃  

 

So...,  

 
𝜕

𝜕𝑐𝑡
(

(𝑐𝑡𝑋𝑡)1−𝜃

1−𝜃
) = 𝑒−𝜌𝑡. 𝑋𝑡

1−𝜃𝑐𝑡
−𝜃                                                                                                                                                                   (36) 

 

Derivative of the term −𝑝𝑡𝑋𝑡𝑐𝑡  

We have:  

 
𝜕

𝜕𝑐𝑡
(−𝑝𝑡𝑋𝑡𝑐𝑡) = −𝑝𝑡𝑋𝑡                                                                                                                                                                                (37) 

 

By combining (36) and (37) we obtain: 

 

𝑒−𝜌𝑡. 𝑋𝑡
1−𝜃𝑐𝑡

−𝜃 − 𝑝𝑡𝑋𝑡                                                                                                                                                                                 (38) 

 

The Pontryagin maximum condition implies that for is optimal, we must have:  

 
𝜕𝐻

𝜕𝑐𝑡
= 0  

 

So..,  

𝑒−𝜌𝑡. 𝑋𝑡
1−𝜃𝑐𝑡

−𝜃 − 𝑝𝑡𝑋𝑡 = 0  

 

Isolate 𝑐𝑡
−𝜃:  

 

𝑐𝑡
−𝜃 =

𝑝𝑡𝑋𝑡

𝑒−𝜌𝑡.𝑋𝑡
1−𝜃                                                                                                                                                                                             (39) 

 
(39) Perhaps simplify into:  

 

𝑐𝑡
−𝜃 =

𝑝𝑡

𝑒−𝜌𝑡.𝑋𝑡
−𝜃                                                                                                                                                                                              (40) 

 

Taking the reciprocal powers to isolate 𝑐𝑡  we obtain:  
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 𝑐𝑡 = (
𝑝𝑡

𝑒−𝜌𝑡.𝑋𝑡
−𝜃)

1

−𝜃
                                                                                                                                                                                         (41) 

 

𝑐𝑡
∗ = (

𝑝𝑡𝑒−𝜌𝑡

𝑋𝑡
𝜃 )

1

𝜃
 𝑡 ∈ [0, 𝑇]                                                                                                                                                                             (42) 

 

This result represents the optimal consumption strategy as a function of the adjoint covariate 𝑝𝑡 discount rate 𝜌 and wealth 𝑋𝑡 adjusted for 

the risk aversion parameter 𝜃.  

5.4. Final system of equations 

We therefore have the following system:  

1) Forward equation for 𝑋𝑡 :  

 

𝑑𝑋𝑡 = 𝑋𝑡 (𝑘𝑡 (𝜇 − 𝑟 +
𝑏

𝑆𝑡
) + (𝑟 − 𝑐𝑡)) 𝑑𝑡 + 𝑘𝑡𝑋𝑡𝜎1𝑑𝑊𝑡

1 + 𝑘𝑡
𝑋𝑡

𝑆𝑡
𝜎2𝑑𝑊𝑡

2 𝑡 ∈ [0, 𝑇]  

 

2) Retrograde equation for 𝑌𝑡 :  

 

𝑑𝑌𝑡 = −𝑓(𝑡, 𝑋𝑡 , 𝑆𝑡, 𝑘𝑡 , 𝑐𝑡)𝑑𝑡 + 𝑞𝑡
1𝑑𝑊𝑡

1 + 𝑞𝑡
2𝑑𝑊𝑡

2  

 

With 

 

𝑓(𝑡, 𝑋𝑡, 𝑆𝑡, 𝑘𝑡 , 𝑐𝑡) = 𝑒−𝜌𝑡 (
(𝑐𝑡𝑋𝑡)1−𝜃

1−𝜃
+

𝛾

2
(𝑘𝑡𝑋𝑡)2)  

 

3) Adjunct equation for 𝑝𝑡 :  

 

𝑑𝑝𝑡 = − [𝑒−𝜌𝑡 (
(𝑐𝑡𝑋𝑡)1−𝜃

1−𝜃
+

𝛾

2
(𝑘𝑡𝑋𝑡)2) + 𝑝𝑡 (𝑘𝑡 (𝜇 − 𝑟 +

𝑏

𝑆𝑡
) + (𝑟 − 𝑐𝑡)) + 𝑘𝑡𝜎1𝑞𝑡

1 + 𝑞𝑡
2 𝑘𝑡𝜎2

𝑆𝑡
] 𝑑𝑡 + 𝑞𝑡

1𝑑𝑊𝑡
1 + 𝑞𝑡

2𝑑𝑊𝑡
2                       (43) 

 

These three equations form the complete FBSDE system to be solved numerically.  

