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Abstract

False codling moth (FCM) is regarded as the most significant indigenous pest. Over 70 host plants are attacked by larval, many of which
are horticultural crops with fruit, pods, and berries, such as beans, grapes, citrus, capsicum, avocado, guava, pomegranate, and ornamental
plants. They eat macadamia nuts, cotton, tea, and a variety of other wild plants as well. Female moths are drawn to the flower heads as
well as other parts of the plant, making this pest especially problematic on roses grown for cut flowers. Therefore, controlling this pest is
of importance. For more effective control, pheromone traps are used to capture males attracted to the artificial pheromone. In this study,
mathematical model of FCM control using pheromone trap is developed. The model, is based on biological and ecological assumptions,
and is governed by an ODE system. The coexistence and pest free equilibria is determined through a theoretical analysis. The theoretical
analysis of the model allows for the identification of pheromone threshold values that are practical for field applications. We show that there
is a threshold above which the global asymptotic stability of the trivial equilibrium is guaranteed. Finally, we demonstrate the theoretical
results through numerical experiments.
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1. Introduction

False codling moth (FCM), (Thaumatotibia leucotreta) is considered the most significant indigenous pest due to its potential economic
impact on many horticultural and agricultural crops [22]. larval attack over 70 host plants, many of which are horticultural crops with
fruit, pods, and berries, such as beans, grapes, citrus, capsicum, avocado, guava, pomegranate, and ornamental plants. They also feed
on macadamia nuts, cotton, tea, and a variety of other wild plants. Female moths are attracted to lay their eggs on the flower heads as well as
other parts of the plant, making this pest particularly problematic on roses grown for cut flowers [52].

Consequently, FCM is a major threat to food security, supply of raw material for manufacturing, foreign exchange and employment in many
countries [10;11]. FCM is widely distributed across Africa and has been reported in over 40 Africa countries , including Kenya [42;49].
The FCM is not considered to be established outside of Africa [52]. However, it is commonly intercepted during quarantine inspections in
Europe and United States [21].

Due to the presence of FCM, rose shipments from Kenya to Europe have been intercepted in recent years. If a single living FCM is discovered
within a consignment at any stage of development, the entire consignment is rejected [26]. This is due to FCM being on the European
Commission’s (EC) list of harmful organisms that should be regulated as quarantine pests in order to prevent its introduction into Europe,
where it could harm a variety of outdoor and greenhouse crops [36; 34]. As a result, because it is endemic to Sub-Saharan Africa, FCM is a
phytosanitary concern and a barrier to export in most international markets [25; 36 ].

On the other hand, according to European Union (EU) plant health (phytosanitary) regulations (EU 2016/2031), the false codling moth is
now a quarantine pest on all crops. Special measures have been put in place for crops that are known entry points for serious pests that could
harm Europe’s agriculture or environment. These measures include stringent new requirements for rose exports in order to prevent the spread
of FCM into the EU [26]. FCM interceptions on Kenyan roses have been extremely high (36 in 2018, 36 in 2019, and 24 up to June 2020).
This high rate of interceptions has been attributed to increased inspection levels, which have increased from 5% in 2011 to 10% now. As a
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result of the numbers observed in the previous three years, a drastic increase to 50% or even 100% checks for Kenyan roses is expected in
2021. This will be determined by the end of 2020 [26].

Planning efficient and cost-effective FCM control is a real challenge, which explains why most experimental FCM control strategies fail
[4]. This is because certain parameters can be changed to make biological systems unstable or stable, i.e., if their values pass through
bifurcation values. [38; 43; 22]. As a result, more scientific research on FCM interactions with hosts is required for effective pest management.

The demand for reliable pest infestation models is growing because they aid in defining problems, organizing thoughts, identifying areas to
investigate, making predictions, generating hypotheses, and assisting in pest management decision-making. They also serve as standard
comparisons and offer strategies to improve pest control decision-making [4 ; 15]. Predicting population dynamics and evaluating pest
control scenarios by agro-ecosystem under a variety of environmental conditions can reduce the number and cost of pest control interventions
while improving crop yields and quality, as well as health and sustainability [55].

Most of the farmers rely on insecticide to reduce economic loss caused by FCM [28]. Chemical pesticides have been extensively used to
control pest population such as FCM for a long time all over the world. However, their extensive use has led to environmental pollution
and reduction of pest’s natural enemies resulting to undesirable side effects on the environment [18]. Moreover, the development of insect
resistance to the chemical products has also led to the rising need of stronger and more toxic pesticides to maintain their efficacy. Extensive
use of pesticides is not a sustainable solution for pest control [4].

As a result, there is growing interest on development of control strategies that do not pollute the environment, these strategies have a special
focus on the ecology and behaviour of the involved species. Therefore, to prevent devastating impact on economy [54], and ensure sufficient
food security, social life, health and biodiversity; efficient control, understanding of biodiversity and management of FCM is essential [4; 45
). Mating disruption is one such non polluting control strategies. It involves introducing artificial stimuli such as pheromones that interfere
with normal mating (8; 14;4]. In most insect species, such as moth, it is the females that emit the sex pheromone to attract males, from a
distance of 40 m or more depending of the environmental conditions [18]. Pheromones are an appealing alternative to conventional pesticides
and have shown promise as a component of integrated pest management. Pheromones play an important role in the lives of most insects,
serving a variety of functions such as trail following, territorial behavior, dispersal, aggregation, and sexual activities, and they can also be
used as alarm and defense chemicals. They are frequently highly specific to a specific species or species groups, and frequently consist of
more than one specific chemical, making them highly selective. Since pheromone traps contain insecticide, once the males are attracted they
are killed [24]. Thereby lowering the number of males available for mating.

Therefore, pheromone traps can play an important role in integrated pest management (IPM). Pheromone traps can be effective in disrupting
mate location thus preventing mating and blocking reproduction cycle [37]. Subsequently, it leads to reduction of wild population of FCM in
a farm [13]. In addition, the use of pheromones traps for pest monitoring and as a tool for accurately timing insecticide sprays has become
a cornerstone feature of many prominent IPM programs [41]. However, pheromone lures reduces the need for application of chemical
insecticide, and in some cases it is practiced as a stand-alone tactic. Today, mating disruption, as a technique is practiced worldwide for
control of moth pests in fruits, vegetables, and forestry [16].

In a variety of contexts, pheromones have been proposed for use in pest control. One disadvantage of using pheromones for trapping is that
they are typically only effective at low pest densities because high concentrations either confuse or repel the target species. [4; 7]. Some of
the difficulties with pheromone trap method include the evaluation of orientation sites, the effective range of pheromone communication
and dispersal, circadian rhythms in the release of female pheromones, the establishment of flight ranges, the variation in frequency of
mating of males and females, the uneven distribution of breeding populations, and the interaction of pheromones with the various physical
factors. Furthermore, some pest predators and parasites use pest pheromones as Kairomones to locate the pest. Thus, mass trapping for pests
frequently attracts natural enemies of the pests, which could potentially undermine the control program [16].

