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Abstract 

Wavelet transform or wavelet analysis has been recently developed 
as a mathematical tool for many problems. This paper is concerned 
with the wavelet numerical method for solving partial differential 
equations (PDE’s). The method is based on discrete wavelet transform, 
using Chebyshev Wavelet Method (CWM) which can be used for 
solving fractional differential equations. Interest in solving the 
problem using the Chebyshev wavelet basis is due to its simplicity and 
efficiency in numerical approximations. Four numerical examples 
were shown and the results demonstrated that the proposed way can be 
quite reasonable while compared with exact solutions. 
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1 Introduction 

Mathematical model of a system usually consists of solving ordinary and partial 

differential equations [1,2]. Adaptive numerical techniques for approximating the 

numerical solutions of these equations have attracted the attention of researchers 

since many years ago [3]. Several different methods have been applied for solving 

these problems, which include finite difference method, finite element method, 

Laplace transform method and other numerical methods. During previous years, 

the issue of wavelets has influenced major regions of pure and applied 

mailto:Hesameddini@sutech.ac.ir
mailto:S.Shekarpaz@sutech.ac.ir
mailto:H.Latifi.62.math@sutech.ac.ir


 

 

 

494 E. Hesameddini, S. Shekarpaz, H. Latifizadeh 

 

mathematics, especially in the numerical analysis of differential equations [4,5]. 

Wavelets are established as a strong novel mathematical implement in signal 

processing, turbulence problem, simulation and time-series analysis [6,7,8]. 

In the recent years, strenuous action and interest have been shown in the usage of 

wavelet theory and it’s related multiresolution analysis [4,9]. The substantial 

scheme back of the wavelet decomposition is the compressing representation of 

wavelet-based functions. In wavelet methods, the geometric region and functions 

are represented in terms of wavelet series defined in a certain domain. Also, by 

transforming the differential equations to some weak forms, all of them along 

with the unknown functions can be represented on the same basis [10,11,12]. 

Another region of remarkable interest is the study of fractional differential 

equations [9].In this paper, the dynamics of the so-called driven fractional 

oscillator is probed. This fractional oscillators are obtained by replacing the 

second-time derivative term in the corresponding harmonic oscillator by a 

fractional derivative of the order α  considering that 1<α 2 . The fractional 

derivatives were considered in the Caputo sense [13,14]. The general response 

expression contains a parameter describing the order of the fractional derivative 

that can be varied in order to obtain various responses. In the case of α 2 , the 

fractional system of oscillators reduces to the standard system of simple harmonic 

oscillators. Some aspects of such a system have been studied previously by other 

researchers [14]. The aim of this paper is to solve these problems via a novel 

method based on Chebyshev wavelets [15,16,17,18]. So, in order to obtain 

solutions for fractional oscillators, compactly supported, orthonormal and 

continuous wavelets are applied, which are especially constructed for the bounded 

interval. Since chebyshev wavelets combine orthogonality with localization and 

scaling properties, naturally, there is an attempt to use these functions for the 

numerical approximation solutions of PDE’s [19]. The method presented here 

consists of reducing fractional differential equation to a set of nonlinear equations 

by expanding unknown functions in terms of wavelets with unknown coefficients. 

The properties of scaling functions and wavelets [20] are then utilized for 

evaluating the unknown coefficients. 

This paper is organized as follows: in Section 2, some preliminary definitions of 

the fractional calculus are presented. Section 3, is devoted to the multiresolution 

approximations and wavelets to formulate the chebyshev wavelets. In Section 4, 

the proposed method is used for approximating the solutions of fractional 

differential equations. And finally, the numerical results are expressed in Section 

5.  

 

2 Some Preliminary Definition of the Fractional 
Calculus  

In this section, some required definitions and mathematical notations of fractional 

calculus theory which are applied in this paper are given. 



