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Abstract 
 

The study of epidemiology is often done with an assumption that the population is homogeneously mixed, and the disease dynamics is 

uniform. However, this is not always true, and cultural beliefs and economic activities significantly contribute to segregation not neces-

sarily in spatial dimension but on the way of life. In this study, the dynamics of HIV/AIDS is studied in four distinct fisher-folk popula-

tion patches, both individually and under all-to-all diffusive coupling. It was found that, the dynamics of each patch is periodic, and there 

exist an attracting invariant stable synchronization manifold. The manifold of the coupled system displayed robustness under small per-

turbation, even with a small coupling strength of k≪1. This guarantees uniformity of long term metapopulation disease dynamics. 
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1. Introduction 

Epidemiology is the study and analysis of the patterns, causes and effects of health and disease conditions in a defined population. It is 

the cornerstone of public health and shapes policy decisions and evidence based practice by identifying risk factors for the disease and 

targets the preventive health care. One of the main areas of epidemiological study is the disease surveillance which monitors the spread 

of a disease by establishing patterns of progression of the pandemic. The goal of the surveillance is to predict, observe and minimize the 

harm caused by the epidemic to the population. 

Contributions of mathematics in epidemiology is capture in modeling and simulation, which is seen to be a virtual laboratory, enabling 

the analysis and monitoring of the variations of various parameters which are impossible or would take ages in real life situation. 

In this paper, we focus on the study of the interactions of small subpopulations, which are distinct in HIV/AIDS dynamics and spatially 

separated. The study aims at investigating the synergic effect of coupling and possibility of synchronization. This will give vital effects 

of perturbation dynamics in terms of controlling the disease prevalence through intervention strategies including treatment, public health 

education and prevention. 

Many population models assume that the individuals mix homogeneously implying that all individuals in the population are equally like-

ly to encounter each other. In reality however, many populations are structured in space and are interconnected by human travel. The 

population may therefore be sub-divided into spatially separated sub-populations also known as the population patches. These population 

patches are connected to each other by movement of individuals. Moreover, each patch has its own dynamics which are influenced by 

both immigration and emigration of individuals. Such a distinct group of sub-population is known as a metapopulation [1]. 

Metapopulation dynamics is therefore defined as the study of fragmented population who’s population dynamics occurs at two distinct 

levels; namely, within patch and between patch dynamics. Fisher folk subpopulations are spatially separated, but interact within Lake 

Victoria and its environs. These interactions are due to population interfaces in the same fish markets and fishing grounds. 

In general, synchronization of coupled systems means that dynamic patterns which previously were different begin to behave in the same 

way and simultaneously so that the difference in their dynamics is zero, and the knowledge of one leads to the prediction of the other.  

In this paper, the systems we consider are four population patches of Kisumu, Homabay, Siaya and Busia, all around Lake Victoria. The 

coupling under study is all-to-all configuration, which is more suitable due to common fishing and market grounds to all.  

Consider the population dynamics of each subpopulation and denote their disease prognostic behaviour by 

 

żi(t) = gi(zi)                                                                                                                                                                                                 (1) 

 

Where 𝑧𝑖   𝑖 = 1,2,3,4 represents the four subpopulation patches of Kisumu (1), Homabay (2), Siaya (3) and Busia (4),  z = (S, I, T, A, ) is 

a 4 dimensional vector representing 4 distinct disease compartments; namely, Susceptible (S)m Infective (I), Treated (T) and AIDS (A) 
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class, and g(z) represents the dynamics of each patch, which are here assumed to be homogeneous, and each has periodic solution. Cou-

pling therefore means connection of the four similar oscillators, whose dynamics are each described by a SITA model. 