Because of these difficulties, general mathematical modeling of pheromone trap control is more difficult and has a more limited applicability
than if the biology of pheromone-induced behavior was simpler. However, one approach to dealing with some of these difficulties is to
systematically change certain aspects of a model to account for the wide range of biological phenomena observed in nature [18]. Mathematical
modeling is a useful tool for analyzing agricultural issues. Mathematical modeling applied to biological pest control problems allows for a
qualitative and quantitative assessment of the pest’s impact on natural enemy populations.

In this paper, we propose a simple mathematical model for false codling moth control using pheromone traps. In this model, the FCM is
represented by the egg, the larval stages, the pupal stage, and adults stages and the susceptible host are represented by a system of ODE.

2. Main Body

2.1. Model development

In the absence of a pest, the susceptible Sh host grows logistically to maturity at the rate αSh(t)
(

1− Sh(t)
K

)
, where α represents the intrinsic

growth rate and K represents the environmental carrying capacity. Hosts can only be infected by the FCM after a fertilized fertile female
(Ff f ) deposits eggs, which hatch into larvae and burrow into the host’s rind [44]. Once infected by the larvae (L f ), the host fruit never
recovers and produces no yield [2], and it must be removed from the farm or fall to the ground. The host invasion is assumed to follow
the Holling-type II functional response ξ Sh(t)L f (t)

m+Sh(t)
, where ξ is the host invasion rate by the larvae and m is the half saturation constant [46].

When a healthy host reaches maturity, it is harvested at the rate of µ1. The equation that governs the susceptible host compartment is given
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by equation 1 based on the above assumptions:

dSh(t)
dt

= α

(
1− Sh(t)

Kh

)
Sh(t)−

ξ Sh(t)L f (t)
m+Sh(t)

−µ1Sh(t) (1)

It is important to note that the FCM population is made up of Eggs (E f ), Larvae (L f ), Pupae (Pf ), and Adults (Fertile female (Ff ), Fertile male
(M f ), and Fertilized fertile female (Ff f ). Each developmental stage is affected by temperature and food availability [44]. The oviposition
rate rF f f , where r is the intrinsic egg laying rate and Ff f is the number of fertilized fertile females of FCM, determines the number of eggs

produced. Because eggs are limited by the host’s carrying capacity, the effective egg production rate is given by rFf f

(
1− E f (t)

A

)
φSh(t),

where
(

1− E f (t)
A

)
φSh(t) is the host’s available capacity to receive eggs from fertilized fertile female, A is the host’s carrying capacity, and

φ is the eggs conversion rate. If the transfer rate of egg to larvae is λ1 and ω1 is natural mortality rate of egg stage at temperature τ1 then, the
general equation that describes the egg stage is given by equation 2:

dE f (t)
dt

= rFf f (t)
(

1−
E f (t)

A

)
Sh(t)− (λ1 + τ1ω1)E f (t) (2)

The larval stage of FCM is the most damaging because larvae can burrow into the fruit and cause damage inside the fruit while displaying
few symptoms on the fruit. Secondary pests such as fungal organisms and scavengers can become vulnerable to damaged fruit [12]. If ω2
is the natural mortality rate of larvae at temperature τ2 and λ2 is the rate at which larvae pupate. Then, using a to represent the larvae’s
conversion efficiency, we can calculate the contribution of the larval population from susceptible hosts. Then, equation 3 describes the
process that describes the fertile larval stage compartment:

dL f (t)
dt

= λ1E f (t)+
aξ Sh(t)L f (t)

m+Sh(t)
− (λ2 + τ2ω2)L f (t) (3)

When the final instar larva is ready to pupate, it falls to the ground, spins a cocoon, and pupates in the soil’s top layer [12]. It becomes
inactive at the early pupal stage and can take longer to develop depending on the temperature and humidity of the environment [45]. Male
and female pupae can be distinguished after maturation at the pupal stage[10;45]. Because the transfer rate from larval to pupal stage is λ2,
we can calculate the mortality rate at the pupal stage at temperature τ3 and the transfer rate from pupal to adult FCM by letting ω3 be the
mortality rate at the pupal stage and λ3 be the transfer rate from pupal to adult FCM. Then, equation 4 gives the equations that describe the
pupal stage:

dPf (t)
dt

= λ2L f (t)− (ω3 + τ3λ3)Pf (t) (4)

After emerging from the pupal stage, it is assumed that the fertile female FCM can successfully mate with the fertile male FCM in order
to move to the fertilized fertile female compartment at a rate of λ4, and that after mating, the fertilized fertile female returns to the fertile
female FCM compartment at a rate of δ1 in order to mate again. Since the transfer rate from larval to pupal stage is λ3, and assuming that the
natural mortality of fertile females is ω4 at temperature τ4, and letting κ be the fraction of pupal population that moves to fertile female
stage (Ff ). Then, as shown in equation 5, the equation that describes the fertile female compartment is modeled:

dFf (t)
dt

= κλ3Pf (t)+δ1Ff f (t)− [λ4 + τ4ω4]Ff (t) (5)

If the pupal stage to fertile male FCM transfer rate is λ4 and (1−κ) is the fraction of the pupal population that moves to the fertile male
stage. Assuming that the natural mortality of the fertile male FCM at temperature τ5 is given by ω5 and that there is no further transfer in
the fertile male compartment and that the only population reduction of fertile male is due to natural death. Then, equation 6 describes the
equation that governs the adult male compartment:

dM f (t)
dt

= (1−κ)λ3Pf (t)− τ5ω5M f (t) (6)

For mating to occur, the female FCM calls the male FCM via pheromone release that begins several hours after dark [45], and the sex
pheromone assists the male FCM in allocating themselves in space and time for the available mate [55]. Because FCM mating is a complex
process, it is assumed that male FCM can mate several times per day and throughout its life. After laying fertile eggs that hatch and burrow
into the host fruit, the fertilized fertile female is usually the one responsible for causing direct damage to the host. It is also assumed that in
order to enter the fertilized fertile female FCM compartment, fertile female FCM must mate with a fertile male FCM. If λ4 is the number of
female FCM that move to the fertilized fertile female FCM compartment, δ1 is the number of fertilized fertile females that return to the
fertile female compartment for mating, and ω6 is the natural mortality rate of fertilized fertile females at temperature τ6. Then, equation 7 is
given to describe the rate of change at the fertilized fertile female FCM compartment:

dFf f (t)
dt

= λ4Ff (t)− (δ1 + τ6ω6)Ff f (t) (7)

