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Abstract

Improved modified Korteweg-de Vries (IMKdV) equation is shown to be non-integrable using Painlevé analysis.
Exact travelling wave solutions are obtained using auto-Bäcklund transformation and Linearized transformation.
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1. Introduction

Nonlinear evolution equations (NLEEs) are important mathematical models to describe physical phenomena. They
are also an important field in the contemporary study of nonlinear physics, especially in soliton theory. The research
on the explicit solution and integrability in helpful in clarifying the movement of matter under nonlinear interaction
and plays an important role in scientifically explaining the physical phenomena see for example, fluid mechanics,
plasma physics, quantum hydrodynamic model, optical fibers, solid state physics, chemical kinematic, chemical
physics and geochemistry.
In this paper we will consider the following IMKdV equation as:

ut + u2ux + uxxx − uxxt = 0. (1)

The investigation of exact solutions to nonlinear evolution has become an interesting subject in nonlinear science
field. Many other methods have been developed, such as the inverse scattering transform [1] Bäcklund transforma-
tion method [2-6], Painlevé analysis [7-8], truncated Painlevé analysis [9], bilinear transformation [10], tanh method
[11-12], extended homogeneous balance method [13-15], extended tanh function method [16-20] and linearized trans-
formation [21-22]. The Bäcklund transformations (BT) of nonlinear partial differential equations (PDEs) play an
important role in soliton theory, which is an efficient method to obtain exact solutions of nonlinear PDEs. In order
to obtain the BT of the given nonlinear PDE, various methods, such as Painlevé method [7-8], homogenous balance
(HB) method [13-15], have been presented. The paper is organized as follows : After this introduction Section 2, we
will confirm whether or not (1) passes the Painlevé test by using WTC method [7]. In Section 3, auto-BTs of the
IMKdV equation is obtained by using an extended homogeneous balance method. In Section 4, new exact solutions
of (1) are given via linearized transformation. Finally, In section 5, the discussion and conclusion are illustrated [1].
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2. Painlevé analysis

The Painlevé analysis for partial differential equations (PDEs) was suggested in Ref. [7] , which required that the
solutions should be single valued around movable singularity manifolds. To be precise, if the singularity manifold
is determined by

φ(z1, z2, z3, ...) = 0, (2)

and u = u(z1, z2, z3, ..., zn) is a solution of the PDE, then we assume that

u = φα
∞∑
j=0

ujφ
j (3)

where φ(z1, z2, z3, ..., zn), uj = uj(z1, z2, z3, ..., zn), and u0 6= 0, are analytic functions of (zj) in a neighborhood of
the manifold [7] and a is an integer. Substitution of equation (3) into the PDE determines the allowed values of α
and defines the recursion relations for uj , j = 0, 1, 2, .... When the anzatz equation (1) is correct, the PDE is said
to possess the Painlevé analysis and is conjectured to be integrable.

There are essentially four steps involved in the Painlevé analysis of PDEs:
(i) Determination of the leading order behaviors.
(ii) Identification of the powers at which arbitrary functions can enter into the Laurent series called resonances.
(iii) Verifying that at the resonance values sufficient numbers of arbitrary functions exist without the introduction
of movable critical manifolds.
Substituting (3) into (1), we can get the (α = −1). Thus, (3) becomes

u =

∞∑
j=0

ujφ
j−1, (4)

