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Abstract 
 

This paper considers a real-world application of a recently presented alternative form of the Gelfand-Levitan equation. Here is considered 

the case of potential in the plasma above silicon during the etching process. It is shown that although standard methods have significant 

challenges, the alternative form of the Gelfand-Levitan equation gives a straightforward way to determine the reflection coefficient from 

an assumed potential. 
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1. Introduction 

The problem of modelling the potential in the plasma above silicon during the etching process is of interest for obvious 

reasons. This paper presents a method to determine this potential structure using recently published results. The method used 

here is not what would traditionally be done, so some background is important. First, this paper looks at the experimental 

structure of the etching process and the assumed structure of the potential used by experimentalists. This background discus-

sion includes a survey of theoretical techniques commonly used for analysis and why their application here is problematic. 

Then, a different approach is presented using recently developed methods that give the expected reflection coefficient for the 

potential assumed by the experimentalists. This potential’s form is general enough that verification through a scattering ex-

periment is reasonable. 

2. Background on plasma etching and theoretical methods 

An interesting problem arises in the fabrication of semi-conductors.[1] An instantaneous potential difference is set up between 

two plates with a low-density plasma between the plates. The problem is to determine the potential in the region between the 

plates, so that the etching process can be controlled and predicted.  

This could be done by trying to solve the dynamics of the plasma, but this is probably not possible with current methods. 

Further, the calculations which can be performed make assumptions, such as thermal equilibrium, lack of instabilities, invis-

cid plasmas, etc., which may not be applicable. 

What is desired is a time averaged electric potential, so a model will be used which allows direct measurement of the potential 

using inverse scattering methods. [2], [3] This corresponds to electro-magnetic wave propagation in the plasma region. 

Experimentalists believe [1] that a constant plus a sine function, probably with a phase, is a good approximation to the 

potential between the plates. Since matter boils off at what is defined as x = 0, something other than a sine function will be 

needed at x = e, where e is a small distance above the plate. A contribution of ld(x-e) is therefore added to the sine function 

as the simplest perturbation which leads to significant modifications of the spectral data and reflection coefficient for the 

model. The sine function part of the potential is: 

 

Vo = −a + bsin (
πx

L
+ c)  0 ≤ x ≤ L                                                                                                                                     (1a) 

 

where a, b and c are constants. Vo is zero elsewhere. The modified potential for this model is then: 

 

V1 = ld(x-e) + Vo                                                                                                                                                                   (1b) 
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Following the methods of previous authors [4-7], Maxwell’s equations for a linear, isotropic, inhomogeneous, medium are 

now considered. For the case without sources or polarization changing processes, Maxwell’s equations can be modelled with 

transverse solutions by the equations: 

 

[∇2 + k2ϵT(x⃗ )]u(x⃗ ) = 0                                                                                                                                                       (2a) 

 

[∇2 −
1

c2 ∂t
2]U(x, t⃗⃗⃗⃗  ⃗) = 0                                                                                                                                                          (2b) 

 

where ϵT(x⃗ ) is the inhomogeneous dielectric function and u & U are the magnitudes of the electric field in the fixed polari-

zation direction. 

When there are no magnetic fields present, and the electric field density is low enough that electron-electron collisions are 

negligible, the dielectric function may be approximated by: 

 

ϵT(x⃗ ) =  k2 [1 −
ϵR(x⃗ )

k2 ] =  k2 − V(x⃗ )                                                                                                                                      (3) 

 

where ϵR(x⃗ ) is the reduced dielectric function and V(x⃗ ) is the spatial energy distribution of electrons. 