In order to incorporate the pheromone lures in the model, we follow the method proposed by Barclay and Van den Driessche, [7] and
Anguelove et al.[4]. Let Fp be the number of pheromone lure released into the population at a rate v and assuming that pheromone undergo
decay at the rate µ , then the equation that governs pheromone movement can be given by equation 8:
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dFp(t)
dt

= v−µFp(t) (8)

Assume that the pheromone concentration is equal to the number of fertile female FCM, resulting in (Fp +Ff ) as the total number of female
moths in the population. As a result, the probability that a fertile male will be attracted to a fertile female is Ff

Ff +Ff
, whereas the probability

that a fertile male will be attracted to pheromone traps is Ff
Fp+Ff

. Then, equation 9, describes the evolution of fertile male compartment in the
presence of pheromone lure:

dM f (t)
dt

= (1−κ)λ3Pf (t)−
[(

FP

Ff +Fp

)
+ τ5ω5

]
M f (t) (9)

2.2. Model Flow Chart

Figure 1: Model Flow Chart

2.3. Model Equation

Taking into account the above considerations, we have the schematic flow diagram shown in Figure 1 (Model Flow Chart). From figure 1, the
model will be governed by the following system of equations 10:

dSh(t)
dt

= α

(
1− Sh(t)

Kh

)
Sh(t)−

ξ Sh(t)L f (t)
m+Sh(t)

−µ1Sh(t)

dE f (t)
dt

= rFf f (t)
(

1−
E f (t)

A

)
Sh(t)− (λ1 + τ1ω1)E f (t)

dL f (t)
dt

= λ1E f (t)+
aξ Sh(t)L f (t)

m+Sh(t)
− (λ2 + τ2ω2)L f (t)

dPf (t)
dt

= λ2L f (t)− (ω3 + τ3λ3)Pf (t)

dFf (t)
dt

= κλ3Pf (t)+δ1Ff f (t)− [λ4 + τ4ω4]Ff (t)

dM f (t)
dt

= (1−κ)λ3Pf (t)−
[(

FP

Ff +Fp

)
+ τ5ω5

]
M f (t)

dFf f (t)
dt

= λ4Ff (t)− (δ1 + τ6ω6)Ff f (t)

dFp(t)
dt

= v−µFp(t)

(10)

2.4. Model Parameter Values

The parameter values used in this study were obtained from literature, or assumed after making reasonable biological and mathematical
assumption.



36 International Journal of Applied Mathematical Research

Parameter Values
Symbol Parameter Value Source
α Intrinsic growth rate of the host 2.76 mm per Month [53]
Kh Environmental carrying capacity 1000-1500 fruits per tree Assumed
A Fruit carrying capacity of eggs 3-8 eggs per fruit [34]
ξ Infestation rate of the pest 0.417-0.5417 [34]
λ1 Transfer rate of J to adult FCM 0.06-0.217 [41]
λ2 Transfer rate from L stage to Pm 0.01031-0.05025 [41]
ω1 Mortality rate of fertile E 0.03 [41]
ω2 Mortality rate of fertile L 0.009-0.115 [41]
ω3 Mortality rate of fertile Pupa 0.007 [41]
µ1 Harvesting rate of the host 0.06 Assumed
r Intrinsic egg laying rate 4.725day−1female−1 [41]
m Half saturation constant 0.8 [7]
v Pheromone concentration 10ngm−3 [29]
µ Pheromone decay rate 0.8 [29]

Table 1: Parameter values of FCM

2.5. Boundedness of the Solution

The time evolution of the individuals of each class is revealed by the solutions of the model system 10. For any dynamical system it is
important to ensure that the system is well-posed so that the solution reflect the natural phenomena [11]. Therefore, for the solutions of
the model system 10 to be mathematically and epidiomologically meaningful, its important to prove that all its state variables are positive
and bounded for all time t. That is, the solution of the system with positive initial value will remain positive for all time t ≥ 0. This can be
established using theorem 1:

Theorem 1. If the initial conditions of the model system 10 are in domain D such that:

D = {(Sh(t),E f (t),L f (t),Pf (t),Ff (t),M f (t),Ff f (t),Fp(t))

∈R8
+ : N(t)≤ k̂

q
(α +1)+ ε}

Then all solutions of the system equation 10 enter and remain in D

Proof. Consider the set Sh(t),E f (t),L f (t),Pf (t),Ff (t),M f (t),Ff f (t),Fp(t) with any solution of the system model 10 , such that the total

population expressed as N(t) = Sh(t)+E f (t)+L f (t)+Pf (t)+Ff (t)+M f (t)+Ff f (t)+Fp(t) and dN(t)
dt = dSh

dt +
dE f
dt +

dL f
dt +

dPf
dt +

dFf
dt +

dM f
dt +

dFf f
dt +

dFp
dt . Now using the foregoing expression in the addition of the system model 11, yields:

dN(t)
dt

=
d
dt

{
Sh(t)+E f (t)+L f (t)+Pf (t)+Ff (t)+M f (t)+Ff f (t)+Fp(t)

}
(11)

dN(t)
dt

=
dSh

dt
+

dE f

dt
+

dL f

dt
+

dPf

dt
+

dFf

dt
+

dM f

dt
+

dFf f

dt
+

dFp

dt

+

[
α

(
1− Sh(t)

Kh

)
Sh(t)−

ξ Sh(t)L f (t)
m+Sh(t)

−µ1Sh(t)
]

+

[
rFf f (t)

(
1−

E f (t)
A

)
Sh(t)− (λ1 + τ1ω1)E f (t)

]
+

[
λ1E f (t)+

aξ Sh(t)L f (t)
m+Sh(t)

− (λ2 + τ2ω2)L f (t)
]

+
[
λ2L f (t)− (λ3 + τ3ω3)Pf (t)

]
+
[
κλ3Pf (t)+δ1Ff f (t)− [λ4 + τ4ω4]Ff (t)

]
+

[
(1−κ)λ3Pf (t)−

[(
FP

Ff +Fp

)
+ τ5ω5

]
M f (t)

]
+
[
λ4Ff (t)− (δ1 + τ6ω6)Ff f (t)

]
+ v−µFp(t)

Which simplifies to:

dN(t)
dt

≤ α

(
1− Sh(t)

Kh

)
Sh(t)+ rFf f (t)

(
1−

E f (t)
A

)
Sh(t)+

ξ Sh(t)L f (t)
m+Sh(t)

(a−1)

+λ4Ff (t)+ v−
(

Fp(t)
Ff (t)+Fp(t)

)
−
{

µ1Sh(t)+ τ1ω1E f + τ2ω2L f + τ3ω3Pf + τ4ω4Ff + τ5ω5M f + τ6ω6Ff f +νFp
}

(12)
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Where k̂ = max{S(0),K} and Ψ = min{1,τ1ω1,τ2ω2,τ3ω3,τ4ω4,τ5ω5,τ6ω6ν} Then

dN
dt

+ΨN = k̂(α +1)

and its solutions become:

N(t)≤ k̂
Ψ
(α +1)(1− exp(−Ψt))+N(0)exp(−Ψt)

At t → ∞, we have N(t)≤ k̂
Ψ
(α +1). Implies that the solution is bounded for 0 ≤ N ≤ k̂

Ψ
(α +1). Thus all solutions of the model system 10

in R8
+ are restricted in the region: D = {(Sh(t),E f (t),L f (t),Pf (t),Ff (t),M f (t),Ff f (t),Fp(t)) ∈R8

+ : N(t)≤ k̂
q (α +1)+ ε} for all ε > 0

and t → 0. Therefore, the feasible solutions set for the host pest interaction model is positively invariant, biologically meaningful and
mathematically well-posed.

