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Abstract

In this paper, We provide a new modified proximal point approach utilizing fixed point iterates of nonexpansive mappings in Hadamard space
and show that the sequence created by our iterative process converges to a minimizer of a convex function and a fixed point of mappings.
Finally, we present a numerical illustration for supporting our main result. Our results obtained in this paper improve, extend and unify
results of Khan-Abbas [23], Cholamjiak et al. [10] and Dashputre et al. [11].
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1. Introduction

Let ϑ be a nonempty subset of a metric space (X ,d) and φ : ϑ → ϑ be a nonlinear mapping. The fixed point set of φ is denoted by 𭟋(φ),
that is, 𭟋(φ) = {x ∈ ϑ : x = φx}.
Kirk [24] pioneered the study of fixed point theory in a CAT(0) space. Since then, there has been a lot of interest in fixed point theory for
various types of mappings in CAT(0) spaces. In 2008, Dhompongsa and Panyanak [12] studied the convergence of nonexpansive mappings
in CAT(0) spaces. Several writers then examined the convergence of nonexpansive mappings using various iteration approaches.
Recently, Dashputre at al. [11] used the SRJ iteration process to generate novel fixed point solutions in the setting of CAT(0) spaces, and
they also used a numerical example to understand the effectiveness of the new three step iteration procedure. The SRJ iteration procedure is
as follows:
Let ϑ be a nonempty, closed and convex subset of a complete CAT(0) space X and φ : ϑ → ϑ be a mapping. Let x1 ∈ ϑ be arbitrary and the
sequence {xn} generated iteratively by

x1 ∈ ϑ

zn = φ((1−αn)xn ⊕αnφxn)

yn = φ((1−βn)zn ⊕βnφzn)

xn+1 = φ((1− γn)yn ⊕ γnφyn),n ≥ 1

(1.1)

where {αn}, {βn} and {γn} are sequences in (0,1).
As an example, [16, 26, 27] provides some intriguing findings for fixing a nonlinear mappings problem in the setting of CAT(0) spaces.
Let (X,d) be a metric space and f́ : X → (−∞,∞] be a proper and convex function. One of the major problems in optimization is to find
x ∈ X such that

f́ (x) = min
y∈X

f́ (y).

The set of minimizers of f is denoted by argminy∈X f́ (y). Martinet [30] invented the well-known proximal point algorithm (also known as
the PPA) in 1970, and it has shown to be an effective and strong strategy for addressing this problem. Rockafellar [34] investigated the
convergence to a solution of the convex minimization problem in the setting of Hilbert spaces using PPA in 1976.
Indeed, let f́ be a proper, convex, and lower semi-continuous(lsc) function on a Hilbert space H that reaches its minimum. The PPA is
defined by x1 ∈H and

Xn+1 = argmin
y∈H

(
f́ (y)+

1
2µn

||y− xn||2
)
,
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for each n ∈ N, where µn > 0. It was proved that the sequence {xn} converges weakly to a minimizer of f́ provided ∑
∞
n=1 µn = ∞. However,

as Güler [19] has demonstrated, the PPA does not always converges strongly in general. In the year 2000, Kamimura and Takahashi [22]
combined the PPA and Halpern’s algorithm [20] to ensure strong convergence.
In 2013, Bacák [5] presented the PPA in a CAT(0) space (X,d), as follows: x1 ∈ X and

Xn+1 = argmin
y∈H

(
f́ (y)+

1
2µn

d2(y,xn)

)
,

for each n ∈N, where µn > 0. It was proved that if f́ has a minimizer and ∑
∞
n=1 µn = ∞, then the sequence {xn} ∆-converges to its minimizer

based on the Fejer monotonicity idea. In 2014, Bacák [4] minimised a sum of convex functions using a split version of the PPA in complete
CAT(0) spaces.
Many PPA convergence approaches have recently been extended to the setting of manifolds from traditional linear spaces such as Euclidean
spaces, Hilbert spaces, and Banach spaces for tackling optimization issues [15, 28, 31, 33, 37]. Minimizers of the objective convex functional
in nonlinear spaces play an important role in analysis and geometry. Many applications in computer vision, machine learning, electrical
structure computation, system balancing, and robot manipulation can be thought of as addressing optimization problems on manifolds
[1, 35, 36].
We provide a modified proximal point approach for two nonexpansive mappings in Hadamard spaces utilising the SRJ-type iteration process,
and illustrate various convergence outcomes of the proposed process under several moderate conditions based on previous work. Our
main findings extend Dashputre at el. [11] discovery from one nonexpansive mapping to two nonexpansive mappings in Hadamard spaces
involving the convex and lower semi-continuous functions.

