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Abstract 

First integral method, which is called also FIM, in short, is usually 
applied to nonlinear partial differential equations. This method usually 
leads to an exact solution. This manuscript, the first integral method is 
applied to find exact Solitons solutions of the generalized forms of 
Drinfel’d–Sokolov–Wilson system, and Bretherton equation. FIM is 
based on the theory of commutative algebra. 
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1. Introduction 

First integral method plays an important role to find an exact solution of nonlinear 

partial differential equations (NPDE). Recently, a number of methods have been 

proposed, for solving such equations, Transformed rational function [1], Multiple 

exp-function [2], Sin-Cosin [3-4], Tanh [5-6], Exp-function method [7] , Hirota’s 

bilinear methods [8]. 

 First integral method was first proposed by Feng (2002) [9] in solving Burgers-

Kdv equation. Recently, this useful method is used by many such as in [10-12].  
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2. First Integral Method 

Consider the following nonlinear partial differential equation (NPDE), of order 

two. 

( , , , , ) 0.t x tt xx txF u u u u u 
                 

                                                                      (1) 

Where ( , )u u x t  is the solution of this NPDE. Let’s consider the new 

independent variables, ,  in terms of variables, ,x t  as the following, 

 

( , ), .u u x t x ct                                                                                           (2) 

 

Applying the chain rule, 

 

(.) (.),c
t 

 
 

 
  (.) (.),

x 

 


 
  

2 2
2

2 2
(.) (.),c

t 

 


 
  

2 2

2
(.) (.)c

t x 

 
 

  
     

(3) 

 

Changes the partial differential equation (1), into an ordinary differential equation 

(ODE)(4) 

 
2

2

( ) ( )
( ( ), , ) 0.

u u
G u

 


 

 


 
                                                                                  (4) 

 

The following two dependent variables can be used to have, a system of nonlinear 

ordinary differential equations of the first order (6)  

 

( )
( ) ( ), ( ) .

u
X u Y


  




 


                                                                               (5) 

1

( )
( ),

( )
( ( ), ( )).

X
Y

Y
F X Y







 




 


 

 

                                                                                   (6) 

 

At this stage, if the solution of the system (6) is obtained, the solution of (4) will 

be in hand, since ordinary differential (4) is equivalent to the system (6) which is 

not easy to solve and there is not any systematic theory to find the first integral of 

this system, (6). It is known that division theorem will be helpful to obtain a first 

integral of (6), and so the solution of equation (1). 

Let’s recall the Division Theorem. 
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Division Theorem: 

Suppose that ( , )p w z and ( , )Q w z  are polynomials in the space of continuous 

function ( , )w z£ , which ( , )p w z  is irreducible in ( , )w z£ . If ( , )Q w z  vanishes 

at all zero points of ( , ),p w z  then there exists a polynomial ( , )F w z  in ( , ),w z£

such that ( , ) ( , ) ( , )Q w z p w z F w z . 

3. Generalized Drinfel’d–Sokolov–Wilson system 

Let's consider the generalized form Drinfel’d–Sokolov–Wilson system [13] as the 

following  

 

( ) 0,

3 3 0.

n

t x

t xxx x x

u v

v av b u v k uv

  


   
                                                                        (7) 

 

For especial case. 2, 2, 1, 1n a b k     
 

2( ) 0,

2 3 3 0.     

t x

t xxx x x

u v

v v u v uv

  


   
                                                                          (8) 

 

The following transformations  

( , ) ( )u x t U  ,   ( , ) ( )  v x t V  ,   x ct   , 

 

Change system (8) into a system of ODEs, given by  

 
2( ) 0 ,

9
2 0.

cU V

c V V V V
c

   



     


                                                                                    (9) 

 

Integrating (9), leads to the following system of equations, 
2

3

,

3
.

2 2 2

cU V

R c
V V V

c

 



   


                                                                                      (10) 

Where R  is integration constant. 

Using (5) and (6), to get the following system 

 

3

( ) ( ),

3
( ) ( ) ( ) .

2 2 2

X Y

c R
Y X X

c

 

  

 



   


                                                                     (11) 
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According to the first integral method, suppose that ( )X X   and ( )Y Y  are 

the nontrivial solutions of (11), and 
0

( , ) ( )
m

i

i

i

Q X Y a X Y


  is an irreducible 

polynomial in ( , )X Y£ , such that  

 

0

( ( ), ( ) ) ( ( ) ) ( ) 0,
m

i

i

i

Q X Y a X Y   


                                                           

(12) 

 

Where ( )ia X  0,1,...,i m  are polynomials of X  and ( ) 0ma X  . Equation (12) 

is called the first integral to (11). Due to the Division Theorem, there exists a 

polynomial ( ) ( )g X h X Y , in ( , ),X Y£  such that 

 

0

( ( ) ( ) ) ( ( ) ).
m

i

i

i

dQ dQ dX dQ dY
g X h X Y a X Y

d dX d dY d   

                                 (13) 

 

In this example, Let’s consider special cases, 1,m   and 2m  , in (12). 