2.6. Equilibria Analysis

In this study, we look at three different types of equilibrium: pest-free equilibrium (E0), coexistence equilibrium (E1), and host-free
equilibrium (E2).

2.6.1. Pest Free Equilibrium Point

It is assumed that there is no pest prevalence in the system at the pest-free equilibrium points (E0), so the population of the host grows
logistically to maturity until harvesting time. To analyze pest-free equilibrium point (PFE), the system model 10 pest components are set to
zero, and because there is no pest prevalence, the pheromone compartment is also set to zero, resulting in: E f ∗= 0,L f ∗= 0,Pf ∗= 0,Ff ∗=
0,M f ∗= 0,Ff f ∗= 0,Fp∗= 0. This is accomplished by zeroing out the right-hand sides of the model system 10 and solved. We now solve
the first equation of the system model 10 which reduces to equation 13:

0 = α

(
1−

S∗h(t)
Kh

)
S∗h(t)−

ξ S∗h(t)L
∗
f (t)

m+S∗h(t)
−µ1S∗h(t) (13)

Since L∗
f = 0 and F∗

f = 0. Then, the solutions of S∗h in equation 13 is described by equation 14:

S∗h = 0

S∗h = Kh(α −µ1)
(14)

It is important to note that when S∗h(t) = 0, then we have a trivial solution. Therefore we settle for the second solution S∗h = Kh(α −µ1) to
represent the solution of S∗h in the absence of pest. Consequently, the pest free equilibrium points is given by equation 15:

E0 = (Kh(α −µ1),0,0,0,0,0,0,0) (15)

2.7. Host Free Equilibrium Points

At this equilibrium point E1, it is assumed that that the host is absent with the existence FCM pest in the presence of pheromone traps and
sterile insect such that, S&

h = 0,E&
f ̸= 0,L&

f ̸= 0,P&
f ̸= 0,F&

f ̸= 0,M&
f ̸= 0,F&

f f ̸= 0,F&
p ̸= 0.

0 = (λ1 + τ1ω1)E&
f (t)

0 = λ1E&
f (t)− (λ2 + τ2ω2)L&

f (t)

0 = λ2L&
f (t)− (λ3 + τ3ω3)P&

f (t)

0 = κλ3P&
f (t)+δ1F&

f f (t)− [λ4 + τ4ω4]F&
f (t)

0 = (1−κ)λ3P&
f (t)−

[(
F&

P
F&

f +F&
p

)
+ τ5ω5

]
M&

f (t)

0 = λ4F&
f (t)− (δ1 + τ6ω6(t))F&

f f (t)

0 =v−µF&
p (t)

(16)

Since S&
h = 0, it is easy to see that E&

f = L&
f = P&

f = F&
f ,M&

f = F&
f f = 0,.

Therefore, the host free equilibrium can be given by equation 17:

E1 =

(
0,0,0,0,0,0,0,

v
µ

)
(17)

Equation 17 shows that at host-free equilibrium, the pest population is zero. The numerical simulation illustrated in Figure 2 shows that the
total population of FCM reduces to zero regardless of the initial FCM population, indicating that the population of FCM becomes extinct
because their survival is dependent on the availability of the susceptible host.
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Figure 2: FCM Population against Time at Host Free Equilibrium

The host free equilibrium point is considered trivial in this study, so it is not subjected to stability analysis.

2.7.1. Coexistence Equilibrium Points

In the presence of FCM, host and pheromone traps, we assume that Sh ≥ 0,E f ≥ 0,L f ≥ 0,Pf ≥ 0,Ff ≥ 0,M f ≥ 0,Ff f ≥ 0,Fp ≥ 0. The
system model has an equilibrium point called coexistence equilibrium point denoted by E2 = (S∗&

h ,E∗&
f ,L∗&

f ,P∗&
f ,F∗&

f ,M∗&
f ,F∗&

f f ,F∗&
p ≥ 0.

E2 is the steady-state solution in which FCM coexist naturally in a susceptible host population. This is accomplished by zeroing out the
right-hand sides of the host pest interaction model 10 equations as shown in equation 18, and solving for the values of S∗&

h ,E∗&
f ,L∗&

f ,P∗&
f ,

F∗&
f ,M∗&

f ,F∗&
f f ,F∗&

p ≥ 0.

0 = α

(
1−

S∗&
h (t)
Kh

)
S∗&

h (t)−
ξ S∗&

h (t)L∗&
f (t)

m+S∗&
h (t)

−µ1S∗&
h (t)

0 = rF∗&
f f (t)

(
1−

E∗&
f (t)

A

)
S∗&

h (t)− (λ1 + τ1ω1)E∗&
f (t)

0 = λ1E∗&
f (t)+

aξ S∗&
h (t)L∗&

f (t)

m+S∗&
h (t)

− (λ2 + τ2ω2)L∗&
f (t)

0 = λ2L∗&
f (t)− (λ3 + τ3ω3)P∗&

f (t)

0 = κλ3P∗&
f (t)+δ1F∗&

f f (t)− [λ4 + τ4ω4]F∗&
f (t)

0 = (1−κ)λ3P∗&
f (t)− τ5ω5M∗&

f (t)

0 = λ4F∗&
f (t)− (δ1 + τ6ω6(t))F∗&

f f (t)

0 =v−µF∗&
p (t)

(18)
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Solving first equation of the equation system 18, we proceed as shown in equation 19:

α

(
1−

S∗&
h (t)
Kh

)
S∗&

h (t)−
ξ S∗&

h (t)L∗&
f (t)

m+S∗&
h (t)

−µ1S∗&
h (t) = 0

α

(
1−

S∗&
h (t)
Kh

)
−

ξ L∗&
f (t)

m+S∗&
h (t)