2. Preliminaries

This section contains some well-known concepts and results that will be referenced throughout the paper. Let (X ,d) be a metric space. A
geodesic path joining x ∈ X to y ∈ X (or, more briefly, a geodesic from x to y) is a mapping K from a closed interval [0,r]⊂ R to X such that

c(0) = x, c(r) = y, d(c(t),c(s)) = |t − s|

for all s, t ∈ [0,r]. In particular, K is an isometry and d(x,y) = r. The image of K is call a geodesic segment (or metric segment) joining x and
y. When it is unique, this geodesic is denoted by [x,y]. We denote the point w ∈ [x,y] such that d(x,w) = αd(x,y) by w = (1−α)x⊕αy,
where α ∈ [0,1].
The space (X ,d) is called a geodesic space if any two points of X are joined by a geodesic and X is said to be uniquely geodesic if there is
exactly one geodesic joining x and y for each x,y ∈ X . A subset D ⊆ X is said to be convex if D includes geodesic segment joining every two
points of itself. A geodesic triangle ∆(x1,x2,x3) in a geodesic metric space (X ,d) consist of three points (the vertices of ∆) and a geodesic
segment between each pair of vertices (the edges of ∆). A comparison triangle for geodesic triangle (or ∆(x1,x2,x3)) in (X ,d) is a triangle
∆̄(x1,x2,x3) = ∆(x̄1, x̄2, x̄3) in the Euclidean plane R2 such that

dR2(x̄i, x̄ j) = d(xi,x j)

for i, j ∈ {1,2,3}. A geodesic metric space is said to be a CAT(0) space if all geodesic triangle of appropriate size satisfy the following
CAT(0) comparison axiom:
Let ∆ be a geodesic triangle in C and let ∆̄ ⊂ R2 be comparison triangle for ∆. Then ∆ is said to satisfy the CAT(0) inequality if for all
x,y ∈ ∆ and all comparison points x̄, ȳ ∈ ∆̄,

d(x,y)≤ dR2(x̄, ȳ).

If x,y1,y2 are points of a CAT(0) space and y0 is the midpoint of the segment [y1,y2] which we will denote by (y1 ⊕ y2)/2, then the CAT(0)
inequality impels

d2(x,
y1 ⊕ y2

2
)≤ 1

2
d2(x,y1)+

1
2

d2(x,y2)−
1
4

d2(y1,y2).

this inequality is the (CN) inequality of Bruhat and Tits [8]. In fact, a geodesic space is a CAT(0) space if and only if it satisfies the (CN)
inequality.
It is well known that all complete, simply combined Riemannian manifold having non-positive section curvature is a CAT(0) space. For
other examples, Euclidean buildings [7], Pre-Hilbert spaces, R-trees [6], the complex Hilbert ball with a hyperbolic metric ([17]) is a CAT(0)
space. Further, complete CAT(0) spaces are called Hadamard spaces.

Lemma 2.1. [6] Let X be a CAT(0) space, x,y,z ∈ X and t ∈ [0,1]. Then

d(tx⊕ (1− t)y,z)≤ td(x,z)+(1− t)d(y,z).

Lemma 2.2. [6] Let X be a CAT(0) space, x,y,z ∈ X and t ∈ [0,1]. Then

d2(tx⊕ (1− t)y,z)≤ (1− t)d2(x,z)+ td2(y,z)− t(1− t)d2(x,y).

Remember that a function f́ : ϑ → (−∞,∞] defined on a convex subset ϑ of a CAT(0) space is convex if the function f́ oΨ is convex for any
geodesic Ψ : [a,b]→ ϑ . We say that a function on ϑ is lower semi-continuous at a point x ∈ ϑ if

f́ (x)≤ liminf
n→∞

f́ (xn),

for each sequence xn → x. A function f́ is said to be lower semi-continuous on ϑ if it is lower semi-continuous at any point in ϑ .
For any µ > 0, define the Moreau-Yosida resolvent of f́ in CAT(0) spaces as

Jµ = argmin
y∈X

(
f́ (y)+

1
2µn

d2(y,x)
)
,

for all x ∈ X . The mapping Jµ is well defined for all µ > 0 (see [18,29]).
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Lemma 2.3. [3] Let f́ : X → (−∞,∞] be a proper, convex and lsc function, where (X,d) is a Hadamard space. Then the set 𭟋(Jµ ) of fixed
points of the resolvent associated with f́ coincides with the set argminy∈X f́ (y) of minimizers of f́ .

