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Abstract 
 

This paper presents an alternative form of the Gelfand-Levitan Equation. By assuming a particular form of the spectral measure function 

and the potential kernel, an equation relating the potential and the reflection coefficient is found. This equation has an advantage over the 

Gelfand-Levitan Equation in that it can be solved without using iterative methods. The validity of the equation is demonstrated by looking 

at a singular and non-singular potential. 
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1. Introduction 

A potential V(r) can be determined from the reflection coefficient R(k) of a scattered wave using the Gelfand-Levitan equation [1-3]: 

 

K(r, s) + G(r, s) + ∫ K(r, t)G(t, s)dt = 0
r

−∞
                                                                                                                                                  (1) 

 

Where G(r,s), the spectral measure function, is the Fourier transform of the reflection coefficient R(k): 

 

G(r, s) =
1

2π
∫ R(k)e−ik(r+s)dk +  Bound State Terms

+∞

−∞
                                                                                                                           (2) 

 

And K(r,s) is related to the potential by: 

 

V(r) = −2
dK(r,r)

dr
.                                                                                                                                                                                          (3) 

 

Finding V(r) is done by taking the Fourier transform of R(k) to get G(r,s) and then solving (1) for K(r,s). Then (3) can be used to find the 

potential. The challenge arises in solving (1). This is typically done by successive iteration [4]. 

This paper first reviews this method of successive iteration, noting the challenges of the solution. Then an alternative solution to the 

Gelfand-Levitan Equation is presented. The validity of this new solution is then checked by considering a specific case.  

2. Gelfand-levitan equation solution by successive iteration 

To solve the Gelfand-Levitan Equation by using successive iteration, one assumes that R(k) in equation (2) is known. Equation (2) then 

gives G(r,s). Now, with G(r,s) known the challenge is to find K(r,s) in terms of G(r,s). This is done by first rewriting equation (1) as: 

 

K(r, s) = −G(r, s) − ∫ K(r, t)G(t, s)dt
r

−∞
                                                                                                                                                      (4) 

 

One can then use this equation to identify K(r,t) as: 

 

K(r, t) = −G(r, t) − ∫ K(r, t′)G(t′, t)dt′
r

−∞
                                                                                                                                                    (5) 

 

Putting this expression in for K(r,t) in equation (4) yields: 

 

K(r, s) = −G(r, s) + ∫ G(r, t)G(t, s)dt −
r

−∞ ∫ G(r, t) ∫ K(t, t′)G(t′, s)du
r

−∞

r

−∞
                                                                                              (6) 

 

Equation (5) then is used again repeatedly on the right-hand side of (6) to give: 
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K(r, s) = −G(r, s) + ∫ G(r, t)G(t, s)dt −

r

−∞ ∫ G(r, t) ∫ G(t, u)G(u, s)du + continued terms of iteration
r

−∞

r

−∞
                                         (7) 

 

Since G(r,s) is known, the successive terms on the right hand side of equation (7) can be determined. One then hopes to find a convergence 

of the terms such that a general function can be found, or more commonly, that the terms become small enough that above a particular 

order they can be ignored. 

The problem here is obviously the complexity of the right-hand side of equation (7). R(k) and, therefore, G(r,s) are typically not simple 

functions and even carrying out the integrals in equation (7) can be difficult. For many cases only the roughest of approximations can be 

obtained by this method.  

3. Alternative form of the Gelfand Levitan equation 

As an alternative to successive approximation, it is assumed that K(r,s) and G(r,s) have the forms: 

 

K(r, s) = g(s)F(r)                                                                                                                                                                                         (8) 

 

G(r, s) = g(s)L(r)                                                                                                                                                                                         (9) 

 

Equation (4) can be rewritten as: 

 

G(r, s) = −K(r, s) − ∫ K(r, t)G(t, s)dt
r

−∞
                                                                                                                                                    (10) 

 

Applying conditions (8) and (9) gives: 

 

𝑔(𝑠)𝐿(𝑟) = −𝑔(𝑠)𝐹(𝑟) − 𝑔(𝑠)𝐹(𝑟) ∫ 𝑔(𝑡)𝐿(𝑡)𝑑𝑡
𝑟

−∞
                                                                                                                               (11) 