All – to – all coupling configuration of the four oscillators is defined as; 

 

ż(t) = A(k)z + G(z)                                                                                                                                                                                     (2) 

 

Where z = (z1, z2, z3, z4)  and G(z) = (g1(z1), g2(z2), g3(z3), g4(z4))  and A(k)  is the coupling configuration matrix with coupling 

strength k. The coupling configuration matrix for all-to-all coupling is defined here as; 

 

A(k) = kΔ ⊗ In                                                                                                                                                                                             (3) 

 

Where ⊗ is the kronecker product, and the coupling matrix Δ is defined as; 

 

Δ =

(

 
 
 

−(n − 1) 1 1 1 … 1
1 −(n − 1) 1 1 … 1

1 1 −(n − 1) 1 … 1
1 1 1 −(n − 1) … 1
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
1 1 1 1 … −(n − 1))

 
 
 

                                                                                                     (4) 

 

In our case of 4 spatially distinct subpopulations patches, 𝑛 = 4 and the disease dynamics of each oscillator is represented by the SITA 

model defined by 

 
dS

dt
= λS − cβϕSI − μS                                                                                                                                                                                 (5a) 

 
dI

dt
= cβϕSI − (μ + τ + ω)I                                                                                                                                                                         (5b) 

 
dT

dt
= τI − (σ + δ)T + ρA                                                                                                                                                                            (5c) 

 
dA

dt
= δT − (ξ + σ + ρ)A + ωI                                                                                                                                                                     (5d) 

 

Where: β is the force of infection, with βv being the vector folk infection rate, λ is the natural recruitment rate to the susceptible group. 

λv is the corresponding recruitment rate to the vector folk group, μ natural death rate. It is here assumed to be equal in all compartments, 

θ is the modification parameter accounting for the difference in the infection rate by the infected class. ψ is the modification parameter 

accounting for the difference in the infection rate by the treated class, ϕ is the modification parameter accounting for the difference in the 

infection rate by the AIDS class, τ is the rate at which infected class seek treatment, δ is the proportion of those under treatment, who 

will not be cured and therefore progress to AIDS class, ω is the rate at which people with AIDS seek treatment. ωv is the corresponding 

rate for vector folk class, ρ is the recovery rate from AIDS status, back to treatment class. Note that treatment for HIV is a life-long pro-

cess and therefore the AIDS class includes People Living With HIV AIDS (PLWHA), ω is the rate at which infected individuals pro-

gress to AIDS class without seeking treatment, and η is the accelerated death rate due to opportunistic diseases or AIDS. 

2. Literature review 

Mathematical modeling of infectious diseases and analytic techniques have given great insights into the study of the evolution and con-

trol of epidemics [2]. The occurrence of most epidemics is seasonal and therefore periodic. Infectious diseases can be therefore be mod-

eled as biological oscillators using differential equations [3-6]. Many interesting dynamics occur in the study of oscillators, but most 

interesting phenomena, physically significant is the stability and robustness of oscillators under perturbation [7]. In this regard, the epi-

demic focused in this study is HIV/AIDS. The World Health Organization (WHO) report of 2004 states that, AIDS was discovered in 

1981 and has become one of the leading causes of death, globally, affecting mostly impoverished people already. This is done with an 

attempt to shed light to a close to four decades problem since it was first reported and labeled as AIDS [8]. According to [9], HIV/AIDS 

had killed an estimate of 25 million people globally. It was estimated that over 33 million people were living with HIV, most of whom 

are unaware of their HIV status, and as a result, unknowingly contribute to the spread of the infection [10]. The epidemic has dispropor-

tionately affected people residing in areas of the world that have fewer resources to combat the disease. The [10] further estimated that 

there were 2.7 million people who were newly infected with HIV in 2007 and greater than 95% of these new infections occurred among 

persons residing in Low and Middle Income Countries. Sub-Saharan Africa accounts for an estimated 22 million cases of HIV/AIDS and 

has an estimated prevalence of 5% in adults ages 15-49. In these Low and Middle Income Countries, [10] says that the HIV/AIDS epi-

demic has often over-burdened the under-resourced health care infrastructure. In Kenya for example, the worst affected community is the 

fisherfolk as compared to the other populations [11-15]. Surveys conducted since 1992 in ten low or middle-income countries in Africa, 

Asia and Latin America revealed that HIV/AIDS prevalence among fishers or fishing communities are between 4 and 14 times higher 

than the National average prevalence rate for adults aged 15-49 [16, 17]. These considerable rates of HIV/AIDS infection place fisher 

folks among groups that are more usually identified as being at high risk [12, 18-20]. It is for this reason that this study focuses on dy-

namics of HIV/AIDS among the fisherfolk community around Lake Victoria Kenya, as a problem of coupled metapopulation patches, 

stability and robustness under small disease parameter perturbation. 