Definition 2.4. A self map φ defined on a nonempty subset ϑ of a Hadamard space is said to be nonexpansive if

d(φx,φy)≤ d(x,y),

for all x,y ∈ ϑ .

Lemma 2.5. [25] For any µ > 0, the resolvent Jµ of f́ is nonexpansive.

Lemma 2.6. [2] Let f́ : X → (−∞,∞] be a proper, convex and lsc function, where (X,d) is a Hadamard space. Then x,y ∈ X and µ > 0, we
have

1
2µ

d2(Jµ x,y)− 1
2µ

d2(x,y)+
1

2µ
d2(x,Jµ x)+ f́ (Jµ x)≤ f́ (y).

Lim [29] first proposed the concept of -convergence in a broad metric space in 1976. Kirk and Panyanak [25] extended Lim’s approach to
CAT(0) spaces in 2008 and demonstrated that it is analogous to the weak convergence in the Banach space setting. Since the concept of
∆-convergence has received a lot of attention. We will now define ∆-convergence and list some of its fundamental features.
Let {xn} be a bounded sequence in X , Hadamard spaces. For x ∈ X set:

r(x,{xn}) = lim
n→∞

sup d(x,xn).

The asymptotic radius r({xn}) is given by
r({xn}) = in f{r(x,xn) : x ∈ ϑ},

and the asymptotic center A({xn}) of {xn} is defined as:

A({xn}) = {x ∈ ϑ : r(x,xn) = r({xn})}.

Remark 2.7. The cardinality of the set A({xn}) in any CAT(0) space is always equal to one, (see e.g., [12]).
The ([12], Proposition 2.1) tells us that in the setting of Hadamard spaces, for every bounded sequence, namely, {xn} ⊂ ϑ , the set A({xn}) is
essentially the subset of ϑ provided that ϑ is convex and bounded. It is well-known that {xn} has a subsequence which ∆-converges to some
point provided that the sequence is bounded.

Definition 2.8. [25] A sequence {xn} in Hadamard space is said to be ∆-converges to x ∈ ϑ if x is the unique asymptotic center for every
subsequence {an} of {xn}. In this case we write ∆− limnxn = x and read as x is the ∆− limit of {xn}.

Notice that a bounded sequence {xn} in a Hadamard space is known as regular if and only if for every subsequence, namely, {an} of {xn}
one has r({xn}) = r{an}. It is wellknown that, in the setting of Hadamard spaces each regular sequence ∆-converges and consequently each
bounded sequence has a ∆-convergent subsequence.

Lemma 2.9. [25] Every bounded sequence in a Hadamard space admits a ∆-convergent subsequence.

Lemma 2.10. [13] Let X be a Hadamard space, ϑ be closed convex subset of X. If {xn} is a bounded sequence in ϑ , then the asymptotic
center of {xn} is in ϑ .

Lemma 2.11. [12] Let ϑ be a closed and convex subset of a Hadamard space X and φ be a nonexpansive self mapping on ϑ . Let {xn} be a
bounded sequence in ϑ such that limn→∞ d(xn,φxn) = 0 and ∆− limn→∞ xn = x. Then x = φx.

Lemma 2.12. [12] If {xn} is a bounded sequence in a Hadamard space with A({xn}) = {x}, {an} is a subsequence of {xn} with
A({an}) = {a} and the sequence {d(xn,a)} converges, then x = a.

Lemma 2.13. (The resolvent identity, [21]). Let (X,d) be a Hadamard space and f́ : X → (−∞,∞] be proper convex and lower semi-
continuous. Then, the following identity holds:

Jµ x = Jη

(
µ −η

µ
Jµ x⊕ η

µ
x
)
,

for all x ∈ X and µ > η > 0.