 

Case A:  1m   

Comparing the coefficients of ,iY  0,1,2i   in both sides of (13), leads to 

 

1 1( ) ( ) ( ),a X h X a X                                                                                             (14) 

0 0 1( ) ( ) ( ) ( ) ( ), a X h X a X g X a X                                                                     (15) 

3

1 0

3
( ) ( ) ( ) ( ).

2 2 2

c R
a X X X g X a X

c
                                                             

(16) 

 

Since ( ), 0,1ia X i  , are polynomial of ,X  and 1 ( ) 0,a X   from (14) it will be 

concluded easily that 1 ( )a X  is constant and ( ) 0,h X   for simplicity, let’s take

1 ( ) 1.a X   The power of X , in both sides of (16), must be the same, so deg 

( ( )g X ) 1 . Suppose that 1 0( ) ,g X A X B   then 0 ( )a X  will be computed as 

 

2

0 1 0 0

1
( ) .

2
a X A X B X A                                                                                 (17) 

 

Where 0A  is integration constant. Substituting 0 ( ),a X  1( ),a X and ( )g X  in (16) and 

setting all the coefficients of ,X  zero, the following two sets of solutions will be 

obtained.  
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1

3
,A

c
    0 0,B     

3

2
0

3
,

6
A c 

   
0,R                                                        (18) 

1

3
,A

c
     0 0,B     

3

2
0

3
,

6
A c

   
0.R                                                         (19) 

 

By Substitution in (12), from (18), result in, 

 
3

2 2
3 3

( ) ( )
62

Y X c
c

    .                                                                             (20) 

 

Considering (20) and (11), the exact solution to Generalized Drinfel’d–Sokolov–

Wilson system is obtained; 

 

0

3
( , ) tanh ( ( )).

3 2

c
V x t c x ct    ,                                                       

2

0 0

2

0 0

(sinh (( ) )cosh ( ) cosh (( ) )sinh ( ))
2 2 2 2( , ) .

3
(cosh (( ) ) sinh(( ) ))

2 2

c c c c
x ct x ct

c
U x t

c c
x ct x ct

 

 

  



    

(21) 

Where 0  is constant. 

 

Case B:  2m 
 

Equating the coefficients of ,iY 0,1,2,3i   of both sides of (13), results in 

 

2 2( ) ( ) ( ),a X h X a X                                                                                            (22) 

1 1 2( ) ( ) ( ) ( ) ( ), a X h X a X g X a X                                                                      

(23) 

3

0 2 1 0

3
( ) 2 ( )[ ( ) ( ) ] ( ) ( ) ( ) ( ),

2 2 2
      

c R
a X a X X X g X a X h X a X

c
        (24) 

3

1 0

3
( )[ ] ( ) ( )

2 2 2

c R
a X X X g X a X

c
    .                                                         (25) 

 

Since ( ), 0,1,2ia X i   are polynomials of ,X and 2 ( ) 0,a X   from (22), it will 

be concluded that 2 ( )a X  is constant, and ( ) 0h X  . For simplicity, let's take 

2( ) 1a X  . With the same powers of X , in (25), it will be concluded that 

deg( ( )g X )=1. By considering 1 0( )g X A X B  , then 0 ( )a X , and 1( )a X  will be 

find as follows. 
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21
1 0 1( ) ,

2

A
a X X B X B                                                                                   (26) 

22
4 3 21 0 0 1 01

0 1 0

3
( ) ( ) ( ) ( ) .

8 4 2 2 2 2

A B A B BA c
a X X X X R B B X d

c
           (27) 

 

Where d  is integration constant. Substitution 0 1 2( ), ( ), ( ),a X a X a X  and ( )g X , 

in (25) and considering all the coefficients of ,X  to be zero, the following two 

sets of solutions will be achieved. 

 

1

2 3
A

c
  ,   0 0B   ,   

3

2
1

3

3
B c ,   31

,
12

d c
   

0,R                                 (28) 

1

2 3
A

c
 ,   0 0B   ,   

3

2
1

3

3
B c  ,   31

,
12

d c
   

0.R                                  (29) 

 

Substitution in (12) from (29), reads to, 

 

2 23
( ) (3 ( ) ).