3. Methods and analysis 

In this section, the methods used in the analysis of the model are presented, and are discussed under the sections hereunder. 
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3.1. All-to-all coupling topology 

Diffusive coupling is an arrangement, where oscillators are allowed to influence each other [7]. In terms of the biological oscillators un-

der study, the periodic dynamics of HIV/AIDS pandemic in four distinct population patches around Lake Victoria are interacting through 

people entering and leaving each patch, together with interacting in the markets and common fishing grounds. The interaction referred to 

her is the relationship which leads to sexual intercourse. The level of interaction which leads to sexual relationship, significant to cause 

transfer of disease is here considered. All-to-all coupling, also called global coupling is represented geometrically as in Figure 1 below 

[21]. Each terminal point represents an oscillator, while the arrows joining the oscillators represent bidirectional coupling where oscilla-

tors are allowed to influence each other simultaneously. 

 

 
Fig. 1: All-To-All Coupling Configuration. 

 

Each oscillator is represented by a system of ordinary differential equations, denoting a dissipative system of four variables, described by 

a set of four differential equations in equation (5), each describing the dynamics of Susceptible, Infective, Treated and AIDS cases. Using 

the notation of zi, i = 1, 2, 3, 4 (Kisumu, Siaya, Homabay and Busia) to represent the fours oscilators, we derive the coupled system of 

oscillators given in equation (2) is represented in detail by 

 

(

z1̇(t)
z2̇(t)
z3̇(t)

z4̇(t)

) = k(

−3 1 1 1
1 −3 1 1
1 1 −3 1
1 1 1 −3

) ⊗ (I4)(

z1

z2

z3

z4

) + (

g1(z1)
g2(z2)
g3(z3)

g4(z4)

)                                                                                                              (6) 

 

Where 𝐼4 is a 4 –dimensional identity matrix,  kΔ ⊗ I4 = k(

−3I4 I4 I4 I4
I4 −3I4 I4 I4
I4 I4 −3I4 I4
I4 I4 I4 −3I4

) and each 𝑧𝑖 , 𝑖 = 1, 2, 3, 4 is defined by equa-

tion (5a-d) as; zi̇(t) =

(

 
 

Ṡi(t)

İi(t)

Ṫi(t)

Ȧi(t))

 
 

= (

λSi − cβϕSiIi − μSi

cβϕSiIi − (μ + τ + ω)Ii
τIi − (μ + δ)Ti + ρAi

δTi − (ξ + σ + ρ)Ai + ωIi

)   

 

Where the subscripts i = 1, 2, 3, 4 represents the subpopulations in Kisumu, Homabay, Siaya and Busia respectively. In compact vector 

form, equation (6) is expressed equivalent to equation (2) as; 

 

ż = k(Δ ⊗ I4)z + G(z)                                                                                                                                                                                (7) 

 

Where 𝑧 and G(z) are defined in equation (2) above. The coupled system (7) is said to be synchronized, if there exist a manifold 

 

ℳ ≔ {z ∈ ℝnd: zi = zj ≠ 0, i, j = 1, 2, 3, 4, i ≠ j}  

 

That is, there exist an invariant attractor 𝒜k∀ k > 0 invariant under the flow defined by equation (5) which contains the ω- limit set of 

the oscillator, so that the difference zi(t) − zj(t) → 0 as t → ∞, ∀ i, j. 