3. Main result

Theorem 3.1. Consider f́ : X → (−∞,∞] is a proper, convex and lsc function, where (X,d) is a Hadamard space. Let φ1,φ2 be nonexpansive
self maps defined on X such that Θ =𭟋(φ1)∩𭟋(φ2)∩argminy∈X f́ (y) ̸= /0 Consider {αn}, {βn} and {γn} are sequences for all n ∈ N and
for some α,β ,γ ∈ (0,1) and {µn} is a sequence such that µn ≥ µ > 0 for all n ∈ N and for some µ . Let {xn} be generated in the following
manner:

un = argmin
y∈X

(
f́ (y)+

1
2µn

d2(y,xn)

)
,

zn = φ1((1−αn)xn ⊕αnφ1un),

yn = φ2((1−βn)zn ⊕βnφ2zn),

xn+1 = φ2((1− γn)yn ⊕ γnφ1yn),

(3.1)

for each n ∈ N. Then, we have the following:
(i) limn→∞ d(xn,q) exists for all q ∈ Θ;
(ii) limn→∞ d(xn,un) = 0;
(iii) limn→∞ d(xn,φ1xn) = limn→∞ d(xn,φ2xn) = 0.
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Proof. Let q ∈ Θ. Then q = φ1q = φ2q and f́ (q)≤ f́ (y) for all y ∈ X . It follows that

f́ (q)+
1

2µn
d2(q,q)≤ f́ (y)+

1
2µn

d2(y,q),

for all y ∈ X and hence q = Jµn q for all n ∈ N.
(i) First, we prove that limn→∞ d(xn,q) exists. Writing un = Jµn for all n ∈ N. Using Lemma 2.5, we have

d(un,q) = d(Jµn xn,Jµn q)≤ d(xn,q).

Also, by Definition 2.4, Lemma 2.1 and (3.1), we get

d(zn, p) = d(φ1((1−αn)xn ⊕αnφ1un),q)

≤ ((1−αn))d(xn,q)+αnd(φ1un,q)

≤ (1−αn)d(xn,q)+αnd(un,q)

≤ (1−αn)d(xn,q)+αnd(xn,q)

≤ d(xn,q).

(3.2)

By Definition 2.4, Lemma 2.1 and (3.1), (3.2), we get

d(yn, p) = d(φ2((1−βn)zn ⊕βnφ2zn),q)

≤ (1−βn)d(zn,q)+βnd(φ2zn,q)

≤ (1−βn)d(zn,q)+βnd(zn,q)

≤ (1−βn)d(xn,q)+βnd(xn,q)

≤ d(xn,q).

(3.3)

By Definition 2.4, Lemma 2.1 and (3.1), (3.2), (3.3), we get

d(xn+1, p) = d(φ2((1− γn)yn ⊕ γnφ1yn),q)

≤ (1− γn)d(yn,q)+ γnd(φ1yn,q)

≤ (1− γn)d(yn,q)+ γnd(yn,q)

≤ (1− γn)d(xn,q)+ γnd(xn,q)

≤ d(xn,q).

(3.4)

Hence limn→∞ d(xn,q) exists and limn→∞ d(xn,q) = w for some w.
(ii) Now we prove limn→∞ d(xn,un) = 0. Using Lemma 2.3, we see that

1
2µn

d2(Jµn(xn),q)−
1

2µn
d2(xn,q)+

1
2µn

d2(xn,Jµn(xn))+ f́ (Jµn(xn))≤ f́ (q),

1
2µn

d2(un,q)−
1

2µn
d2(xn,q)+

1
2µn

d2(xn,un)+ f́ (un)≤ f́ (q),

1
2µn

d2(un,q)−
1

2µn
d2(xn,q)+

1
2µn

d2(xn,un)≤ f́ (q)− f́ (un).

But f́ (q)≤ f́ (un) ∀n ∈ N, hence

d2(un,q)−d2(xn,q)+d2(xn,un)≤ 0,

d2(xn,un)≤ d2(xn,q)−d2(un,q).

To prove limn→∞ d(xn,un) = 0, suppose that limn→∞ d(un,q) = w for w > 0. Now,

d(xn+1,q)≤ d(yn,q).

So, we have
w = liminf

n→∞
d(xn,q) = liminf

n→∞
d(xn+1,q)≤ liminf

n→∞
d(yn,q),

and also,
limsup

n→∞

d(yn,q)≤ limsup
n→∞

d(xn,q) = w.

Thus,
lim
n→∞

d(yn,q) = w

and

d(zn,q)≤ (1−αn)d(xn,q)+αnd(un,q)

d(xn,q)≤
1
α
[d(xn,q)−d(zn,q)]+d(un,q),

It gives that
w = liminf

n→∞
d(xn,q)≤ liminf

n→∞
d(un,q).
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Also,
limsup

n→∞

d(un,q)≤ w.

