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Abstract

By means of the three-wave method one can solve some nonlinear
partial differential equations (NLPDEs) in their bilinear forms. When
an NLPDE has no bilinear closed form we can not use this method.
We modify the idea of three-wave method to obtain some analytic solu-
tions for the (2+1)-dimensional Breaking soliton equation by obtaining
a bilinear closed form for it. By comparison of this method and other
analytic methods, like HAM, HTA and EHTA, we can see that the new
idea is very easy and straightforward.
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1 Introduction

Many important phenomena and dynamic processes in physics, mechanics,
chemistry and biology can be represented by nonlinear partial differential equa-
tions. The study of exact solutions of nonlinear evolution equations plays an
important role in soliton theory and explicit formulas of nonlinear partial dif-
ferential equations play an essential role in the nonlinear science. Also, the ex-
plicit formulas may provide physical information and help us to understand the
mechanism of related physical models. Recently, many kinds of powerful meth-
ods have been proposed to find exact solutions of nonlinear partial differential
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equations, e.g., the tanh-method [1], the homogeneous balance method [2], ho-
motopy analysis method [3, 4, 5, 6, 7, 8], the F−expansion method [9], three-
wave method [10, 11, 12], extended homoclinic test approach [13, 14, 15], the
(G′

G
)−expansion method [16] and the exp-function method [17, 18, 19, 20, 21].

Dai et al. [22], suggested the three-wave method for nonlinear evolution
equations. The basic idea of this method applies the Painlevé analysis to make
a transformation as

u = T (f) (1)

for some new and unknown function f .Then we use this transformation in a
high dimensional nonlinear equation of the general form

F (u, ut, ux, uy, uz, uxx, uyy, uzz, · · · ) = 0, (2)

where u = u(x, y, z, t) and F is a polynomial of u and its derivatives. By
substituting (1) in (2), the first one converts into the Hirota’s bilinear form,
which it will solve by taking a special form for f and assuming that the obtained
Hirota’s bilinear form has three-wave solutions, we can specify the unknown
function f . For more details see [22, 23].

2 Soliton Solutions to the (2+1)-dimensional

Breaking Soliton equation

In this paper, we investigate explicit formula of solutions of the following
(2+1)-Dimensional Breaking Soliton equation given in [24]

uxxxy − 2 uy uxx − 4 ux uxy + uxt = 0. (3)

To solve eq. (3) authors in [24] used of N-soliton solution. In this paper, we
use the idea of three-wave method [22, 23], to solve equation (3). By this idea
we obtain some analytic solutions for the problem. The process of our method
is very easy and more simple than the method of Ting et al. [24]. To solve eq.
(3), we introduce a new dependent variable w by

w = −2(ln f)x (4)

where f(x, y, t) is an unknown real function which will be determined. Substi-
tuting eq. (4) into eq. (3), we have

2(ln f)xxt + 2(ln f)xxxxy + 16(ln f)xx (ln f)xxy + 8(ln f)xxx (ln f)xy = 0, (5)

which can be integrated once with respect to x to give

2(ln f)xt + 2(ln f)xxxy + 12(ln f)xx (ln f)xy

+4∂−1
x ((ln f)xx (ln f)xxy − (ln f)xxx (ln f)xy) = 0,

(6)
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Therefore, eq. (6) can be written as

(DxDt + DyD
3
x)f · f + 4 f 2 ∂−1

x (Dx(ln f)xx · (ln f)xy) = 0, (7)

where the D-operator is defined by

Dm
x Dn

t f(x, t) · g(x, t) =

( ∂
∂x1

− ∂
∂x2

)m( ∂
∂t1
− ∂

∂t2
)n[f(x1, t1)g(x2, t2)] |x1=x2=x, t1=t2=t .

We suppose that
∂−1

x (Dx(ln f)xx · (ln f)xy) = 0,

then eq. (7) reduces to

(DxDt + DyD
3
x)f · f = 0, (8)

Now we suppose the solution of eq. (8) as

f (x, y, t) = e−ξ1 + δ1 cos (ξ2) + δ2 cosh (ξ3) + δ3 eξ1 (9)

where
ξi = aix + biy + cit, i = 1, 2, 3 (10)

and ai, ci, δi are some constants to be determined later. Substituting eq.
(9) into eq. (8), and equating all the coefficients of sin (a2 x + b2 y + c2 t),
cos (a2 x + b2 y + c2 t), sinh (a3 x + b3 y + c3 t) and cosh (a3 x + b3 y + c3 t) to
zero, we get the set of algebraic equation for ai,bi,ci, δi, (i = 1, 2, 3)