3.2. Construction of synchronization manifold 

Synchronization manifold ℳ ≔ (z ∈ ℝnd: zi = zj ≠ 0, i, j = 1, 2, 3,… , n − 1} is guaranteed since we are coupling identical oscillators, 

and thus the diagonal is invariant [22]. Our task is therefor to show that one of the eigenvalue of the coupling topology matrix Δ is λ0 =
0 and the corresponding generalized eigenvector spans the diagonal in ℝnd while the other eigenvalues λs, s = 1, 2, . . , n − 2 are bounded 

to the left side of the imaginary axis. 

Consider our specific case where 𝑛 = 4 and 𝑑 = 4, then, the eigenvalues of the coupling matrix σ(Δ) are; λ0 = 0 and λs = −4, s =
1, 2, 3, with the corresponding generalized eigenvectors as; v0 ≔ (1, 1, 1, 1) ∈ ℝ4 which spans the diagonal and the other eigenvectors 

are; vi ≔ [(−1,1,0,0), (−1,0,1,0), (−1,0,0,1)]. These can be expressed as, 𝑣0 = 𝑒 and 𝑣𝑖 = (0, 1,0,0) with 1 in the 𝑖𝑡ℎ position. 

In order to determine the existence of a global attractor, (the diagonal or synchronization manifold) in a bounded set 𝑈 ∈ ℝ𝑛𝑑, we require 

a transformation, that splits the system into transverse flow and tangential flow to the manifold. Consider the transformation defined in 

[7] below. 
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𝑧 = 𝑦𝑒 + �̃�𝑤,           𝑤 = (𝑤1, 𝑤2, … , 𝑤𝑛−1)

𝑇 , 𝑤 ∈ ℝ𝑛𝑑−𝑑 , 𝑦 ∈ ℝ𝑑               (8) 

 
𝑤𝑗 = 𝑧𝑗 − 𝑧𝑗+1 , 1 ≤ 𝑗 ≤ 𝑛 − 1,

𝑦 =
1

𝑛
∑ 𝑧𝑗 ,

𝑛
𝑗=1  

                                                                                                                                                           (9) 

 

Where 𝑒𝑗  is the 𝑗𝑡ℎ column of an 𝑛 × 𝑛 identity matrix and �̃� = ∑ (𝑒𝑖 −
𝑗

𝑛
𝑒)

𝑗
𝑖 , with  �̃� = (�̃�1, �̃�2, … , �̃�𝑛−1). The set 𝑒 , �̃�𝑗  is an orthogonal 

basis for ℝ𝑛. 

Using transformation (9) in equation (7), we obtain  

 
�̇� = 𝑘(𝛥1 ⊗ 𝐼𝑑)𝑤 +  𝐹(𝑤, 𝑦)

�̇� =
1

𝑛
∑ 𝑔(𝑧𝑗)

𝑛
𝑗=1  

                                                                                                                                                             (10) 

 

where 𝐹(𝑤, 𝑦) = (𝐹1(𝑤, 𝑦), 𝐹2(𝑤, 𝑦), 𝐹3(𝑤, 𝑦))  with 𝐹𝑖(𝑤, 𝑦) = 𝑔(𝑧𝑖) − 𝑔(𝑧𝑖+1), 1 ≤ 𝑖 ≤ 𝑛 − 1  and the matrix 𝛥1  is given by 𝛥1 =
−𝑘𝑛𝐼𝑛 ⊗ 𝐼𝑑. 

The first equation in (9) describes the dynamics transverse to the synchronization manifold, and the second equation in (9) describes the 

dynamics tangential to the synchronization manifold.  

3.3. Stability of the synchronization manifold 

Synchronization means the deviations 𝑧𝑖 − 𝑧𝑗 ,   𝑖 ≠ 𝑗, 𝑖, 𝑗 = 1, 2, 3, 4 as 𝑡 → ∞ dies out, that means the solution of the first equation in (9) 

is expected to be exponentially stable, the property that 𝑤 = 0 [23]. We are interested in local synchronization, and thus we consider the 

fundamental matrix solution 𝛷(𝑡; 𝑧0), 𝑧0 ∈ ℳ of the linearization of equation (7) about ℳ defined as �̇� = 𝐴(𝑧(𝑡; 𝑧0))𝑧.  