 

 

 

 495 

 

 

 

Definitions 2.1: A real function f(x) , 0x   is said to be in the space Cμ , μ R  if 

there exists a real number p(>μ)  such that p

1
f (x)=x f (x)  where f (x) C[0, )1    and 

is said to be in the space m

μC ,  m N U 0 , if 
(m)

μf C ,m N  . 

 

Definitions 2.2: The Riemann-Liouville fractional integral operator of order 

α 0, of a functional 
μ

f C , μ -1  is defined as 

                     
0

1α α-1
J f(x)= (x-ξ) f(ξ) dξ

Γ(α)

x

           α > 0, x > 0.  

0
J f(x)=f(x).  

Properties of the operator 
α

J  [18,19] are mentioned in the following way: 

for f C , μ -1μ  , α, β > 0,  μ -1  and 1   , 

      1)
  

α
J f(x)  exists for almost every x [a,b]

 

      
2)  α β α+βJ J f(x)=J f(x) . 

      3)  
α β β α

J J f(x)=J J f(x),  

      4)  
α γ α+γ

a

Γ(γ+1)
J (x-a) = (x-a) .

Γ(α+γ+1)  
 

Definitions 2.3: The fractional derivative of f(x) in Caputo sense is defined as 

 

x
α m-α m m α-1 (m)

0

1 -
D f(x)=J D f(x)= (x-ξ) f (ξ)dξ,

Γ(m-α)
  

 

(1) 

 

for m -1<α m , m N , 0x  , 
m

-1f C [17]. 

Also, two basic properties of the Capoto’s fractional derivative are needed which 

are described in the following forms; 

 

Lemma 2.1: If m-1<α m , m N  and 
m

μf C ,μ -1  then  

                                                           
α α

D J f(x)=f(x),  

and 

km-1 x(k)α α +
J D f(x)=f(x)- f (0 ) , x>0

k!k=0
  

The Caputo fractional derivative is perused here whereas it allows traditional 

initial and boundary conditions to be included in the formulation of the problem. 
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Definitions 2.4. For m  to be the smallest integer that exceeds α , the Caputo 

time-fractional derivative operator of the order 0.  is defined as follows; 

 

m
m-α-1

α m0α

t α m

m

1 u(ξ)
(t-ξ) dξ, m-1 < α < m,

u(t) Γ(m- ) ξ
D u (t)= =

t u(t)
, α = m N.

t



 

 











t


 

 

 

(2) 

 

For more information on the mathematical properties of fractional derivatives and 

integrals, see [9,13,14,16,17,18,19]. 

For real α>0 (later, only for 1<α 2 ), consider the fractional differential equation 

 

 

α
d u α

+ω u (t)=f(t), m-1< α m,α
d t

  
 

(3) 

 

subject to the initial conditions 

 

             
k

u (0)=c , k=0,1,…,m-1,
k

 (4) 

 

where ω  is an arbitrary constant and f (t) a given continuous function. Here, m is 

an integer uniquely defined by m-1<α m , which provides the number of the 

prescribed initial values k
u (0)=c , k=0,1,...,m-1.

k
 Equation (3) is called the fractional 

oscillation equation for 1<α 2 , the fractional relaxation equation for 0<α 1 and 

the fractional growing oscillation equation corresponding to 2<α 3 . The 

fractional derivative in Equation (3) is considered in Caputo sense.
 

 

3 Chebyshev Wavelets and their Properties 

In this section, the general definitions of wavelets are introduced. Also, the 

Chebyshev wavelets and their main properties are illustrated. 