 

Letting s = r then gives: 

 

𝑔(𝑟)𝐿(𝑟) = −𝑔(𝑟)𝐹(𝑟) − 𝑔(𝑟)𝐹(𝑟) ∫ 𝑔(𝑡)𝐿(𝑡)𝑑𝑡
𝑟

−∞
                                                                                                                               (12) 

 

Using expressions (8) and (9) this can be rewritten as: 

 

𝐺(𝑟, 𝑟) = −𝐾(𝑟, 𝑟) − 𝐾(𝑟, 𝑟) ∫ 𝐺(𝑡, 𝑡)𝑑𝑡
𝑟

−∞
                                                                                                                                               (13) 

 

There are two methods of solving this integral equation. The first method is to iterate equation (13) much as was done in the previous 

section. This yields: 

 

𝐺(𝑟, 𝑟) = − 𝐾(𝑟, 𝑟)  

 

+ 𝐾(𝑟, 𝑟) ∫ 𝐾(𝑡, 𝑡)𝑑𝑡
𝑟

−∞
  

 

− 𝐾(𝑟, 𝑟) ∫ 𝐾(𝑡, 𝑡)𝑑𝑡
𝑟

−∞
∫ 𝐾(𝑡′, 𝑡′)𝑑𝑡′

𝑡

−∞
  

 

+ 𝐾(𝑟, 𝑟) ∫ 𝐾(𝑡, 𝑡)𝑑𝑡
𝑟

−∞ ∫ 𝐾(𝑡′, 𝑡′)𝑑𝑡′
𝑡

−∞ ∫ 𝐾(𝑡", 𝑡")𝑑𝑡"
𝑡′

−∞
  

 

+ 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑖𝑣𝑒 𝑡𝑒𝑟𝑚𝑠                                                                                                                                                                                   (14) 

 

To simplify this, let X(t) be defined by: 

 

𝑋(𝑡) = ∫ 𝐾(𝑡′, 𝑡′)𝑑𝑡′
𝑡

−∞
                                                                                                                                                                                (15) 

 

And so, 

 

𝐾(𝑠, 𝑠) = 𝑑𝑋/𝑑𝑠                                                                                                                                                                                         (16) 

 

Using (15) and (16), it is straightforward to show that: 

 

∫ 𝐾(𝑡, 𝑡)𝑑𝑡
𝑟

−∞ ∫ 𝐾(𝑡′, 𝑡′)𝑑𝑡′
𝑡

−∞
=  𝑋2/2!                                                                                                                                                      (17) 

 

Similar expressions can be found for the other terms of equation (14) giving: 

 

𝐺(𝑟, 𝑟) = − 𝐾(𝑟, 𝑟) { 1 −  𝑋(𝑟) +
𝑋2

2!
−

𝑋3

3!
+ ℎ𝑖𝑔ℎ𝑒𝑟 𝑜𝑟𝑑𝑒𝑟 𝑡𝑒𝑟𝑚𝑠 }   

 

 = − 𝐾(𝑟, 𝑟) 𝑒𝑥𝑝{ − 𝑋(𝑟)}  

 

 = − 𝐾(𝑟, 𝑟) 𝑒𝑥𝑝{ − ∫ 𝐾(𝑡, 𝑡)𝑑𝑡
𝑟

−∞
}                                                                                                                                                           (18) 
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Which can be rewritten as: 

 

𝐺(𝑟, 𝑟) =
𝑑

𝑑𝑟
𝑒𝑥𝑝{ − ∫ 𝐾(𝑡, 𝑡)𝑑𝑡

𝑟

−∞
}                                                                                                                                                            (19) 

 

Now using the relationships (2) and (3) gives: 

 
1

2𝜋
∫ 𝑅(𝑘)𝑒−𝑖𝑘(𝑟+𝑠)𝑑𝑘 = 

+∞

−∞

𝑑

𝑑𝑟
𝑒𝑥𝑝{ −

1

2
 ∫ ∫ 𝑉(𝑡′)𝑑𝑡′𝑠

−∞
𝑑𝑡

𝑟

−∞
}                                                                                                                 (20) 

 

This result gives a much more direct path relating the reflection coefficient, R(k), and the potential, V(r). 