6
Y X c

c
                                                                                   (30) 

 

By considering (30) in (11), an exact solution of the Generalized form of 

Drinfel’d–Sokolov–Wilson system will be find. 

    
0

3
( , ) tanh ( ( )).

3 2

c
V x t c x ct    ,                          

2

0 0

2

0 0

(sinh (( ) )cosh ( ) cosh (( ) )sinh ( ))
2 2 2 2( , ) .

3
(cosh (( ) ) sinh(( ) ))

2 2

c c c c
x ct x ct

c
U x t

c c
x ct x ct

 

 

  



    

(31)  

Where 0  is constant. 

4. Generalized Bretherton equation 

Let's consider the generalized form of Bretherton equation [14] as follows 
3 0tt xx xxxxu u u u u     .                                                                               (32) 

By considering the transformations 

( , ) ( )u x t u  ,  x ct   , 

 equation (32) turn to the following ODE. 

2 3 51 1
( 1) 0

6 20
u c u u u      .                                                                       (33) 
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Following the procedure resulted (5) and (6) leads to a non-linear ODE. and (6), 

to get the following system of nonlinear ODE 

 

2 3 5

( ) ( ),

1 1
( ) ( 1) ( ) ( ) ( ).

6 20

 



    


X Y

Y c X X X

 

   
                                                (34) 

 

According to the first integral method, suppose that ( )X X   and ( )Y Y  are 

the nontrivial solutions of (34). And let 
0

( , ) ( )
m

i

i

i

Q X Y a X Y


  is an irreducible 

polynomial in ( , )C X Y , such that 

 

0

( ( ), ( ) ) ( ( ) ) ( ) 0,
m

i

i

i

Q X Y a X Y   


                                                            (35) 

 

Where ( ),ia X
 

0,1,..., ,i m  are polynomials in ,X  and ( ) 0.ma X   Equation (11) 

is called the first integral to (34). Due to the Division Theorem, there exists a 

polynomial ( ) ( ) ,g X h X Y in ( , )C X Y , such that  

 

0

( ( ) ( ) ) ( ( ) )
m

i

i

i

dQ dQ dX dQ dY
g X h X Y a X Y

d dX d dY d   

                                   (36) 

 

In this example, the case 1m   is studied. 

By comparing the coefficients ,iY  0,1,2i   on both sides of (36) 

 

1 1( ) ( ) ( ),a X h X a X                                                                                             (37) 

0 0 1( ) ( ) ( ) ( ) ( ), a X h X a X g X a X                                                                     (38) 

2 3 5

1 0

1 1
( ) ( ( 1) ( ) ( ) ( ) ) ( ) ( ).

6 20
a X c X X X g X a X                                  (39) 

 

Since ( ),ia X
 

0,1,i   are polynomials, then from (37) we deduce that 1( )a x is 

constant, and ( )h X  =0. For simplicity, take 1( )a X =1, and balancing the degrees 

of
 1( ), ( ),g X a X  and 0 ( )a X

 
,in (39), result to deg( ( )g X  )=2.  

Suppose that ( )g X = 2

1 0 1,A X A X B  then 0 ( )a X .will be find. 

 

3 201
0 1 0( )

3 2

AA
a X X X B X B    .                                                                   (40)
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Where 0B  is an integration constant. 

Substitution of 0 ( )a X , 1( ),a X and ( )g X  into (35), and setting all the coefficients 

of powers of X to be zero, two sets of the solution.  

 

1

15

10
A  ,   0 0A  ,   1

15

12
B   ,   0 0B  ,   

159
.

12
c i                                (41) 

1

15

10
A   ,   0 0A  ,   1

15

12
B  ,   0 0B  ,   

159
.

12
c i                                (42) 

 

Using the set (41) in (40), leads to 

 

315 15
( ) ( ) ( ).

30 12
Y X X                                                                            (43) 

 

By substitution in (34) from (43), an exact solution of the Generalized form of 

Bretherton equation. 

 

15 159
( ( ) )

6 12
0

5
( , )

10 25
X i t

u x t

e
 

 



.                                                               (44) 

 

Where 0  is constant. 

 

5. Conclusion 

In this manuscript, the first integral method has been applied successfully, for 

solving the generalized form of the Drinfel’d–Sokolov–Wilson system, and 

Bretherton equation. This method has been led to an exact solution. This method 

which doesn’t need too much computation can be applied to solve others linear or 

nonlinear partial differential equation, of higher order. 
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