−3 a1
2 b1 a3 − a1

3 b3 − 3 b3a3
2 a1 − a3

3 b1 − c3 a1 − c1 a3 = 0,

3 a1 b1 a3
2 + c1 a1 + a3 c3 + a1

3b1 + b3 a3
3 + 3 b3 a3 a1

2 = 0,

−a2 c2 + b2 a2
3 + a1

3 b1 + c1 a1 − 3 b2 a2 a1
2 − 3 a1 b1a2

2 = 0,

a1
3 b2 + c2 a1 + 3 a1

2 b1 a2 + c1 a2 − a2
3 b1 − 3 b2 a2

2 a1 = 0,

−a2
3b3 + c2 a3 + c3 a2 + a3

3b2 − 3 b2a2
2a3 + 3 b3a3

2a2 = 0,

a3 c3 + b3a3
3 − a2 c2 − 3 b3 a3a2

2 + b2 a2
3 − 3 b2 a2a3

2 = 0,

16 a1
3b1δ3 + 4 c1 a1δ3 − δ1

2c2 a2 + δ2
2c3 a3 + 4 δ1

2a2
3b2 + 4 δ2

2a3
3b3 = 0

(11)
Solving the system of equations (11) with the aid of Maple, we obtain the
following cases:
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2.1 CaseI:

a1 = a3, a2 = 0, b1 = −b3, b3 = − c3

a3
2
,

c1 = −c3, c2 = −a3
2 b2, δ1 = 0, δ3 =

δ2
2

4
,

(12)

for some arbitrary real constants a3 ,c3 ,b2 and δ2. Substitute eq. (12) into eq.
(4) with eq. (9), we obtain the solution as

f (x, y, t) = e−ξ1 + δ2 cosh (ξ2) + δ3e
ξ1

and

u (x, y, t) =
−2(−a3e

−ξ1 + δ2 sinh (ξ2) a3 + δ3a3e
ξ1)

e−ξ1 + δ2 cosh (ξ2) + δ3eξ1
(13)

for

ξ1 = a3x− b3y − c3t , ξ2 = a3x− c3

a3
2
y + c3t , δ3 =

1

4
δ2

2

If δ3 > 0, then we obtain the exact breather cross-kink solution

u (x, y, t) =
−2 a3

(
2
√

δ3 sinh (ξ1 − θ) + δ2 sinh (ξ2)
)

2
√

δ3 cosh (ξ1 − θ) + δ2 cosh (ξ2)

for

θ =
1

2
ln(δ3) , δ3 =

1

4
δ2

2

If δ3 < 0, then we obtain the exact breather cross-kink solution

u (x, y, t) = −2
a3

(
2
√−δ3 cosh (ξ1 − θ) + δ2 sinh (ξ2)

)

2
√−δ3 sinh (ξ1 − θ) + δ2 cosh (ξ2)

for

θ =
1

2
ln(−δ3) , δ3 =

1

4
δ2

2

2.2 CaseII:

a1 = a3, b1 = b3, c1 = c3 = −4 b3a3
2, δ1 = 0

c2 = −1
2

b3 (a2
4 + 6 a3

2a2
2 − 3 a3

4)

a2a3

, b2 = −1

2

b3(a2
2+3 a3

2)
a2a3

(14)
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for some arbitrary real constants a3, a2, b3, δi, i = 1, 2. Substitute eq. (14) into
eq. (4) with eq. (9), we obtain the solution as follows

f (x, y, t) = e−ξ1 + δ2 cosh (ξ1) + δ3e
ξ1

and

u (x, y, t) =
−2(−a3e

−ξ1 + δ2 sinh (ξ1) a3 + δ3a3e
ξ1)

e−ξ1 + δ2 cosh (ξ1) + δ3eξ1
(15)

for

ξ1 = a3x + b3y − 4 b3a3
2t

If δ3 > 0 then we obtain the exact breather cross-kink solution

u (x, y, t) =
−2 a3

(
2
√

δ3 sinh (ξ1 − θ) + δ2 sinh (ξ1)
)

2
√

δ3 cosh (ξ1 − θ) + δ2 cosh (ξ1)

for

θ =
1

2
ln(δ3)

If δ3 < 0 then we obtain the exact breather cross-kink solution

u (x, y, t) =
−2 a3

(
2
√−δ3 cosh (ξ1 − θ) + δ2 sinh (ξ1)

)

−2
√−δ3 sinh (ξ1 − θ) + δ2 cosh (ξ1)

for

θ =
1

2
ln(−δ3)