Let  

 

𝛷(𝑡; 𝑧0) = 𝛷𝑐(𝑡; 𝑧0) ⊕ 𝛷𝑠(𝑡; 𝑧0);  
 

be the invariant splitting where 𝛷𝑐(𝑡; 𝑧0) and 𝛷𝑠(𝑡; 𝑧0) are restrictions of 𝛷(𝑡; 𝑧0) of the tangent bundle vector 𝑇𝑧0
ℳ to the manifold at 

𝑧0 and 𝑁𝑧0
 bundle of vectors normal to the manifold at 𝑧0. 

Linearizing equation (10) along the solution (0, 𝑦0(𝑡)) on the manifold ℳ yields 

 

(
�̇�
�̇�
) = (

𝑘(𝛥1 ⊗ 𝐼4 + 𝐼3 ⊗ 𝐷𝑧𝑔(𝑦0(𝑡)) 0

0 𝐷𝑧𝑔(𝑦0(𝑡))
)(

𝑤
𝑦)                                                                                                                    (11) 

 

Whose solution is of the form 

 

𝑤(𝑡) = 𝛷𝑠(𝑡; 𝑧0) ≈ 𝑒(𝑘𝜆𝜁+𝜆𝑖)𝑡, 𝜁, 𝑖 = 1, 2, 3

𝑦(𝑡) = 𝛷𝑐(𝑡; 𝑡0) ≈ 𝑒𝜆𝑡  
                                                                                                                                         (12) 

 

The invariant manifold ℳ is attracting and stable if the maximum of 𝑘(𝜆𝜁 + 𝜆𝑖) is less than zero. In our case, 𝑚𝑎𝑥(𝜆𝜁) = −4𝑘 and 

𝑚𝑎𝑥(𝜆𝑖) = 1.6361, thus the generalized Lyapunov exponent 

 

𝛼(𝑧0) = 𝑚𝑎𝑥(𝑘𝜆𝜁 + 𝜆𝑖) = −4𝑘 + 1.6361  

 

Giving the optimal coupling strength 𝑘0 = 0.409025. The condition for robustness of synchronization manifold using Lyapunov expo-

nents requires that for 𝛼(𝑧0) < 0, we require (for persistence) that 𝛽(𝑧0) < 1, that is 

 

𝛽(𝑧0) ≔ 𝑙𝑖𝑚
𝑡→∞

𝑠𝑢𝑝 
𝑙𝑛‖𝛷𝑠(𝑡,𝑧0)‖

𝑙𝑛 𝑚(𝛷𝑐(𝑡,𝑧0))
< 1  

 

From calculation, we obtained 𝛽(𝑧0) = 0.1993 < 1 as required. 

4. Numerical solutions and graphical representation 

4.1. Coupled oscillators 

All-to-All coupling configuration described in equation (6) in section 3.1 is presented for four oscillators (𝑛 = 4) each of dimension four 

(𝑑 = 4), making a system of sixteen ordinary differential equations. The choice of  �̇�(𝑡) = 𝑔(𝑧(𝑡)) is defined in equation (5a–d ) for 

Kisumu (k), Homabay (h), Siaya (s) and Busia (b) as; 

 

�̇�𝑘(𝑡) =

[
 
 
 
 
𝑆�̇� = 𝜆𝑆𝑘 − 𝑐𝛽𝜙𝑆𝑘𝐼𝑘 − 𝜇𝑆𝑘

𝐼�̇� = 𝑐𝛽𝜙𝑆𝑘𝐼𝑘 − (𝜇 + 𝜏 + 𝜔)𝐼𝑘
𝑇�̇� = 𝜏𝐼𝑘 − (𝜎 + 𝛿)𝑇𝑘 + 𝜌𝐴𝑘

𝐴�̇� = 𝛿𝑇𝑘 − (𝜉 + 𝜎 + 𝜌)𝐴𝑘 + 𝜔𝐼𝑘]
 