−µ1 = 0

α

(
1−

S∗&
h (t)
Kh

)
(m+S∗&

h (t))−ξ L∗&
f −µ1(m+S∗&

h (t)) = 0

(S∗&
h )2 +

(
µ1 +

m
Kh

−α

)
KhS∗&

h +(ξ L∗&
f +µm−αm)Kh = 0

(19)

Therefore, the solution of S∗&
h (t) is given in equation 20:

S∗&
h (t) =−1

2

[(
µ1 +

m
Kh

−α

)
Kh ±

√(
µ1 +

m
Kh

−α

)
−4(ξ L∗&

f +µm−αm)Kh

]
(20)

Similarly, solving the second equation of equation 18, we proceed as shown in equation 21:

rF∗&
f f (t)

(
1−

E∗&
f (t)

A

)
S∗&

h (t)− (λ1 + τ1ω1)E∗&
f (t) = 0

rF∗&
f f (t)S∗&

h (t)−
rF∗&

f f (t)S∗&
h (t)

A
E∗&

f (t)− (λ1 + τ1ω1)E∗&
f (t) = 0

(21)

Therefore, the solution of E∗&
f (t) is given in equation 22:

E∗&
f (t) =

ArF∗&
f f (t)S∗&

h (t)

rF∗&
f f (t)S∗&

h (t)+A(λ1 + τ1ω1)
(22)

Similar procedure can be followed to get the solutions of L∗&
f ,P∗&

f ,F∗&
f ,M∗&

f ,F∗&
f f ,F∗&

p as given in equation 23 :

L∗&
f =

λ1E∗&
f

(λ2 + τ2ω2)
(
(λ2 + τ2ω2)−

aξ S∗&
h

m+S∗&
h

)
P∗&

f =
λ2L∗&

f

(λ3 + τ3ω3)

F∗&
f =

κλ3P∗&
f +δ1F∗&

f f

τ4ω4 +λ4

M∗&
f =

λ4+τ4ω4−δ1
κλ3(

u
ν

F∗&
f + u

ν

+ τ5ω5

)
F∗&

f f =
λ4M∗&

f F∗&
f

(δ1 + τ6ω6)

F∗&
p =

u
µ

(23)

The analytical solution to equation 23 is difficult to find. As a result, we employ numerical solutions from the MATLAB software, as shown
in Figures 3 . The figure depicts the total pest population versus time in the absence of the control measure at the coexistence equilibrium
point using the parameter values from Table 1.
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Figure 3: Total FCM Population against Time at Coexistence Equilibrium

3. Basic Reproduction Number

We calculate the basic reproduction number in this study using the method proposed by Anguelove et al. [4] and Lui and Dai [31]. Assuming
the FCM is present in the host population and that the larval stage is the attacking stage. The basic reproduction number for the model system
10 can be computed using the van den Driessch and Watmough method ([4; 38; 49]). In this case, we consider FCM compartments that are in
charge of offspring reproduction; in this case, the system model 10 is reordered and reduces to equation 24:

dL f (t)
dt

= λ1E f (t)+
aξ Sh(t)L f (t)

m+Sh(t)
− (λ2 + τ2ω2)L f (t)

dPf (t)
dt

= λ2L f (t)− (λ3 + τ3ω3)Pf (t)

dFf (t)
dt

= κλ3Pf (t)+δ1Ff f (t)− [λ4 + τ4ω4]Ff (t)

dM f (t)
dt

= (1−κ)λ3Pf (t)−
[(

FP

Ff +Fp

)
+ τ5ω5

]
M f (t)

dFf f (t)
dt

= λ4Ff (t)− (δ1 + τ6ω6(t))Ff f (t)

dE f (t)
dt

= rFf f (t)
(

1−
E f (t)

A

)
φSh(t)− (λ1 + τ1ω1)E f (t)

dFp(t)
dt

= v−µFp(t)

(24)

Let Fi(y) be recruitment rate of new individuals in compartment i, V −
i (y) the transfer of individuals out of the compartment i and V +

i (y)
the transfer of individuals into the compartment i. Then, the system model 24 can be rewritten as shown in equation 25:

dy
dt

= Fi(y)−Vi(y) (25)
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Where i = 1, ....6 and Vi(y) = V −
i (y)−V +

i (y). With Fi(y) and Vi(y) forms the matrices 26 and 27 respectively:

Vi =



(λ2 + τ2ω2)L f (t)
−λ2L f (t)+(λ3 + τ3ω3)Pf (t)

−κλ3Pf (t)−δ1Ff f (t)+ [λ4 + τ4ω4]Ff (t)

−(1−κ)λ3Pf (t)+
[(

FP
Ff +Fp

)
+ τ5ω5

]
M f (t)

−λ4Ff (t)+(δ1 + τ6ω6(t))Ff f (t)

−rFf f (t)
(

1− E f (t)
A

)
φSh(t)+(λ2 + τ2ω2)L f (t)


(26)

and

Fi =



λ1E f (t)+
aξ Sh(t)L f (t)

m+Sh(t)
0
0
0
0
0


(27)

To obtain the next generation operator, we compute the Jacobian Matrices of Fi and Vi and solve it at the PFE with E0 =(Kh(α −µ1),0,0,0,0,0,0,0)
denoted by F and V respectively. Consequently, the basic offspring number of the system model 10 is obtained by determining the spectral
radius of the matrix FV−1 as given in the equation 28:

R0 =
aξ Kh(α −µ1)

(m+Kh(α −µ1))(λ2 + τ2ω2)
(28)

In this study, the basic reproduction number measures the average number of new offspring produced by a fertilized fertile female in a
completely susceptible host population at carrying capacity. Because the basic reproduction number R0 is less than one, the probability of
FCM infestation in the susceptible host is decreasing.

3.1. Stability Analysis

The local stability of the equilibrium points of the model system 10 is investigated in this section.

3.1.1. Local Stability Analysis

To perform the local stability analysis of the model system 10, we begin by constructing the model system 10’s Jacobian matrix and solving
it at the equilibrium points. When the eigenvalues are positive real parts, the equilibrium points are unstable; however, when the eigenvalues
are negative real parts, the equilibrium points are stable. The vector representation of system 10 is given in equation 29:

dy
dt

= f (y) (29)

where:

y = (Sh(t),E f (t),L f (t),Pf (t),Ff (t),M f (t),Ff f (t),Fp(t))

Then, the function y can be written in matrix form as shown in equation 30:

f (y) =



α

(
1− Sh(t)

Kh

)
Sh(t)−

ξ Sh(t)L f (t)
m+Sh(t)

−µ1Sh(t)

rFf f (t)
(

1− E f (t)
A

)
φSh(t)− (λ1 + τ1ω1)E f (t)

λ1E f (t)+
aξ Sh(t)L f (t)

m+Sh(t)
− (λ2 + τ2ω2)L f (t)