then we have

ux =

∞∑
j=0

[
uj,xφ

j−2 + (j − 2)ujφ
j−3φx

]
,

ut =

∞∑
j=0

[
uj,tφ

j−2 + (j − 2)ujφ
j−3φt

]
,

uxxx =

∞∑
j=0

[uj,xxxφ
j−2 +3(j−2)uj,xxφ

j−3φx+3(j−2)uj,xφ
j−3φxx+(j−2)ujφ

j−3φxxx+3(j−2)(j−3)uj,xφ
j−4φ2x+

3(j − 2)(j − 3)ujφ
j−4φxφxx + (j − 2)(j − 3)(j − 4)ujφ

j−5φ3x],

uxxt =

∞∑
j=0

[uj,xxtφ
j−1+(j−1)uj,xxφ

j−2φt+2(j−1)uj,xtφ
j−2φx+2(j−1)(j−2)uj,xφ

j−3φxφt+2(j−1)uj,xφ
j−2φxt+

2(j − 1)(j − 2)ujφ
j−3φxφxt + (j − 1)uj,tφ

j−2φxx + (j − 1)(j − 2)uj,tφ
j−3φ2x + (j − 1)(j − 2)ujφ

j−3φxxφt+

(j − 1)ujφ
j−2φxxt + (j − 1)(j − 2)(j − 3)ujφ

j−4φtφ
2
x]. (5)

Substituting equations (5) into equation (1) we have the following recursion relation:

uj−3,t + (j − 3)uj−2φt + umunuj−m−n−1,x + (j −m− n− 1)umunuj−m−nφx + uj−3,3x+

3(j − 3)uj−2,xxφx + 3(j − 3)uj−2,xφxx + (j − 3)uj−2φ3x + 3(j − 2)(j − 3)uj−1,xφ
2
x + 3(j − 2)(j − 3)uj−1φxφxx+

(j − 1)(j − 2)(j − 3)ujφ
3
x − (uj−3,xxt + uj−2,xxφt + 2(j − 3)uj−2,xtφx + 2(j − 2)(j − 3)uj−1,xφxφt+

2(j − 3)uj−2,xφxt + (j − 2)(j − 3)uj−1,tφ
2
x + (j − 1)(j − 2)(j − 3)ujφtφ

2
x + 2(j − 2)(j − 3)uj−1φxφxt+
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(j − 3)uj−2,tφxx + (j − 2)(j − 3)uj−1φtφxx+ (j − 3)uj−2φxxt) = 0. (6)

For j = 0, in (6), we obtain

u0 = ±
√

6
√
φxφt − φ2x, (7)

Substituting from equation (7) into (6), and collecting coefficients of uj we obtain

(j + 1)(j − 3)(j − 4)ujφ
2
x(φx − φt) = Fj (uj−1, ..., u0, φt, φx, φxx, ...) , j = 1, 2, 3, .... (8)

where Fj is a non-linear function. We can see that j = −1, 3, 4, are resonances at which uj becomes arbitrary.
Resonance at −1 corresponds to the arbitrariness of φ. For j = 1, in (8) or (6), we obtain

u1 =
−1

2
√

6(φxφt − φ2x)3/2

(
φ2xφtt − 6φ2xφxt + 4φxφtφxt + φxxφ

2
t − 6φxφtφxx + 6φ2xφxx

)
, (9)

There is incompatibility at j = 2, 3 and the recurrence relation is too lengthy and complicated at j = 3. From this
analysis we see that IMKdV is non-Painlevè and because of Painlevé conjecture it is non-integrable.

3. Auto-Bäcklund transformations for IMKdV equation

According the idea of improved HB [23-24], we seek for ABT of Eq. (1), when balancing uux with uxxx then gives
N = 1. therefore, we may choose

u(x, t) =
∂f(w)

∂x
= f ′(w)wx + a, (10)

where a is a constant, f, w are functions to be determined later,

ut = f ′′wtwx + f ′wxt,

ux = f ′′w2
x + f ′wxx,

u2ux = f ′′f (′)
2

w4
x + f (′)

3

w2
xwxx + 2af ′′f ′w3

x + 2af (′)
2

wxwxx + a2f ′′w2
x + a2f ′wxx,

uxxx = f (4)w4
x + 6f ′′′w2

xwxx + f ′′(3w2
xx + 4w2

xwxxx) + f ′wxxxx,

uxxt = f (4)w3
xwt + 3f ′′′w2

xwxt + 3f ′′′wtwxwxx + 3f ′′wxxwxt + 3f ′′wxwxxt + f ′′wtwxxx + f ′w4x. (11)