 
 
 

                                                                                                                                        (13a) 
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�̇�ℎ(𝑡) =

[
 
 
 
 
𝑆ℎ̇ = 𝜆𝑆ℎ − 𝑐𝛽𝜙𝑆ℎ𝐼ℎ − 𝜇𝑆ℎ

𝐼ℎ̇ = 𝑐𝛽𝜙𝑆ℎ𝐼ℎ − (𝜇 + 𝜏 + 𝜔)𝐼ℎ
𝑇ℎ̇ = 𝜏𝐼ℎ − (𝜎 + 𝛿)𝑇ℎ + 𝜌𝐴ℎ

𝐴ℎ̇ = 𝛿𝑇ℎ − (𝜉 + 𝜎 + 𝜌)𝐴ℎ + 𝜔𝐼ℎ]
 
 
 
 

                                                                                                                                       (13b) 

 

�̇�𝑠(𝑡) =

[
 
 
 
 
𝑆�̇� = 𝜆𝑆𝑠 − 𝑐𝛽𝜙𝑆𝑠𝐼𝑠 − 𝜇𝑆𝑠

𝐼�̇� = 𝑐𝛽𝜙𝑆𝑘𝐼𝑘 − (𝜇 + 𝜏 + 𝜔)𝐼𝑠
𝑇�̇� = 𝜏𝐼𝑠 − (𝜎 + 𝛿)𝑇𝑠 + 𝜌𝐴𝑠

𝐴�̇� = 𝛿𝑇𝑠 − (𝜉 + 𝜎 + 𝜌)𝐴𝑠 + 𝜔𝐼𝑠]
 
 
 
 

                                                                                                                                          (13c) 

 

�̇�𝑏(𝑡) =

[
 
 
 
 
𝑆�̇� = 𝜆𝑆𝑏 − 𝑐𝛽𝜙𝑆𝑏𝐼𝑏 − 𝜇𝑆𝑏

𝐼�̇� = 𝑐𝛽𝜙𝑆𝑏𝐼𝑏 − (𝜇 + 𝜏 + 𝜔)𝐼𝑏
𝑇�̇� = 𝜏𝐼𝑏 − (𝜎 + 𝛿)𝑇𝑏 + 𝜌𝐴𝑏

𝐴�̇� = 𝛿𝑇𝑏 − (𝜉 + 𝜎 + 𝜌)𝐴𝑏 + 𝜔𝐼𝑏]
 
 
 
 

                                                                                                                                        (13d) 

 

Coupling equation (14a-d) as described in equation (6), and transforming to a form similar to equation (10), yields the system which 

satisfies the criteria for synchronization and persistence. 

4.2. Simulation and graphical presentation 

In order to graphically the dynamics of HIV/AIDS in the four patches, namely Kisumu, Busia, Siaya and Homabay, the following data 

collected from the study area are presented in Table 1 below. 

 
Table 1: Parameter Values from Data Collected from Siaya, Kisumu, Homabay and Busia 

No Symbol Description Value 

1 𝜆 Recruitment rate of normal community 0.01385 

2 𝜇 Natural death rate 0.00124 

3 𝛽 Probability of infectivity given sufficient contact 0.00033 

4 𝜙 Modification parameter describing sexual interaction probability 0.00177 

5 𝑐 Contact rate of susceptible with infective, sufficient to transmit HIV 0.18624 

6 𝜏 Progression rate of Treatment class to HIV patients 0.24 

7 𝜎 Progression rate of HIV patients to AIDS status 0.023 

8 𝜂 Accelerated death rate due to HIV/AIDS 0.00124 

9 𝛿 Accelerated death rate due to HIV infection, while on treatment 0.00496 

10 𝜌 Rate of seeking treatment by AIDS class 0.00354 

11 𝜔 Direct progression to AIDS class from the time of infection 0.003218 

12 𝑝 Perturbation multiplier 0.01 

13 𝑘 Coupling strength [0 , 1] 