λ2L f (t)− (λ3 + τ3ω3)Pf (t)
κλ3Pf (t)+δ1Ff f (t)− [λ4 + τ4ω4]Ff (t)

(1−κ)λ3Pf (t)−
[(

FP
Ff +Fp

)
+ τ5ω5

]
M f (t)

λ4Ff (t)− (δ1 + τ6ω6(t))Ff f (t)
v−µFp(t)


(30)

Clearly, the right hand side of equation 30 is continuous and locally Lipschitz, so uniqueness and local existence of the solution is guaranteed.
By computing the Jacobian matrix of equation 30 yields equation 31:

J f =



x1 0 x2 0 0 0 0 0
x3 x4 0 0 0 0 x5 0
x6 x7 x8 0 0 0 0 0
0 0 x9 x10 0 0 0 0
0 0 0 x11 x12 0 x13 0
0 0 0 x14 x15 x16 0 x17
0 0 0 0 x18 0 x19 0
0 0 0 0 0 0 0 x20


(31)
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Where: x1 = α − 2Sh
Kh

− ξ L f (m+Sh)−ξ ShL f

(m+Sh)2 − µ1, x2 = − ξ Sh
m+Sh

, x3 = rFf f

(
1− E f

A

)
φ , x4 = − rFf f φSh

A − (λ1 + τ1ω1), x5 = r
(

1− E f
A

)
φSh,

x6 =
amξ L f

(m+Sh)2 , x7 = λ1, x8 =
aξ Sh
m+Sh

− (λ2 +τ2ω2), x9 = λ2, x10 =−(λ3 +τ3ω3), x11 = κλ3, x12 =−(λ4 +τ4ω4), x13 = δ1, x14 = (1−κ)λ3,

x15 =
−FpM f

(Ff +Fp)2 , x16 =−τ5ω5, x17 =
Ff M f

(Ff +Fp)2 , x18 = λ4, x19 =−(δ1 +τ6ω6),x20 =−µ . The Jacobian matrix 31 is evaluated at both the pest
free and coexistence equilibrium points, which are E0 and E2, respectively. If the eigenvalues are all positive, the equilibrium point is said to
be unstable, but if all the eigenvalues are negative, the equilibrium point is said to be stable.

Theorem 2. The PFE point E0 is locally asymptotically stable if R0 < 1 and otherwise unstable

Proof. The local stability analysis of the model system 10 can be determined by solving the Jacobian matrix 31 at the pest free equilibrium
points (E0 = (Kh(α −µ1),0,0,0,0,0,0,0), which yields equation 32:

J f |E0 =



x1 0 x2 0 0 0 0 0
0 x4 0 0 0 0 x5 0
0 x7 x8 0 0 0 0 0
0 0 x9 x10 0 0 0 0
0 0 0 x11 x12 0 x13 0
0 0 0 x14 0 x16 0 0
0 0 0 0 x18 0 x19 0
0 0 0 0 0 0 0 x20


(32)

Where: x1 = µ1 −α , x2 = − ξ Kh(α−µ1)
m+Kh(α−µ1)

, x4 = −(λ1 + τ1ω2), x5 = rKh(α − µ1), x7 = λ1, x8 =
aξ Kh(α−µ1)
m+Kh(α−µ1)

− (λ2 + τ2ω2), x9 = λ2,
x10 = −(λ3 + τ3ω3), x11 = κλ3, x12 = −(λ4 + τ4ω4), x13 = δ1, x14 = (1− κ)λ3, x15 = − [τ3ω3], x16 = −τ5ω5, x17 = −(δ1 + τ6ω6).
x18 = λ4, x19 =−(δ1 + τ6ω6),x20 =−µ . The matrix 27 is solved using the Wolfram mathematica software, an extract of the solution is
as given by the following equation: s1 = x1,s2 = x16,s3 = x20,s4 = s5 = s7 = s8 = [x10x13x18x4x8 − x10x12x19x4x8 − x11x18x5x7x9 + . . .].
Because all of the eigenvalues of the pest free equilibrium are negative, if R0, the pest free equilibrium point is said to be stable, but if
R0 > 1, the equilibrium point is unstable. As a result, the system 10 is locally asymptotically stable around the pest-free equilibrium point
(E0 = (Kh(α −µ1),0,0,0,0,0,0,0)

Theorem 3. The coexistence equilibrium point E2 is locally asymptotically stable if R0 < 1 and otherwise unstable

Proof. The local stability analysis of the model system 10 can be established by solving the Jacobian matrix 31 at the coexistence
equilibrium points (E2), using wolfram mathematica software the eigenvalues are found to be: s1 = x16,s2 = x20,s3 = s4 = s5 = s6 = s7 =
s8 = [x10x13x18x2x4x6−x10x12x19x2x4x6−x10x13x18x2x3x7+x10x12x19x2x3x7−x1x10x13x18x4x8+x1x10x12x19x4x8+x1x11x18x5x7x9+. . .].
Since all the eigenvalues of the coexistence equilibrium points are negative, then the coexistence equilibrium point is a stable equilibrium
point. The system 10 is therefore locally asymptotically stable around the the coexistence equilibrium points E2.

3.2. Global Stability Analysis

Global stability should be used in a restricted sense for population models, that is, the definition should be limited to the feasible region. As a
result, if a disturbance shifts the system’s state to any other feasible state and the system is then left alone, the system’s natural dynamics
will move the state back into a small neighborhood of the equilibrium. If the disturbance resulted in the extinction of one species or the
invasion of a new species, the system should be thought of mathematically and biologically as a new system. As a result, the new system’s
equilibrium points and stability will be examined [24].

3.2.1. Global Stability of PFE

To investigate the PFE’s global asymptotic stability, one common approach is to build an appropriate Lyapunove function, as proposed by
[49]. However, it is simpler to use the method developed by Catillo-Chevez et al. [19] and adopted by Bhunu and Mushayabasa [11]. As
a result, we investigate the global stability of the system model 10 around the pest-free equilibrium point (E0). Assuming the system is
cooperative on R+8, the growth of any compartment has a positive impact on the growth of all other compartments. Using Catillo-Chevez et
al . [19]’s theorem, we investigate the global asymptotic stability of the pest-free equilibrium by rewriting the system 10 in the form shown
in equation 33:

dX
dt

= F(X ,Z)

dZ
dt

= G(X ,Z),G(X ,0) = 0
(33)

Where: X = (Sh,Fp) ∈ R2
+ denotes noninfectious compartments and Z = (E f ,L f ,Pf ,Ff ,M f , Ff f ,) ∈ R6

+ denotes the infectious pest
compartments. E0 = (X∗,0) represents the pest free equilibrium of the system. If this points satisfies the following conditions: (i) for
dX
dt = F(X ,0), where X∗ is globally asymptotically stable, (ii) dZ

dt = DzG(X ,0)Z −G(X ,Z),G(X ,Z)≥ 0 for all (X ,Z) ∈ Ω, then, we can
conclude that E0 is globally asymptotically stable if the following theorem 33 holds:

Theorem 4. The equilibrium point E0 = (X∗,0) of the system 33 is globally asymptotically stable if R0 ≤ 1 and the conditions (i) and (ii)
are satisfied.
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Proof. To prove this, we start by defining new variables and dividing the system 10 into sub systems X = (Sh) and Z = (E f ,L f ,Pf ,Ff ,M f ,
Ff f ). From equation 33, we have two vector valued functions G(X ,Z) and F(X ,Z) given by equations 34 and 35:

F(X ,Z) =

(
α

(
1− Sh(t)

Kh

)
Sh(t)−

ξ Sh(t)L f (t)
m+Sh(t)

−µ1Sh(t)

v−µFp(t)

)
(34)

and

G(X ,Z) =



rFf f (t)
(

1− E f (t)
A

)
Sh(t)− (λ1 + τ1ω1)E f (t)

λ1E f (t)+
aξ Sh(t)L f (t)

m+Sh(t)
− (λ2 + τ2ω2)L f (t)

λ2L f (t)− (λ3 + τ3ω3)Pf (t)
κλ3Pf (t)+δ1Ff f (t)− (λ4 + τ4ω4)Ff (t)

(1−κ)λ3Pf (t)−
[(

FP
Ff +Fp

)
+ τ5ω5

]
M f (t)

λ4Ff (t)− (δ1 + τ6ω6(t))Ff f (t)


(35)

Now, let consider the reduced system, dX
dt = F(X ,0) from condition (i) yields:

dSh

dt
=α

(
1− Sh(t)

Kh

)
Sh(t)−µSh(t)

dFp

dt
=v−µFp(t)

(36)

We note that this is asymptomatic dynamics system, independence of the initial conditions in D , therefore the convergence of the solutions
of the reduced system 32 is global in D . We then compute:

G(X ,Z) = DzG(X∗,0)− Ĝ(X ,Z)

and show that

Ĝ(X ,Z)≥ 0

Now, we let B = DzG(X∗,0), which is the Jacobian of Ĝ(X ,Z) taken in (E f ,L f ,Pf ,Ff ,M f ,Ff f ) and evaluated at (X∗,0). Such that the
matrix B is given by the equation 37:

B =


x1 0 0 0 0 x2
x3 x4 0 0 0 0
0 x5 x6 0 0 0
0 0 x7 x8 0 x9
0 0 x11 0 x12 0
0 0 0 0 0 x13

 (37)

Where: x1 = −(λ1 + τ1ω1), x2 = −rKh(α − µ1), x3 = λ1, x4 =
aξ Kh(α−µ1)
m+Kh(α−µ1)

− (λ2 + τ2ω2), x5 = λ2, x6 = −(λ3 + τ3ω3), x7 = κλ3,
x8 =−τ4ω4, x9 = δ1, x10 = δ2, x11 = (1−κ)λ3, x12 =−[τ5ω5, x13 =−(δ1 + τ6ω6), x14 = λ4, x15 =−(δ2 + τ7ω7).
The value for Ĝ(X ,Z) is given by equation 38:

Ĝ(X ,Z) =



rFf f (t)
(

1− E f (t)
A

)
(Kh(α −µ1)−Sh(t)

aξ L f (t)(
(Kh(α−µ1)

m+(Kh(α−µ1)
− Sh

m+Sh
)

0
0
0
0


(38)

Since Kh ≥ Sh, it is obvious that Ĝ(X ,Z)≥ 0 for all (X ,Z) ∈ D , the pest-free equilibrium will be globally asymptotically stable. We can
also see that matrix B is an M-matrix because all of its off-diagonal elements are non-negative. As a result, this demonstrates that PFE is
globally asymptotically stable.

As a result of these findings, the pest-free equilibrium will be globally asymptotically stable. However, whenever the FCM diapausing, the
PFE may not be globally asymptotically stable, which is not true from the values of Ĝ(X ,Z)≥ 0 everywhere in D , implying the existence of
multiple coexistence equilibria.
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3.2.2. Global Stability Analysis of Coexistence Equilibrium

Theorem 5. In the model of host-pest interactions, sufficient conditions for global stability are (i) a feasible coexistence equilibrium point
and (ii) the equilibrium is a local asymptomatic stable solution.

Proof. Global stability of coexistence equilibrium points can be constructed using a suitable Lyapunov function an approach adopted by
[31;47]. In this approach Lyapunov function is constructed basing on equation 39:

L = ∑ai(xi − x∗&
i lnxi) (39)

Where ai is the constant selected such that ai > 0, xi is the population of the ith compartment and x∗&
i is the coexistence equilibrium point.

Therefore, consider the Lyapunove function in equation 40:

L =a1(Sh −S∗&
h lnSh)+a2(E f −E∗&

f lnE f )+a3(L f −L∗&
f lnL f )+a4(Pf −P∗&

f lnPf )

+a5(Ff −F∗&
f lnFf )+a6(M f −M∗&

f lnM f )+a7(Ff f −F∗&
f f lnFf f )+a8(Fp −F∗&

p lnFp)
(40)

Differentiating 40 with respect to time yields equation 41:

dL
dt

=a1

(
1−

S∗&
h
Sh

)
dSh

dt
+a2

(
1−

E∗&
f

E f

)
dE f

dt
+a3

(
1−

L∗&
f

L f

)
dL f

dt
+a4

(
1−

P∗&
f

Pf

)
dPf

dt

+a5

(
1−

F∗&
f

Ff

)
dFf

dt
+a6

(
1−

M∗&
f

M f

)
dM f

dt
+a7

(
1−

F∗&
f f

Ff f

)
dFf f

dt
+a8

(
1−

F∗&
p

Fp

)
dFp

dt

= a1

(
1−

S∗h
Sh

)[
α

(
1− Sh(t)

Kh

)
Sh(t)−

ξ Sh(t)L f (t)
m+Sh(t)

−µ1Sh(t)
]

+a2

(
1−

E∗&
f

E f

)[
rFf f (t)

(
1−

E f (t)
A

)
Sh(t)− (λ1 + τ1ω1)E f (t)

]

+a3

(
1−

L∗&
f

L f

)[
λ1E f (t)+

aξ Sh(t)L f (t)
m+Sh(t)

− (λ2 + τ2ω2)L f (t)
]

+a4

(
1−

P∗&
f

Pf

)[
λ2L f (t)− (λ3 + τ3ω3)Pf (t)

]
+a5

(
1−

F∗&
f

Ff

)[
κλ3Pf (t)+δ1Ff f (t)− [λ4 + τ4ω4]Ff (t)

]
+a6

(
1−

M∗&
f

M f

)[
(1−κ)λ3Pf (t)−

[(
FP

Ff +Fp

)
+ τ5ω5

]
M f (t)

]

+a7

(
1−

F∗&
f f

Ff f

)[
λ4Ff (t)− (δ1 + τ6ω6(t))Ff f (t)

]
+a8

(
1−

F∗&
p

Fp

)[
v−µFp(t)

]

(41)

Where: Sh(t) = S∗&
h ,E f (t) = E∗&

f ,L f (t) = L∗&
f ,Pf (t) = P∗&

f ,Ff (t) = F∗&
f ,M f (t) = M∗&

f ,Ff f (t) = F∗&
f f ,Fp(t) = F∗&

p .