Substitution of expression (3) into equation (2b) yields the Schrodinger equation: 

 

[∇2 + k2 − V(x⃗ )]u(x⃗ ) = 0                                                                                                                                                    (4a) 

 

And the plasma wave equation: 

 

[∇2 −
1

c2 ∂t
2 − V(x⃗ )]U(x, t⃗⃗⃗⃗  ⃗) = 0                                                                                                                                             (4b) 

 

There has been important work done with equation (4a) by Newton [8], who has done rigorous studies of the Marchenko 

inverse problem, Since this approach requires a five variable data set to construct a three variable potential, Cheney et al [9, 

10] and Defacio et al [7] have explored the time domain, which is represented by equation (4b). They find related inversions 

which require only a three variable data set for a more restricted class of potentials. However, if the plasma is transversely 

homogeneous, (i.e., ϵ(x⃗ ) = ϵ(x1), where x1 is a single cartesian coordinate) then the full structure of equations (4a) and (4b) 

is not required since ∇2 reduces to d2/dx1
2. In this case, the plasma wave equation reduces to the case studied by Jordan and 

Ahn [5]: 

 

[d2/dx1
2 + k2 − V(x1)]φ(x1, k) = 0                                                                                                                                      (5) 

 

The rigorous structure if (5) has been studied extensively by Faddeev [11], Newton [12] and especially by Dieft et al [13] 

and Sabatier [14]. 

Calculational aspects of equation (5) have been carried out by Jordan and Ahn [5]. However, like Sabatier [14], all of their 

calculations are for potentials with rational coefficients. Thus, they are not applicable in equation (1). 

With the previous assumptions, one model for an electromagnetic wave propagation through a plasma is  

 

[d2/dx1
2 + k2 − V1(x1)]φ(x1, k) = 0                                                                                                                                    (6) 

 

Where V1 is the potential given in equation (1).  

3. Recent work and applications to plasma etching 

Recent work presented in this journal [15], looked at an alternative method of analysis using assumed separable characteris-

tics in the Gelfand-Levitan equation. In summary, this paper found that the relationship between the reflection coefficient, 

R(k), and the potential, V(r) can be expressed as: 

 
1

2π
∫ R(k)e−ik(r+s)dk = 

+∞

−∞

d

dr
exp{ −

1

2
 ∫ ∫ V(s′)ds′s

0
ds

r

0
}                                                                                                      (7) 

 

This can be used to find the reflection coefficient for the potential of equation (1a). To do this equation (7) is first rewritten 

as: 

 

𝑅(𝑘) = ∫ 𝑑𝑟 𝑒2𝑖𝑘𝑟+∞

−∞

𝑑

𝑑𝑟
𝑒𝑥𝑝{ −

1

2
 ∫ ∫ 𝑉(𝑠′)𝑑𝑠′𝑠

0
𝑑𝑠

𝑟

0
}  

 

Applying the form of the potential form (1a) gives: 

 

𝑅(𝑘) = ∫ 𝑑𝑟 𝑒2𝑖𝑘𝑟+∞

−∞

𝑑

𝑑𝑟
𝑒𝑥𝑝{ −

1

2
 ∫ ∫ (−𝑎 + 𝑏𝑠𝑖𝑛(

𝜋𝑠′

𝐿
+ 𝑐)) 𝑑𝑠′𝐿

0
𝑑𝑠

𝑟

0
}                                                                                (8) 
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The right had side can be evaluated, and yields: 

 

𝑅(𝑘) =  −𝑧2/(𝑧2 + 𝑘2)                                                                                                                                                          (9) 

 

Where: 

 

𝑧 = −𝑎𝐿 −
𝑏𝐿

𝜋
𝑐𝑜𝑠(𝜋 + 𝑐) −

𝑏𝐿

𝜋
𝑐𝑜𝑠 (𝑐)  

 

This r(k) is the reflection coefficient that an experimentalist should look for to determine the general parameters of Vo in 

equation (1a). 

It is important to note that V1 is probably the actual potential, so a delta function needs to be added to the potential of equation 

(8), as mentioned earlier. This reflection coefficient can still be determined analytically. 

4. Conclusion 

This paper presents an application to a recently published alternative form of the Gelfand-Levitan equation. Here presented 

was how this alternative form gives a much more direct method for finding the reflection coefficient for a real-world potential 

in the case of a plasma above silicon in the etching process. 
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