14 𝜉 Accelerated death rate due to full blown AIDS status 0.00321 

 

The fourth order numerical integration inbuilt in MATLAB is used to simulate the model in equation (13a – d) and plot trajectories with 

initial conditions (𝑆0, 𝐼0, 𝑇0, 𝐴0) = (300, 0.1, 0.01, 0.01). The dynamics of system (13a – d) are shown in the figure(s) below. Figure 2 

below and subsequent figures will have (a) Top left – shows the orbit where we pick the initial conditions, (b) Top right – shows the 

invariant manifold or the diagonal, (c) Bottom left – shows the four graphs representing the dynamics of each class of disease dynamics, 

and (d) Bottom right – shows the differences of each oscillator versus time.  

Clearly, the first graph (a) shows existence or periodic orbit, which is the characteristic of an oscillator. This is evidenced in all the four 

equations of the SITA model. Notice the smooth diagonal and absence of deviations from the synchronization manifold as depicted in 

figure (b) and (d) respectively. 

4.3. Perturbation and coupling strength 

In biological oscillators under study, perturbation is considered here as the small changes that arise due to changes in the intensity of 

interaction, for example changes in market forces, shift of fish populations, change in tidal waves, among others which contributes to 

more or less interaction of the fisher folk in the four population patches. Now adding a small perturbation of 𝑝 ≪ 1 to uncoupled system 

(𝑘 = 0) yields the system (15) below.  

𝑆�̇� = 𝜆𝑆𝑖 − 𝑐𝛽𝜙𝑆𝑖𝐼𝑖 − 𝜇𝑆𝑖 + 𝑘(−3𝑆𝑖 + ∑ 𝑆j𝑗 ) + p(ai1)Si

Ii̇ = cβϕSiIi − (μ + τ + ω)Ii + k(−3Ii + ∑ Ijj ) + p(ai2)Ii

Ti̇ = τIi − (σ + δ)Ti + ρAi + k(−3Ti + ∑ Tjj ) + p(ai3)Ti

Ai
̇ = δTi − (ξ + σ + ρ)Ai + ωIi + k(−3Ai + ∑ Ajj ) + p(ai4)Ai

                                                                                                            (14) 

 

Where the index i = k, s, b, h  denotes the metapopulations of Kisumu, Siaya, Busia and Homabay, while the elements  aij i =

k, s, b, h;  j = 1,2, 3, 4 represents various vlues of perturbation parameter aij ∈ ℝ. Equation (14) is equivalent to  

 

Zi̇ = k(Δ ⊗ I4)Zi + G(Zi) + p(Zi)  

 

Simulations are run with various values of the coupling strength k ≥ 0 for the purpose of achieving the threshold coupling strength 

which eliminates all deviations from the diagonal.  
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With small perturbation, we notice loss of synchronization manifold (the diagonal) and deviations in the dynamics as shown in Figure 3 

(a, b, d). As the coupling strength is increased gradually, it is found that the chaotic behavior is lost and synchronization is achieved 

again. This is achieved at k ≥ 1.1137 as seen in Figure 4 below. 

 

 

 
Fig. 2: HIV/AIDS Interaction Dynamics of Coupled Oscillators with K = 0, P = 0. 

 

 

 
Fig. 3: HIV/AIDS Interaction Dynamics of Coupled Oscillators with K = 0, P = 1. 

 

(a) 
(b) 

(c) 
(d) 
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Fig. 4: HIV/AIDS Interaction Dynamics of Coupled Oscillators with K = 1.1137, P ≠ 0. 

5. Conclusion and recommendation 

From the analysis above, it is noted that coupled oscillators have a tendency of being synchronized, and a small perturbation gives rise to 

chaotic behavior, which can be levelled off by increasing the coupling strength to k = 1.1137. This can be interpreted as 11% interaction 

of individuals across the metapopulations. It is recommended that a measure of the amount of chaotic deviations is expressed in terms of 

the coupling strength to assess the percentage of interaction. 
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