As an alternative method of deriving equation (20), equation (13) can be rewritten as: 

 

𝐺(𝑟, 𝑟) = −𝐾(𝑟, 𝑟){ 1 + ∫ 𝐺(𝑡, 𝑡)𝑑𝑡}
𝑟

−∞
                                                                                                                                                     (21) 

 

This can further be rewritten as: 

 

−𝐾(𝑟, 𝑟) =
𝑑

𝑑𝑟
𝐿𝑛{ 1 + ∫ 𝐺(𝑡, 𝑡)𝑑𝑡}

𝑟

−∞
                                                                                                                                                        (22) 

 

Solving for the bracketed term in equation (21) and applying that to this equation yields: 

 

−𝐾(𝑟, 𝑟) =
𝑑

𝑑𝑟
𝐿𝑛{ −

𝐺(𝑟,𝑟)

𝐾(𝑟,𝑟)
}  

 

Solving this for G(r,r) gives: 

 

𝐺(𝑟, 𝑟)  = − 𝐾(𝑟, 𝑟) 𝑒𝑥𝑝{ − ∫ 𝐾(𝑡, 𝑡)𝑑𝑡
𝑟

−∞
}                                                                                                                                              (23) 

 

Which agrees with the first method. 

4. Validity of alternative form 

To check the validity of equation (20), two potentials will be checked, one singular and one non-singular. As an example of a singular 

potential consider the delta function potential: 

 

𝑉(𝑟) = 𝐴 𝛿(𝑟 +  𝛼)                                                                                                                                                                                     (24) 

 

It is well known that the reflection coefficient for this potential is: 

 

𝑅(𝑘) =  −𝑖𝐴 𝑒𝑥𝑝{−2𝑖𝛼𝑘} /2(𝑘 +
𝑖𝐴

2
)                                                                                                                                                         (25) 

 

Putting this R(k) into the left-hand side of equation (20) and using contour integration gives: 

 

−
𝐴

2
 𝑛(𝑟 +  𝛼) 𝑒𝑥𝑝 {−

𝐴(𝑟+ 𝛼)

2
}                                                                                                                                                                     (26) 

 

Where 𝑛(𝑟 +  𝛼) = 1 𝑤ℎ𝑒𝑛 𝑟 ≥ −𝛼 

 

= 0 𝑤ℎ𝑒𝑛 𝑟 < −𝛼  

 

Now considering the right-hand side of equation (20), one has: 

 
𝑑

𝑑𝑟
𝑒𝑥𝑝{ −

𝐴

2
 ∫ ∫ 𝛿(𝑡′ + 𝛼)𝑑𝑡′𝑠

−∞
𝑑𝑡

𝑟

−∞
}  

 

Which is easily shown to be in agreement with equation (26). 

In order to complete the check of validity of equation (20), a non-singular potential need to be considered. For this purpose, one can look 

at the Eckart potential: 

 

𝑉(𝑟) = −2(𝑏 − 𝑎)
𝑒−𝑏𝑠

1+𝛽𝑒−2𝑏𝑠 𝑠𝑖𝑛ℎ (𝑏𝑠)                                                                                                                                                        (27) 

 

G(r,r) for this potential is given by Chadan and Sabatier [3] as: 

 

𝐺(𝑟, 𝑟) = (𝑏 − 𝑎)𝑒−𝑎𝑟 𝑠𝑖𝑛ℎ(𝑏𝑟) /𝑏                                                                                                                                                           (28) 

 

Using expression (27) in the right-hand side of (20) gives this same result, thus completing the validity check of equation (20). 
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5. Conclusion 

Solving the Gelfand-Levitan Equation typically requires a tedious process of successive iteration. In addition, approximation methods are 

usually required. This paper presents an equivalent relationship between the reflection coefficient and the potential, as in the Gelfand-

Levitan equation, that does not require the use of iteration. Examples of the validity of this relationship were given. 
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