 

3.1. Wavelets and Chebyshev Wavelets 

 

Wavelets are a family of functions which are derived from the family of scaling 

functions { : }
,

k Z
j k

  where 

 

k(t)= a (2t-k).
k

   (5) 
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For the continuous wavelet, the following form can be presented: 

1
-
2

a,b

t-b
ψ (t)=|a| ψ( ) a,b R ,a 0,

a
 

 

(6) 

where a and b are dilation and translation parameters, respectively, such that ψ(x)  

is a single wavelet function. If a and b are discrete values in the initial form of the 

continuous wavelets,  

 

0 00

0 0

-j

-j

a=a , a >1, b >0,

b=n b a j, ,k Z,

 

 

(7) 

 

then, the family of discrete wavelets are shown as follows: 

 

0 0 0

j

j2
j,kψ (t)=|a | ψ(a t-nb ),

 

(8) 

where, 
j,k j Z{ψ }

forms a wavelet basis for 2L (R) . Also, an orthonormal basis is 

constructed for 0 2a  and 0b =1 . Four parameters contribute to the general form 

of Chebyshev Wavelets, m is the degree of Chebyshev polynomials of the first 

kind, k-1n=1,2,…,2 , k is any positive integer and t denotes the time. Consequently, 

Chebyshev Wavelets are in the following form: 

                                                                

k

k2
m k k

n,m

n-1 n
2 T (2 t-2n+1) x< ,

ψ (t)= 2 2

  0 otherwise,








 

 

where Mm=0,1,2,..., -1, j-1k=1,2,...,2 and, 

m

m   

1
, m = 0,

π
T (t)=

T (t), m > 0,
2

π








 

where Tm (t )  are the Chebyshev polynomials. Then, by (8), the wavelets n,m{ψ }

form an orthonormal basis for 
2

L [0,1].  In the above formulation of Chebyshev 

wavelets, the Chebyshev polynomials are shown as follows: 
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0

1

m+1 m m-1

=1,

=t,

=2 t (t) - (t),        

T (t)

 m= 

T (t

1, 

)

2T ( ,t) T T  ...

  

which are orthogonal with respect to the weight function 
2

1
ω(t)=

1- t
on the 

interval [-1,1]. 

Because of the orthogonality, in this form of Chebyshev wavelets the weight 

function ω(t)=ω (2 t-1)  should be dilated and translatd to k

nω (t)=ω (2 t-2 n+1) . 

 

3.2. Function Approximation 

 

A given function u(t) with the domain [0,1] may be approximated as: 

 

n,m n,m
n=1 m=0

u(t )= c ψ (t)
 

 
 

(9) 

 

If the infinite series in Eq. (9) is truncated, then this equation can be written as: 

 
j-1

2 M-1

n=1 m=0

T

n,m n,mu(t ) c ψ (t)=C ·Ψ(t),   
(10) 

 

where C and Ψ(t) are matrices of size k-1
M (2 × 1) as follows:

1,0

T

1,1 1,M-1 2,0 2,1 2,M-1 k-1 k-1 k-12 ,0 2 ,1 2 ,M-1
C=[c ,c , ... ,c ,c ,c , ... ,c , ... ,c ,c , ... ,c ] ,

2, M-1

T

1,0 1,1 1, M-1 2,0 2,1 k-1 k-1 k-12 ,0 2 ,1 2 ,M-1
Ψ(t)=[ψ ,ψ ,ψ ,ψ ,ψ , . . . ,ψ , . . . ,ψ ,ψ, , .  . . . . ,ψ . ] .  

Let 
k-12 M

i i=1
t  be a set of collocation points as follows: 

 

k-1

k

(2i-1)
t = , i=1,2,...,2 M
i 2 M

 
(11) 

 

Thus, the Chebyshev wavelet matrix 
m×mΨ can be defined as: 

 

1 3 2m-1
Ψ =[Ψ( ) Ψ( ) … Ψ( )].m×m

2m 2m 2m
 

(12) 

 

For instance, when k=2 and M=3, the following matrix can be presented: 
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2 2 2 2 2 2

25 2 22 2 6 2 14 2 2 2 2 2

16 15 5 15 3 5

226 2 34 2 14 2 254 2 14 2 46 2

225 225 25 225 9 25
6 6

2 2 2 2 2 2

86 2 82 2 26 2 74 2 14 2 22 2

15 15 5 15 3 5

6946 2 6274 2 626 2 5026 2 178 2 434 2

225 225 25 225 9 25

     