Following the approach of McClusky [57], it can easily be seen that equation 37 is non-positive. Hence dL
dt ≤ 0∀Sh,E f ,L f

,Pf ,Ff ,M f ,Ff f > 0 and is zero when Sh(t) = S∗&
h ,E f (t) = E∗&

f ,L f (t) = L∗&
f ,Pf (t) = P∗&

f ,Ff (t) = F∗&
f ,M f (t) = M∗&

f ,Ff f (t) = F∗&
f f .

Therefore, the largest invariant set in {(S∗&
h ,E∗&

f ,L∗&
f ,P∗&

f ,F∗&
f ,M∗&

f ,F∗&
f f ,F∗&

p ) ∈ D} such that dL
dt = 0 is the singleton {E2} which is the

coexistence equilibrium point. According to the invariant principle put forward by Lasalles [30], E2 is globally asymptotically stable in D , if
R0 ≤ 1 the interior of D , otherwise unstable.

This result implies that the elimination of FCM is possible regardless of the initial sizes of the model’s FCM sub populations, as long as the
threshold parameter R0 is less than unity. As a result of the Lyapunov-LaSella invariance principle, system model 10 is uniformly persistent.

3.3. Numerical Simulation

The impact of pheromone traps as a control measure on the susceptible host and FCM is numerically simulated using MATLAB software
using the parameter values in Tables 1. The role and impact of pheromone trap on the susceptible host is illustrated in graphically. Figure
4 shows a graph of pheromone concentration against time within a period of 100 days, with the initial concentration set at 0mg, the
concentration is then increased at the rate of 10mg per day that is v = 10. From the Figure its observed that the concentration of pheromone
increases logistically with time and reaches a maximum value of about 110 after 51 days. This maximum value of the pheromone is
considered to effective concentration that offers the effective control against FCM. When different concentration is used the pheromone
attains the maximum value faster.
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Figure 4: A plot of Pheromone Concentration against Time (Days)

Figure 5 shows a graph of susceptible host against pheromone concentration, with the initial concentration of the pheromone in the field
set at 0ngm−3 and the pheromone concentration was increased at the rate of 5mg, 10mg,50mg, and 100mg per day. From the Figure it is
observed that all the release rates have a controlling effect of FCM as all the the release rates enables the susceptible host to attain its carrying
capacity at Kh = 1000 that is the susceptible host population increases with the increase of the pheromone concentration up to the carrying
capacity of the susceptible host. Therefore, for cost effect control measure its important to determine the minimum effective pheromone
concentration to be released in the field as higher concentration may lead to FCM Confusion but not control.
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Figure 5: A plot of the Susceptible host against Pheromone Concentration

Figure 6 shows a plot of total FCM population against pheromone concentration when the initial FCM population is set at 600 FCM within a
period of 100 days and v = 5, v = 10, v = 50 and v = 100. From the Figure the FCM population rises sharply to maximum value of about
5015 and then sharply drops to near zero. This further illustrates the effectiveness of the pheromone trap as a control strategies, thus a
minimum threshold value that can offer an effective control strategy and cost effective should be established.
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Figure 6: A plot of Total FCM Population against Pheromone Concentration

Figure 7 illustrates a plot of fertile male population against pheromone concentration under different release rate of pheromone concentration
per day. From the graph the number of fertile male decreases sharply with the increase in pheromone concentration to near zero. This
indicates the effectiveness of pheromone traps on fertile male because once they are attracted to the pheromone traps they are killed hence
the sharp decrease in their population in the presence of pheromone.
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Figure 7: A plot of Fertile Male Population against Pheromone Concentration

The impact of FCM on the susceptible host in the absence of pheromone the is illustrated graphically in figures 8 and 9. A graph of
susceptible host against time in the absence of pheromone traps for a period of 30 days is illustrated in Figure 8. From the graph the
population of the susceptible grows from the initial population of 100 logistically and level off at 428. Since the carrying capacity Kh of the
susceptible host is set at 1000, the presence of the FCM pest clearly makes the susceptible host to grow below its carrying capacity. When
the initial population is increased to 500 the susceptible host population drops exponentially and again levels off at 428, this is due to the
effect of FCM on the population of the susceptible host.
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Figure 8: A plot of Susceptible Host against Time in the absence of Pheromone Traps

Figure 9 illustrates a graph of FCM total population with time in the absence of pheromone in a period of 30 days. From the graph its
observed that the FCM population first sharply increase from the initial population of 1500 to a maximum population of 372099, then starts
to drops gradually and levels off at a population of 4272 after 30 day. If the initial population of FCM in the field is reduced to about 100, the
population of FCM is observed to rise to a maximum value of 30575, then drops gradually and levels at the minimum value of 1757. The
first increase is due to the availability of food for the FCM pest as time goes by the available number of susceptible host starts to decline
leading to the decline of the FCM population in the field. The population of the FCM does not drop to zero because the susceptible host is
continuously being introduced in the field.
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Figure 9: A plot of Total FCM Population against Time without Pheromone Traps

4. Conclusions

In this paper, deterministic model of FCM control using pheromone traps is developed and carefully analysed to bring insight into its
dynamical features of FCM control measures. The model is considered to be biologically and mathematically well posed. Using next
generation matrix method the basic reproduction number is determined. The model was analysed qualitatively and the local and global
stability of their associated equilibria. The dynamics of the FCM infestation on the susceptible host population showed that in the absence of
any control measures the population of FCM would increase, leading to decrease of susceptible host population. Numerical simulation also
shows that pheromone traps offers an effective control measure of FCM. From the numerical simulation it is also observed that the presence
of FCM in a farm greatly affects the population of susceptible host, hence there is a need to adopt control measure such as pheromone traps
to effectively increase farm produce.

4.1. Recommendations

In this study, we have only concentrated on the FCM interaction with the susceptible host with pheromone traps as the only control measure.
Therefore, more control measures such as sterile insect release, biological control can be considered in the model in order to draw clear
comparison on control strategy. There should be more enlightenment campaign on the economic effects of FCM to crops and identification
method of FCM on crops by the farmers.
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