5.5. Convexity and transversality 

The cost functional 𝐽(𝑘𝑡 , 𝑐𝑡) is convex, guaranteeing a unique optimal solution. Convexity is ensured by the quadratic term 
𝛾

2
𝑘𝑡

2𝑋𝑡
2 with 

𝛾 > 0 and the linear term 𝑐𝑡𝑋𝑡. The positive Hessian confirms this convexity, proving that the strategies do indeed minimize cost.  

The transversality conditions ensure that the solution remains valid until the end of the time horizon. [0, 𝑇]. The terminal condition 𝑝𝑇 =
𝑔′(𝑋𝑇) guarantees that the model takes into account the final costs or gains, without any loss of consistency over time. 𝑇.  

6. Numerical example and simulations 

This section analyzes how different parameters affect optimal investment and consumption strategies.  

6.1. The effect of wealth 𝐗𝐭 on investment 𝐤𝐭
∗ and consumption 𝐜𝐭

∗ optimal  

Here, we analyze the impact of wealth on investment and consumption decisions. To do this, we:  

 

𝜕𝑘𝑡
∗

𝜕𝑋𝑡
=

𝑝𝑡

𝑒−𝜌𝑡𝛾
.

𝜇−𝑟+
𝑏

𝑆𝑡

𝑋2   

 

And 

 
𝜕𝑐𝑡

∗

𝜕𝑋𝑡
= −

𝑝𝑡𝑒−𝜌𝑡

𝑋𝑡
𝜃+1   

 

Figure 1 below shows that wealth 𝑋𝑡 positively influences the sensitivity of investment 𝑘𝑡
∗ and consumption 𝑐𝑡

∗. As wealth increases, these 

variables are more influenced by  

variations in 𝑋𝑡 especially for low values of 𝑋𝑡  where the impact is more marked.  

When: 𝑝𝑡 = 0.5 ; 𝜌 = 0.03 ;  𝛾 = 0.1 ; 𝜇 = 0.05 ; 𝑟 = 0.02 ;  𝑏 = 0.1 ; 𝑆𝑡 = 1.0 ; 𝜃 = 2.0 and 0 𝑋𝑡 ∈ [0.1, 1.0]  
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Fig. 1: The Effects of Wealth Sensitivity 𝑋𝑡 on Optimal Investment 𝑘𝑡

∗ and Consumption 𝑐𝑡
∗. 

6.2. Effects of the expected return parameter 𝝁 on optimal investment 𝒌𝒕
∗ and optimal consumption 𝒄𝒕

∗ 

Figure 2 below shows that the expected return 𝜇 positively influences the sensitivity of the optimal investment 𝑘𝑡
∗. As expected return 

increases, investment sensitivity becomes more pronounced, encouraging the investor to increase his investment share. On the other hand, 

the sensitivity of consumption 𝑐𝑡
∗ remains relatively constant despite variations in 𝜇 suggesting that optimal consumption is less influenced 

by expected return.  

When : 𝑝𝑡 = 0.5 ; 𝜌 = 0.03 ;  𝛾 = 0.1 ; 𝑋𝑡 = 5.0 ; 𝑟 = 0.02 ;  𝑏 = 0.1 ; 𝑆𝑡 = 1.0 ; 𝜃 = 2.0 and 𝜇 ∈ [0.01, 1.0]  
 

 
Fig. 2: Impact of Expected Return on Optimal Investment. 