     

     

     

     

     

     

   

 

     













 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

4 Application of the CWM  for Solving Fractional 
Differential Equations 

In this section, the CWM is applied for solving a system of driven fractional 

oscillators with the common form as follows; 

 
α

d u α
+ω u (t)=f (t), 1<α 2,α

d t


 

 

(13) 

 

with the initial conditions;                                               

 
•

u(0)=a, u (0)=b,
 

(14) 

 

where is the natural frequency and f(t) is a given continuous function. By 

applying the CWM for approximating the solutions of this problem, (13) can be 

rewritten as follows; 

 
k-1 k-12 M-1 2 M-1

n,m n,m n,m n,m

n=1 m=0 n=1 m 0

α
α

=
α

ψ (t)
d

( ) ω ( ) f ( 1<α 2,
d

ψ (t) t)
 t

+ = ,c c    

 

(15) 

 

with: 
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k-1

k-1

2 M-1

n,m n,m

n=1 m=0

2 M-1

n,m n,m

n=1 m=0

d
(

ψ (0)

ψ (0)) b(t)
dt

c =a,

c = ,





                                                     (16) 

 

where 

k-12 M-1

n',m' n',m'

n'=1 m'=0

f(t)= c ψ (t) , and 

α

α

d
u(t)

d t  is the fractional derivative of a given 

function u(t), defined in Section(2).
 

 Here, let 
k-12 M

i i=1
t  be a set of collocation points, then Eq. (15) can be calculated at 

 it collocation points, such that 

 
k-1 k-12 M-1 2 M-1

n,m n,m i n,m n,m i

n=1 m=0 n=1 m 0

α

=

α

α
ψ (t )

d
( ) ω ( )=f( 1<α 2

d
ψ (t ) t

i t
)+ , ,c c    

and the initial conditions are in the following form: 

k-1

k-1

2 M-1

n,m n,m 0

n=1 m=0

2 M-1

n,m n,m 0

n=1 m=0

d
( (t))

d

ψ (t )

ψ t=t )
t

(

c =a,

c =b.




 

 

Thus, by evaluating the coefficients  ,n mc  , u(t) can be obtained at every chosen 

point.  

 

5 Numerical Results 

In order to demonstrate the validity of the proposed method, three examples are 

examined and the approximations of solutions are compared with the exact 

solutions or solutions obtained using other methods. 

 

Example 1. Consider the following system: 

 
α

α

α

d u
+ω u(t)=0, 1<α 2

d t


 

 

(17) 

 

subject to the initial conditions; 
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•
u(0)=1, u (0)=0,

 

(18) 

 

A simple harmonic fractional oscillator is described using this equation and the 

forcing function in this case is f(t)=0. Thus by inserting Eq. (10) in Eq. (17), the 

following can be presented, 

 
k-1 k-1α

α
2 M-1 2 M-1

n,m n,m n,m n,m

n=1 m=0 n=1 m=
α

0

c ψ (t) c ψ (t)
d

( ) ω )=0, 1<α 2
d t

+ (    

 

(19) 

 

with the initial conditions; 

 
k-1

k-1

2 M-1

n,m n,m

n=1 m=0

2 M-1

n,m n,m

n=1 m=0

c ψ (0)

c ψ (t)

=1,

( =0)(t=0)
d

,
d t




                               (20) 

 

By collocating the above equation in collocation points  
k-12 M

i i=1
t ,  one can gets:

  
 

           

k-1 k-1α
α

2 M-1 2 M-1

n,m n,m i n,m n,m i

n=1 m=0 n= m=0
α

1

ψ (t ) ψ (t )
d

( ) ω ( ) 0 1<α 2
d t

+ = ,c c    

with  
k-1

k-1

2 M-1

n,m n,m

n=1 m=0

2 M-1

n,m n,m

n=1 m=0

d

ψ (0)