2.3 CaseIII:

a1 = a3, a2 = 0, b1 = −b3, b3 = − c3

a3
2
,

c1 = −c3, c2 = −a3
2 b2, δ1 = 0, δ3 =

δ2
2

4
,

(16)

for some arbitrary real constants a3 ,c3 ,b2 and δ2. Substitute eq. (16) into eq.
(4) with eq. (9), we obtain the solution as

f (x, y, t) = e−ξ1 + δ2 cosh (ξ2) + δ3e
ξ1

and

u (x, y, t) =
3

2

−a3e
−ξ1 + δ2 cosh (ξ2) a3 + δ3a3e

ξ1

e−ξ1 + δ2 sinh (ξ2) + δ3eξ1
(17)
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for

ξ1 = a3x− b3y − c3t , ξ2 = a3x− c3

a3
2
y + c3t , δ3 =

1

4
δ2

2

If δ3 > 0, then we obtain the exact breather cross-kink solution

u (x, y, t) =
3

2

a3

(
2
√

δ3 cosh (ξ1 − θ) + δ2 cosh (ξ2)
)

2
√

δ3 sinh (ξ1 − θ) + δ2 sinh (ξ2)

for

θ =
1

2
ln(δ3) , δ3 =

1

4
δ2

2

If δ3 < 0, then we obtain the exact breather cross-kink solution

u (x, y, t) =
3

2

a3

(
2
√−δ3 sinh (ξ1 − θ) + δ2 cosh (ξ2)

)

2
√−δ3 cosh (ξ1 − θ) + δ2 sinh (ξ2)

for

θ =
1

2
ln(−δ3) , δ3 =

1

4
δ2

2

2.4 CaseIV:

a1 = a3, b1 = b3, c1 = c3 = −4 b3a3
2, δ1 = 0

c2 = −1
2

b3 (a2
4 + 6 a3

2a2
2 − 3 a3

4)

a2a3

, b2 = −1

2

b3(a2
2+3 a3

2)
a2a3

(18)

for some arbitrary real constants a3, a2, b3, δi, i = 1, 2. Substitute eq. (18) into
eq. (4) with eq. (9), we obtain the solution as follows

f (x, y, t) = e−ξ1 + δ2 cosh (ξ1) + δ3e
ξ1

and

u (x, y, t) =
3

2

−a3e
−ξ1 + δ2 cosh (ξ1) a3 + δ3a3e

ξ1

e−ξ1 + δ2 sinh (ξ1) + δ3eξ1
(19)

for
ξ1 = a3x + b3y − 4 b3a3

2t

If δ3 > 0 then we obtain the exact breather cross-kink solution

u (x, y, t) =
3

2

a3

(
2
√

δ3 cosh (ξ1 − θ) + δ2 cosh (ξ1)
)

2
√

δ3 sinh (ξ1 − θ) + δ2 sinh (ξ1)
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for

θ =
1

2
ln(δ3)

If δ3 < 0 then we obtain the exact breather cross-kink solution

u (x, y, t) =
3

2

a3

(
2
√−δ3 sinh (ξ1 − θ) + δ2 cosh (ξ1)

)

−2
√−δ3 cosh (ξ1 − θ) + δ2 sinh (ξ1)

for

θ =
1

2
ln(−δ3)

3 Conclusion

In this paper, using the three-wave solution method we obtained some explicit
formulas of solutions for the (3+1)-dimensional Soliton equation. Three-wave
solution method with the aid of a symbolic computation software like Maple
or Mathematica is an easy and straightforward method which can be apply
to other nonlinear partial differential equations. It must be noted that, all
obtained solutions have checked in the (3+1)-dimensional Soliton equation.
All solutions satisfy in the equations.

References

[1] A.M. Wazwaz,The tanh method: solitons and periodic solutions for
the Dodd-Bullough-Tzikhailov and the Tzitzeica-Dodd-Bullough equa-
tions,Chaos, Solitons and Fractals, 25 (2005) 55–63.

[2] Z. Xiqiang, W. Limin, S. Weijun, The repeated homogeneous balance
method and its applications to nonlinear partial differential equations,
Chaos, Solitons and Fractals, 28(2) (2006) 448–453.

[3] S.J. Liao, Beyond Perturbation: Introduction to the homotopy analysis
method, Chapman & Hall/CRC Press, Boca Raton, (2003).

[4] S.J. Liao, On the homotopy analysis method for nonlinear problems, Appl.
Math. Comput., 147 (2006) 499–513.

[5] S.J. Liao, A general approach to get series solution of non-
similarity boundary-layer flows, Commun. Nonlinear Sci. Numer. Simul.,
14(5)(2009) 2144–2159.