It shows that
lim
n→∞

d(xn,un) = 0.

(iii) To show
lim
n→∞

d(xn,φ1xn) = lim
n→∞

d(xn,φ2xn) = 0.

We observe that

d2(zn, p) = d2(φ1((1−αn)xn ⊕αnφ1un),q)

≤ (1−αn)d2(xn,q)+αnd2(φ1un,q)− (1−αn)αnd2(xn,φ1un)

≤ d2(xn,q)−α(1−β )d2(xn,φ1un),

d2(xn,φ1un)≤
1

α(1−β )
(d2(xn,q)−d2(zn,q))

→ 0 as n → ∞.

Hence
lim
n→∞

d(xn,φ1un) = 0.

It follows that

d(xn,φ1xn)≤ d(xn,φ1un)+d(φ1un,φ1xn)

→ 0 as n → ∞.

Similarly, we obtain

d2(yn, p) = d2(φ2((1−βn)zn ⊕βnφ2zn),q)

≤ (1−βn)d2(zn,q)+βnd2(φ2zn,q)− (1−βn)βnd2(zn,φ1un)

≤ d2(zn,q)−α(1−β )d2(zn,φ1zn),

d2(zn,φ2zn)≤
1

α(1−β )
(d2(xn,q)−d2(yn,q))

→ 0 as n → ∞.

This implies
lim
n→∞

d(φ1xnφ2zn) = 0.

Also,

d(un,φ1un)≤ d(un,xn)+d(xn,φ1un)

→ 0 as n → ∞.

d(zn,un) = d(φ1((1−αn)xn ⊕αnφ1un),un)

≤ (1−αn)d(xn,un)+αnd(φ1un,un)− (1−αn)αnd(xn,φ1un)

≤ d(xn,un)−α(1−β )d(xn,φ1un),

→ 0 as n → ∞.

and

d(xn,zn)≤ d(xn,un)+d(un,xn)

→ 0 as n → ∞.

So, it follows that

d(xn,φ2xn)≤ d(xn,φ1xn)+d(φ1xn,φ2zn)+d(zn,xn)

→ 0 as n → ∞.

Hence
lim
n→∞

d(xn,φ1xn) = lim
n→∞

d(xn,φ2xn) = 0.

This completes the proof.

Theorem 3.2. Consider f́ : X → (−∞,∞] is a proper, convex and lsc function, where (X,d) is a Hadamard space. Let φ1,φ2 be nonexpansive
self maps defined on X such that Θ =𭟋(φ1)∩𭟋(φ2)∩argminy∈X f́ (y) ̸= /0 Consider {αn}, {βn} and {γn} are sequences for all n ∈ N and
for some α,β ,γ ∈ (0,1) and {µn} is a sequence such that µn ≥ µ > 0 for all n ∈ N and for some µ . Let {xn} be generated by (3.1), then
{xn} ∆-converges to an element of Θ.
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Proof. In fact, it follows from Lemma 2.13 and Theorem 3.1(ii), that

d(xn,Jµ xn)≤ d(xn,un)+d(un,Jµ xn)

≤ d(Jµ xn,Jµn xn)+d(xn,un)

≤ d
(

Jµ xn,Jµ

(
µn −µ

µn
Jµn xn ⊕

µ

µn
xn

))
+d(xn,un)

≤ d
(

xn,

(
1− µ

µn

)
Jµn xn ⊕

µ

µn
xn

)
+d(xn,un)

≤
(

1− µ

µn

)
d(xn,Jµn xn)+

µ

µn
d(xn,xn)+d(xn,un)

≤
(

1− µ

µn

)
d(xn,un)+d(xn,un)

→ 0 as n → ∞.

Theorem 3.1(i) shows that limn → ∞d(xn,q) exists for all q ∈ Θ and Theorem 3.1(iii) also implies that limn → ∞d(xn,φixn) = 0 for all
i = 1,2.
Next, we show that W∆(xn)⊂ Θ. Let a ∈W∆(xn). Then there exists a subsequence {an} of {xn} such that A({an}) = {a}. From Lemma
2.11, there exists a subsequence {bn} of {an} such that ∆− limn → ∞bn = b for some b ∈ Θ. So, a = b by Lemma 2.12. This shows that
W∆(xn)⊂ Θ.
Finally, we show that the sequence {xn} ∆-converges to a point in Θ. To this end, it suffices to show that W∆(xn) consists of exactly one
point. Let {an} be a subsequence of {xn} with A({an}) = {a} and let A({xn}) = {x}. Since a ∈W∆(xn)⊂ Θ and {d(xn,a)} converges, by
Lemma 2.12, we have x = a. Hence W∆(xn) = {x}. This completes the proof.