ψ (t))(t=0)( 0,
dt

c

c

=1,

=




 

 

Next, by computing the coefficients ,n mc , the solutions u(t) of this equation are 

obtained. The numerical results of this problem with α=1.7, α=1.9 and α=2  are 

presented in Table 1. By setting α=2 in Eq. (17), the solution of a simple 

harmonic oscillator is obtained and expressed by u(t)=cos(ωt) . 
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Table 1: Numerical results compared with the results in [21] by ω = 0.5.  
(Example 1) 

 

t 

1.7α=   
 

1.9α=  
 

α=2  

Our method Ref[21] Our method          Ref[21] Our method     Ref[21] 

0.0 1 1  1                      1  1                   1 

0.1 0.998 0.996         0.998 0.998      0.998             0.998 

0.2 0.992 0.987  0.994 0.993 0.995            0.995 

0.3 0.984 0.974  0.988 0.985 0.989            0.988 

0.4 0.973 0.958  0.979 0.974 0.981            0.980 

0.5 0.961 0.939  0.969 0.960 0.970            0.968 

0.6 0.947 0.918  0.956 0.945 0.958            0.955 

0.7 0.932 0.894  0.941 0.926 0.943            0.939 

0.8 0.916 0.867  0.925 0.905 0.927            0.921 

0.9 0.899 0.839  0.908 0.882 0.909            0.900 

1.0 0.882 0.809  0.890 0.857 0.880            0.877 

       

Figure 1 demonstrates the progress results for α=2, α=1.9 and α=1.7 . The comparison 

of these results shows how the relocation of the fractional oscillator varies as a 

function of time and how this time change depends on the parameter α . Also, the 

behavior of the driven fractional oscillator is similar to that of the damped 

harmonic oscillator, where the locomotion is yet oscillatory, whereas the 

assembled energy decreases and the phase plane diagram is no longer a closed 

curve, but a logarithmic spiral. The results of these computations, for different 

values of α , are convergent to the solutions obtained by setting α=2 . 

 

 
Figure 1. a. The solution obtained by the wavelet method (--) and analytical 

method (-) with ω = 0.25.  
Figure 1. b. The exact solution of a simple harmonic oscillator 

α=2(…),α=1.9( ),α=1.7(--) by ω = 0.5. 

 

1.a 1.b 
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Example 2. Now, the following fractional differential equation is considered: 

 
α

d u α
+ω u (t)=0, 1<α 2α

d t


 

(21) 

 

Which is subject to the following initial conditions 

 
•

u(0)=c, u (0)=0,
 

(22) 

 

where the forcing function is the step function that is defined by 

                                                    

A, t>0
f (t)=

0, t<0.






 

Similar to the procedure used in Example.1, (21) can be written as 

           

k-1 k-12 M-1 2 M-1

n,m n,m n,m n,m

n=1 m=0 n=1 m=0

α
α

α

d
( ) ( ) A 1<α 2, t >0,

d t
ψ (t) ψ ( )c ,c+ω =t    

with; 

                                                    

k-1

k-1

2 M-1

n,m n,m

n=1 m=0

2 M-1

n,m n,m

n=1 m=0

( =

ψ (0)

(t))(t=0) 0.

=c,

d

c

ψ
dt

c




 

 

Then, by substituting the collocation points  
k-12 M

i i=1
t  , this formula can be 

presented:
 

 

  

k-1 k-1α
α

2 M-1 2 M-1

n,m n,m i n,m n,m i

n=1 m=0 n= m=0
α

1

ψ ( ) ψ ( )
d

( ) ( )=0 1<α 2
d t

+ω ,c t c t    

with  

 

  

After computing the coefficients  n,mc , solutions u(t) for this equation are 

obtained. The numerical results of this problem with α=1.7, α=1.9 and α=2  are 

shown in Table 2. 

k-1

k-1

2 M-1

n,m n,m

n=1 m=0

2 M-1

n,m n,m

n=1 m=0

c

d

ψ (0)

(t))(t=0)( 0.
dt

c

c

= ,

=ψ




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Table 2. Numerical results compared with the results in [21] by ω = 0.25.  