[6] M.T. Darvishi, F. Khani, A series solution of the foam drainage equation,
Comput. Math. Appl., 58 (2009) 360–368.



148 Somayeh Arbabi Mohammad Abadi, Maliheh Najafi

[7] A. Aziz, F. Khani, M.T. Darvishi, Homotopy analysis method for vari-
able thermal conductivity heat flux gage with edge contact resistance,
Zeitschrift fuer Naturforschung A, 65a(10)(2010) 771–776.

[8] F. Khani, M.T. Darvishi, R.S.R. Gorla, Analytical investigation for cool-
ing turbine disks with a non-Newtonian viscoelastic fluid, Comput. Math.
Appl., 61(7)(2011) 1728–1738.

[9] E. Fan, Z. Jian, Applications of the Jacobi elliptic function method to
special-type nonlinear equations, Phys. Lett. A, 305(6) (2002) 383–392.

[10] M.T. Darvishi, Maliheh Najafi, Mohammad Najafi, Exact three-wave so-
lutions for high nonlinear form of Benjamin-Bona-Mahony-Burgers equa-
tions, International Journal of Mathematical and Computer Sciences,
6(3)(2010) 127–131.

[11] M.T. Darvishi, M. Najafi, Some exact solutions of the (2+1)-dimensional
breaking soliton equation using the three-wave method, International
Journal of Computational and Mathematical Sciences, 6(1)(2012)13–16.

[12] M.T. Darvishi, Maliheh Najafi, Mohammad Najafi, New exact solutions
for the (3+1)-dimensional breaking soliton equation, International Jour-
nal of Information and Mathematical Sciences, 6(2)(2010) 134–137.

[13] M.T. Darvishi, Maliheh Najafi, Mohammad Najafi, New application of
EHTA for the generalized (2+1)-dimensional nonlinear evolution equa-
tions, International Journal of Mathematical and Computer Sciences,
6(3)(2010) 132–138.

[14] M.T. Darvishi, M. Najafi, A modification of extended homoclinic test
approach to solve the (3+1)-dimensional potential-YTSF equation, Chin.
Phys. Lett., 28(4)(2011) 040202.

[15] M.T. Darvishi, M. Najafi, Some complexiton type solutions of the (3+1)-
dimensional Jimbo-Miwa equation, International Journal of Computa-
tional and Mathematical Sciences, 6(1)(2012) 25–27.

[16] M.T. Darvishi, Maliheh Najafi, Mohammad Najafi, Traveling wave so-
lutions for the (3+1)-dimensional breaking soliton equation by (G′

G
)-

expansion method and modified F -expansion method, International Jour-
nal of Computational and Mathematical Sciences, 6(2)(2012) 64–69.

[17] J.H. He, M.A. Abdou, New periodic solutions for nonlinear evolution
equations using Exp-function method, Chaos, Solitons and Fractals, 34
(2007) 1421–1429.



Soliton solutions for (2+1)-dimensional BSE: Three Wave Method 149

[18] F. Khani, S. Hamedi-Nezhad, M.T. Darvishi, S.-W. Ryu, New solitary
wave and periodic solutions of the foam drainage equation using the Exp-
function method, Nonlin. Anal.: Real World Appl., 10 (2009) 1904–1911.

[19] B.-C. Shin, M.T. Darvishi, A. Barati, Some exact and new solutions of
the Nizhnik-Novikov-Vesselov equation using the Exp-function method,
Comput. Math. Appl., 58(11/12) (2009) 2147–2151.

[20] F. Khani, M.T. Darvishi, A. Farmani, L. Kavitha, New exact solutions
of coupled (2+1)-dimensional nonlinear system of Schrödinger equations,
ANZIAM Journal, 52 (2010) 110–121.

[21] X.H. Wu, J.H. He, Exp-function method and its application to nonlinear
equations, Chaos, Solitons and Fractals, 38(3)(2008) 903–910.

[22] Z.-D. Dai, S.-Q. Lin, D.-L. Li, G. Mu, The three-wave method for nonlin-
ear evalution equations, Nonl. Sci. Lett. A, 1(1) (2010)77–82.

[23] C.-J. Wang, Z.-D. Dai, L. Liang, Exact three-wave solution for higher
dimensional KDV-type equation, Appl. Math. Comput., 216 (2010.) 501–
505.

[24] S. Ting, G.X. Guo, M.Y. Ling, Wronskian form of N-Soliton solution for
the (2+1)-dimensional breaking soliton equation, Chin. Phys. Lett., 24(2)
(2007) 305–307.