6.3. Effects of capital productivity 𝒃 on optimal investment and consumption 𝒌𝒕
∗ and optimal consumption 𝒄𝒕

∗ 

Figure 3 below shows that capital productivity 𝑏 positively influences the sensitivity of optimal investment 𝑘𝑡
∗. As 𝑏 increases, the incen-

tive to invest becomes stronger, as higher productivity makes investment more profitable. On the other hand, the sensitivity of consumption 

𝑐𝑡
∗ is little affected by variations in 𝑏. This suggests that optimal consumption is relatively stable in the face of productivity changes, being 

determined more by accumulated wealth or personal preferences.  

When: 𝑝𝑡 = 0.5 ; 𝜌 = 0.03 ;  𝛾 = 0.1 ; 𝑋𝑡 = 5.0 ; 𝑟 = 0.02 ;  𝜇 = 0.05 ; 𝑆𝑡 = 1.0; 𝜃 = 2.0 and 𝑏 ∈ [0.01, 0.2]  
 

 
Fig. 3: Impact of Capital Productivity on Optimal Investment and Consumption. 

6.4. The impact of risk aversion on consumption 𝜽 and the quadratic penalty for excessive investment 𝜸 

Figures 4 below illustrate that risk aversion has a negative 𝜃 negatively influences the sensitivity of optimal consumption 𝑐𝑡
∗. Increased 

aversion reduces consumption, confirming that more cautious behavior leads to lower optimal consumption. Similarly, quadratic 
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penalization 𝛾 affects investment sensitivity 𝑘𝑡

∗. Stronger penalization reduces optimal investment, favoring a more conservative approach 

and limiting the risks associated with excessive investment.  

When: 𝑝𝑡 = 0.5 ; 𝜌 = 0.03 ;  𝜇 = 0.0.5 ; 𝑋𝑡 = 5.0 ; 𝑟 = 0.02 ;  𝑏 = 0.1 ; 𝑆𝑡 = 1.0 

𝜃 ∈ [1.0, 3.0] and 𝛾 ∈ [0.05, 0. ] 
 

 
Fig. 4: The Impact of Penalization on Investment and Aversion on Consumption. 

6.5. Impact of volatility on optimal investment  𝒌𝒕
∗ and optimal consumption 𝒄𝒕

∗ 

Figures 5 and 6 below show the impact of different volatilities on investment and consumption. An increase in volatility 𝜎1 and 𝜎2 lead to 

a slight increase in optimal investment 𝑘𝑡
∗ reflecting cautious adaptation to return opportunities despite the risks. Conversely, optimal con-

sumption 𝑐𝑡
∗ decreases with volatility, indicating conservative resource management in an uncertain environment. This behavior is con-

sistent with heightened risk aversion, where priority is given to wealth preservation rather than immediate consumption. These results 

underline the importance of a balanced strategy in the face of economic fluctuations.  

When: 𝑝𝑡 = 0.5 ; 𝜌 = 0.03 ;  𝜇 = 0.0.5 ; 𝑋𝑡 = 5.0 ; 𝑟 = 0.02 ;  𝑏 = 0.1 ; 𝑆𝑡 = 1.0;  𝜃 = 2;  𝛾 = 0.1 ; 𝜎1 𝑎𝑛𝑑 𝜎2 ∈ [0.1, 0.5]  
 

 
Fig. 5: Impact of Volatility 𝜎1 on Investment and Consumption. 

 

 
Fig. 6: Impact of Volatility on 𝜎2 on Investment and Consumption. 

7. Conclusion and outlook 

This paper proposes an innovative approach to portfolio management under uncertainty, using stochastic optimization based on 

Pontryagin's maximum principle. By incorporating stochastic volatility and a distinction between risk aversion for consumption and in-

vestment, our model offers a balanced solution for guiding financial decisions during periods of economic fluctuation. Numerical simula-

tions demonstrate the importance of prudent and measured asset management, especially in the presence of variable volatilities.  
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For future work, it would be interesting to test the model in specific market environments, such as periods of financial crisis or phases of 

high volatility, in order to better assess its robustness. In addition, a theoretical extension could incorporate variable interest rates or other 

macroeconomic factors, such as exchange rate shocks or commodity price variations. Finally, a possible development would be to adapt 

the model for institutional portfolios or fund managers, taking into account regulatory constraints. These perspectives could reinforce the 

practical and theoretical relevance of the model in various financial contexts.  
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