 

t 

1.7α=   
 

1.9α=  
 

α=2  

Our method Ref[21] Our method      Ref[21] Our method     Ref[21] 

0.0 0 0  0                  0     0.0000099        0 

0.1 0.0061 0.0129      0.0040    0.0068    0.0034          0.0049 

0.2 0.0244 0.0419  0.0187 0.0257 0.0168          0.0199 

0.3 0.0515 0.0834  0.0430 0.0555 0.0401          0.0449 

0.4 0.0863 0.1359  0.0763 0.0958 0.0733          0.0799 

0.5 0.1277 0.1983  0.1183 0.1463 0.1162           0.1248 

0.6 0.1753 0.2700  0.1686 0.2067 0.1686            0.1796 

0.7 0.2285 0.3502  0.2268 0.2768 0.2305            0.2443 

0.8 0.2868 0.4386  0.2926 0.3564 0.3015            0.3189 

0.9 0.3499 0.5347  0.3657 0.4452 0.3814            0.4032 

1.0 0.4173 0.6380  0.4458 0.5432 0.4699            0.4974 

       

 

 

 
Figure 2. a. The solutions obtained by the wavelet method (- -)  and analytical 

method ( ) .with ω = 0.25. 

Figure 2. b. The exact solution of a simple harmonic oscillator

α=2( ),α=1.9(- -),α=1.7(…)  by ω = 0.25.  

 

Figure 2 shows the numerical results for α=2,α=1.9 and α=1.7 . To try the impression 

of the function Af(t)= , the numerical solutions are evaluated by choosing 

0 0u( ) = c =  and A=1 . The behavior of the driven fractional oscillator for the step 

function is similar to that of the damped oscillator. 

 

Example 3. In this example, assuming that the forcing function is f(t)=sin(ωt) , 

the fractional differential equation can be rewritten as: 

2.a 2.b 
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α
d u α

+ω u (t)=sin (ω t), 1<α 2,α
d t


 

(23) 

 

by the initial conditions 

 
•

u(0)=c, u (0)=0,
 

(24) 

 

By expressing f(t) in terms of  Taylor series at x=0 , one obtains; 

 

                                           

3 5 7
(ω t) (ω t) (ω t)

f (t)=ω t- + - +
3! 5! 7!

L
 

Thus, pursuant to CWM, the following is obtained; 

 
k-1 k-12 M-1 2 M-1

n,m n,m n,m n,m

n=1 m=0 n=1

α

m

3 5 7
α

=0
α

d (ω t) (ω t) (ω t)
( )+c ψ (t) cω ( )=ω t- + -ψ (t + , 1<α 2,

d t 3! 5 7!
)

!
 

 

 

with; 
k-1

k-1

2 M-1

n,m n,m

n=1 m=0

2 M-1

n,m n,m

n=1 m=0

d

(0)

(t))(t=( )
d 

0 0
t

c ψ

c

=c,

= ,ψ




 

 

The collocation points  
k-12 M

i i=1
t  are replaced at the above equations, such that;

  
 

     
k-1 k-12 M-1 2 M-1

n,m n,m i n,m n,m i

n=1 m=0 n=1 m=0

α 3 5 7
α

α

d (ω t) (ω t) (ω t)
( ) ωψ (t ) ψ( ) ω t- + - + , 1<α 2

3! 5! 7!
(

d 
t )

t
+ =c c    

 

with the following initial conditions  
k-1

k-1

2 M-1

n,m n,m

n=1 m=0

2 M-1

n,m n,m

n=1 m=0

d

ψ (0)

ψ (t))(t=0)( 0.
dt

c

c

=c,

=




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After computing the coefficients  ,cn m
, the solutions u(t) are obtained for this 

equation. The numerical results of this problem with α=1.7, α=1.9 and α=2  are 

shown in Table 3. 