Corollary 3.3. Consider f́ : X → (−∞,∞] is a proper, convex and lsc function, where (X,d) is a Hadamard space. Let φ1,φ2 be nonexpansive
self maps defined on X such that Θ =𭟋(φ)∩argminy∈X f́ (y) ̸= /0 Consider {αn}, {βn} and {γn} are sequences for all n ∈ N and for some
α,β ,γ ∈ (0,1) and {µn} is a sequence such that µn ≥ µ > 0 for all n ∈ N and for some µ . Let {xn} be generated in the following manner:

un = argmin
y∈X

(
f́ (y)+

1
2µn

d2(y,xn)

)
,

zn = φ((1−αn)xn ⊕αnφun),

yn = φ((1−βn)zn ⊕βnφzn),

xn+1 = φ((1− γn)yn ⊕ γnφyn),

(3.5)

for each n ∈ N, then {xn} ∆-converges to an element of Θ.

Since every Hilbert space is a Hadamard space, we obtain directly the following result.

Corollary 3.4. Let H be a Hilbert space and f́ : H → (−∞,∞] is a proper, convex and lower semi-continuous function. Let φ1,φ2 be
nonexpansive self maps defined on H such that Θ =𭟋(φ1)∩𭟋(φ2)∩argminy∈H f́ (y) ̸= /0 Consider {αn}, {βn} and {γn} are sequences for
all n ∈ N and for some α,β ,γ ∈ (0,1) and {µn} is a sequence such that µn ≥ µ > 0 for all n ∈ N and for some µ . Let {xn} be generated in
the following manner:

un = argmin
y∈X

(
f́ (y)+

1
2µn

||y− xn||2
)
,

zn = φ1((1−αn)xn +αnφ1un),

yn = φ2((1−βn)zn +βnφ2zn),

xn+1 = φ2((1− γn)yn + γnφ1yn),

(3.6)

for each n ∈ N, then {xn} weakly converges to an element of Θ.

Next, we establish the strong convergence theorems of our iteration.

Theorem 3.5. Consider f́ : X → (−∞,∞] is a proper, convex and lsc function, where (X,d) is a Hadamard space. Let φ1,φ2 be nonexpansive
self maps defined on X such that Θ =𭟋(φ1)∩𭟋(φ2)∩argminy∈X f́ (y) ̸= /0 Consider {αn}, {βn} and {γn} are sequences for all n ∈ N and
for some α,β ,γ ∈ (0,1) and {µn} is a sequence such that µn ≥ µ > 0 for all n ∈ N and for some µ . Let {xn} be generated by (3.1), then
{xn} strongly-converges to an element of Θ if and only if liminfn→∞ d(xn,Θ) = 0, where d(x,Θ) = in f{d(x,q∗) : q∗ ∈ Θ}.

Proof. The necessity is obvious from Theorem 3.1. Conversely, let

liminf
n→∞

d(xn,Θ) = 0.

Since
d(xn+1,q∗)≤ d(xn,q∗),

for all q∗ ∈ Θ. Hence
d(xn+1,Θ)≤ d(xn,Θ).

Hence liminfn→∞ d(xn,Θ) exists and liminfn→∞ d(xn,Θ) = 0. Following the proof of Theorem 2 of [23], we can show that {xn} is a Cauchy
sequence in X. This implies that {xn} converges to a point q∗ in X and so d(q∗,Θ) = 0. Since Θ is closed, q∗ ∈ Θ. This completes the
proof.
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A family {S,T,U} of mappings is said to satisfy the condition (Θ) if there exists a nondecreasing function f́ : [0,∞) → [0,∞) with
f́ (0) = 0, f́ (r)> 0 for all r ∈ (0,∞) such that d(x,Sx)≥ f́ (d(x,𭟋)) or d(x,T x)≥ f́ (d(x,𭟋)) or d(x,Ux)≥ f́ (d(x,𭟋)) for all x ∈ X . Here
𭟋=𭟋(S)∩𭟋(T )∩𭟋(U).