 

Table 3. Numerical results compared with the results in [21] by ω = 0.01.   
 

t 

 

1.7α=   
 

1.9α=   

 

α=2  

Our method Ref[21] Our method      Ref[21] Our method      Ref[21] 

0.0 0.00000002 0  0                0  0                   0 

0.1 0.000006 
0.00000000

1 
 

0.00000

4 
0.0000000003 

0.000003      

0.0000000001 

0.2 0.00004 0.00000001  0.00003 0.000000002 0.00003       0.000000001 

0.3 0.0001 0.00000003  0.0001 0.000000009 0.0001         0.000000004 

0.4 0.0003 0.00000007  0.0003 0.00000002 0.0002         0.00000001 

0.5 0.0006 0.0000001  0.0005 0.00000004 0.0005         0.00000002 

0.6 0.001 0.0000002  0.001 0.00000006 0.001           0.00000003 

0.7 0.001 0.0000003  0.001 0.00000010 0.001           0.00000005 

0.8 0.002 0.0000005  0.002 0.00000015 0.002           0.00000008 

0.9 0.003 0.0000007  0.003 0.00000022 0.003           0.00000012 

1.0 0.004 0.0000009  0.004 0.00000029 0.004           0.000000166 

       

 

 

 

 
Figure 3. a. The solutions of obtained by the wavelet method (- -)  and analytical 

method ( )   with ω = 0.25.  

Figure 3. b. The exact solution of a simple harmonic oscillator 

α=2( ),α=1.9(- -),α=1.7(…)  by ω = 0.01. 

 

3.a 3.b 
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The results of this method for different values of  α (1<α 2) and the sinusoidal 

function are convergent to the analytic solutions with α=2 . Also, Figure 3 shows 

the numerical results for α=2, α=1.9 and α=1.7.   

 

6 Discussion 

The principal target of this paper was to compute numerical solutions for a system 

of driven oscillators. Several numerical methods were used for solving fractional 

differential equations, and the wavelet techniques were described as a numerical 

tool for the fast and accurate solution of these differential equations [9,19]. 

In the present work, the Chebyshev wavelet method was executed for solving 

fractional differential equations. Note that, in the Chebyshev wavelet method, the 

values of integrals were evaluated very accurately because; the bases of 

Chebyshev wavelets were polynomials of different orders. Thus, using this 

method, the problem was transformed to a system of nonlinear equations and 

satisfactory approximations were obtained for the solutions. 

 

7 Conclusions 

Numerical results proved higher ability of the proposed technique compared with 

that of the other methods. All the examples showed that the numerical results of 

the CWM were convergent to the exact solutions with α=2 . On the other hand, 

the obtained approximations demonstrated that the behavior of the driven 

fractional oscillator was similar to that of the damped harmonic oscillator. It can 

be concluded that the displacement functions are able to describe the intermediate 

processes between exponential decay ( α=1) and pure sinusoidal oscillation ( α=2 ).  

 

References 

[1] P. Fletcher, S. Haswell, and V. Paunov. Theoritical considerations of 

chemical reactions in micro-reactors operating under electro-osmotic and 

electrophoretic control, Analyst 124 (1991) 1273-1282. 

[2] S. Muller. Adaptive Multiscale Schemes for Conversation Laws, Lecture 

Notes in Computational Science and Engineering, vol. 27, Springer, Berlin, 

2003. 

[3] G. Beylkin,  and J. M. Keiser.  On the Adaptive Numerical Solution of 

Nonlinear Partial Differential Equations in Wavelet Bases Can, Applied 

Math. Soc, JCP, 132 (1997)(CP965562), 233-259. 

[4] J. M. Alam, N. K. R-. Kevlahan, and O. V. Vasilyev. Simultaneous Space–

time Adaptive Wavelet Solution of Nonlinear Parabolic Differential 

Equations, Journal of Computational Physics, 214 (2006) 829-857. 



 

 

 

508 E. Hesameddini, S. Shekarpaz, H. Latifizadeh 

 

[5] E. Hesameddini, and S. Shekarpaz. Wavelet solutions of the second painleve 

equation.,Iranian. J. of Science and Technology. prepared to publish, Vol.34. 

2011. In press.  

[6] C. K. Chui. Wavelets: A Mathematical Tool for Signal Analysis, SIAM, 

Philadelphia, PA, 1997. 

[7] A. de Vries. Wavelets. FH Südwestfalen University of Applied Sciences, 

Haldener Straße 182, D-58095 Hagen, Germany Version: September 4, 

2006.  

[8] Oleg V. Vasilyev and W. Kendal Bushe. On the Use of a Dynamically 

Adaptive Wavelet    Collocation Algorithm in Direct Numerica Simulations 

of Non-Premixed Turbulent Combustion, Center for Turbulence Research, 

Annual Research Briefs, 1998.  

[9] E. Hesameddini, S. Shekarpaz, H. Latifizadeh and F. Fotros.  An profitable 

algorithm to   fractional differential equation: especially wave equations.,Int. 

J. of Differential equations. In press. 

[10] L. Gagnon, and J. M. Lina. Wavelets and numerical split-step method: A    

global adaptive scheme,    Opt. Soc. Am. B, to appear.  

[11] J. Liandrat, V. Perrier, and Ph. Tchamitchian. Numerical Resolution of 

Nonlinear Partial Differential Equations using the Wavelet Approach. 

Wavelets and Their Applications, edited by M. B. Ruskai, G. Raphael (Jones 

& Bartlett, Boston, 1992).  print, 1996. 

[12] R. L. Schult, and H. W. Wyld. Using wavelets to solve the Burgers’ 

equation: A comparative   study, Phys. Rev.A46, 12 (1992). 

[13] Y. Luchko, and R. Gorne o. The initial value for some fractional differential 

equations with the caputo derivate, Preprint series A08-98, Fachbreich 

Mathematic and Informatic, Freic Universittal Berlin, 1998. 

[14] K. S. Miller and B. Ross. An Introduction to the Fractional Calculus and 

Fractional Differential Equations, Wiley, New York, 1993. 

[15] L. Blank. Numerical treatment of differential equations of fractional order, 

MCCM Numerical Analysis Rep. 287, The University of Manchester, 1996. 

[16] R. Goreno, and F. Mainardi. Fractional calculs. Integral and differential 

equations of fractional order   in Fractals and Fractional Calculus in 

Continuum Mechanics, A Carpinter and F. Mainardi, eds., Springer-Verlag. 

New Nork 1997. 

[17] F. Mainradi. Fractional relaxation-oscillation and fractional diffusion-wave 

phenomena, Chaos Solitons Fractals 7(9) (1996) pp.  1461-1477. 

[18] F. Mainradi. Fractional calculus: Some basic problems in continuum and 

statistical mechanics, in Fractals and Fractional Calculus in Continuum 

Mechanics, A Carpinteri and F. Mainradi, eds., Springer-Verlag, New York, 

1997, pp. 291-348. 

[19] Yuanlu Li. Solving a nonlinear fractional differential equation using 

Chebyshev wavelets., J. Commun Nonlinear Sci Numer Simulat 15 (2010)  

2284-2292. 



 

 

 

 509 

 

 

 

[20] E. Babolian and F. Fattahzadeh. Numerical computation method in solving 

integral equations by using   Chebyshev wavelet operational matrix of 

integration., Applied Math and Comput. 188 (2007) 1016-1022. 

[21] A. Yildirim and S. Momani. Series solutions of a fractional oscillator by 

means of the homotopy      perturbation method, Int. J. of Computer 

Mathematics. Vol 87, No 5, April 2010, 1072-1082. 