Theorem 3.6. Consider f́ : X → (−∞,∞] is a proper, convex and lsc function, where (X,d) is a Hadamard space. Let φ1,φ2 be nonexpansive
self maps defined on X such that Θ =𭟋(φ1)∩𭟋(φ2)∩argminy∈X f́ (y) ̸= /0 Consider {αn}, {βn} and {γn} are sequences for all n ∈ N and
for some α,β ,γ ∈ (0,1) and {µn} is a sequence such that µn ≥ µ > 0 for all n ∈ N and for some µ . If {Jµ ,φ1,φ2} satisfies the condition
(Θ), then the sequence {xn} generated by (3.1) strongly converges to a point of Θ.

Proof. From Theorem 3.1, we know that limn→∞ d(xn,q∗) exists for all q∗ ∈ Θ. This implies that limn→∞ d(xn,q∗) exists.
Also, by the condition (Θ), we have

lim
n→∞

f́ (d(xn,Θ))≤ lim
n→∞

d(xn,φ1xn) = 0,

or
lim
n→∞

f́ (d(xn,Θ))≤ lim
n→∞

d(xn,φ2xn) = 0,

or
lim
n→∞

f́ (d(xn,Θ))≤ lim
n→∞

d(xn,Jµ xn) = 0.

Thus, we have
lim
n→∞

f́ (d(xn,Θ)) = 0.

By using the property of f́ , we obtain limn→∞ d(xn,Θ) = 0. Thus, the proof follows from Theorem 3.5.

A mapping φ : ϑ → ϑ is said to be semi-compact if any sequence {xn} in ϑ satisfying d(xn,φxn)→ 0 has a convergent subsequence.

Theorem 3.7. Consider f́ : X → (−∞,∞] is a proper, convex and lsc function, where (X,d) is a Hadamard space. Let φ1,φ2 be nonexpansive
self maps defined on X such that Θ = 𭟋(φ1)∩𭟋(φ2)∩ argminy∈X f́ (y) ̸= /0 Consider {αn}, {βn} and {γn} are sequences for all n ∈ N
and for some α,β ,γ ∈ (0,1) and {µn} is a sequence such that µn ≥ µ > 0 for all n ∈ N and for some µ . Suppose that Jµ ,φ1 and φ2 is
semi-compact, then the sequence {xn} generated by (3.1) strongly converges to a point of Θ.

Proof. Suppose that φ1 is semi-compact. By Theorem 3.1(iii), we have

d(xn,φ1xn)→ 0,

as n → ∞. So, there exists a subsequence {xnk} of {xn} such that xnk → q∗ ∈ X . Since d(xn,Jµ xn)→ 0 and d(xn,φixn)→ 0 for all i ∈ {1,2},
d(q∗,Jµ q∗) = 0, and d(q∗,φ1q∗) = d(q∗,φ2q∗) = 0, which shows that q∗ ∈ Θ. In other cases, we can prove the strong convergence of {xn}
to a point of Θ. This completes the proof.

4. Numerical example

Now we present a numerical example to demonstrate the convergence of our iteration technique and to support our main theorem in a
real-number space.

Example 4.1. [32] Let X = R with the Euclidean norm and ϑ = {x : x ∈ [−4,4]}. For each x ∈ ϑ , we define mappings φ1 and φ2 on ϑ as
follows:

φ1x = x and φ2x =
x
5
.

Clearly, φ1 and φ2 are nonexpansive mappings.
Also, for each x ∈ ϑ , we define f́ : ϑ → (−∞,∞] by

f́ (x) = x2.

We can easily check that f́ is a proper, convex and lower semi-continuous function.
We choose αn = 1− n

3n+1 , βn =
n

16n+1 and γn =
n

n+5 . We set µ = 1
2 forall n. It can be observed that all the assumption of Theorem 3.5 are

satisfied. Hence the sequence {xn} generated by (3.1) converges to 0 which is the fixed point of φ1,φ2 and minimizer of f́ (x).

5. Conclusion

Our main results generalizes of Khan-Abbas [23], Cholamjiak et al. [10] and Dashputre et al. [11] from one nonexpansive mapping to two
nonexpansive mappings involving the convex and lower semi-continuous function, we present a new modified proximal point algorithm for
solving the convex minimization problem as well as the fixed point problem of nonexpansive mappings in Hadamard spaces. Finally, we
provided a numerical illustration to support our main point.
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