Substituting (11), into equation (1), we have

ut + u2ux + uxxx − uxxt = f (4)(w4
x − wtw3

x) + f ′′′(6w2
xwxx + 3wtwxwxx − 3w2

xwxt)+

f ′′(wxwt + a2w2
x − 3wxtwxx + 3w2

xx − 3wxwxxt − wtw3x + 4wxw3x) + f ′(wxt + a2wxx − w3xt + w4x)+

2af ′f ′′w3
x + f ′′f (′)

2

w4
x + 2af (′)

2

wxwxx + f (′)
3

w2
xwxx = 0. (12)

We assume the solution as the form

f(w) = cln(w), (13)

substituting from equation (13) into equation (12), we obtain

f (4)(w4
x − wtw3

x +
c2

6
) + f ′′′(−acw3

x + 6w2
xwxx − 3wtwxwxx − 3w2

xwxt +
c2

2
)+

f ′′(wxwt+a
2w2

x−3wxtwxx+3w2
xx−3wxwxxt−wtw3x+4wxw3x−2acwxwxx)+f ′(wxt+a

2wxx−w3xt+w4x) = 0. (14)
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Fig. 1: The solitary solution u(x, t) defined in equation (17).

To obtain the solution, we set the coefficients of f (4), f ′′′, f ′′ and f ′ equal zero and we assumed w(x, t) as the form:

w(x, t) = 1 + eθ, where θ = λ(t) + kx. (15)

Substituting from (15) into (14) we get

c = ±
√
−2(3 + a2), k = ∓

√
2a√

−(3 + a2)
, λ(t) = ±

√
2a3√

−3(3 + a2)
. (16)

Substituting form (16) in the auto-Backlund transformation (13) gives the solution of (1) provided that a =
√
−1

u(x, t) = −itanh
(

1

6
(3x+ t)

)
. (17)

We have represented this solution (17) for a set of parameter values in Fig. 1

4. Linearized transformation for IMKdV equation

By using the linearized transformation [21], we find the solution for the IMKdV equation (1) by substitution of the
following:

u(x, t) =

∞∑
n=1

Ane
in(k1x−ωt). (18)

To deal with the nonlinear terms of equation (1) we need to employ the extension of Cauchy’s product rule for
multiple series:

p∏
i=1

F i =

∞∑
n=p

n−1∑
m=p−1

...

k−1∑
r=2

r−1∑
s=1

f1s f
2
r−s...f

p
n−m, (19)

where

Fi

∞∑
k=1

f ik (i = 1, 2, 3, ..., p), (20)

If we substitute the solution u(x, t) into equation (1) and apply Cauchy’s rule for the double product appearing in
the nonlinear term, then we obtain

∞∑
n=1

[−inω − in3k3 − in3k2ω]Ane
in(kx−ωt) + ik

∞∑
n=3

n−1∑
m=2

m−1∑
`=1

(`)A`Am−`An−me
in(k−ωt) (21)
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Now, we deriving a recursion relation and we determine the coefficients An. Firstly, we put n = 1, we obtain

the dispersion relation ω = −k3
1+k2 and A1 6= 0 is arbitrary. Secondly, we put n = 2, we see that the coefficients

A2 = A4 = A6 = ... = A2n = 0. Then, we can determine the expansion coefficients by the following recursion
relation:

n(n2 − 1)Ane
in(kx−ωt) =

1 + k2

k2

n−1∑
m=2

m−1∑
`=1

`A`Am−`An−me
in(kx−ωt) (22)

If we put n = 3, 5, 7, ... in equation (22), we find the coefficients A3, A5, A7, ... respectively as the following:

A3 =
1 + k2

24k2
A3

1, A5 =

(
1 + k2

24k2

)2

A5
1,A7 =

(
1+k2

24k2

)3
A7

1, A9 =
(

1+k2

24k2

)4
A9

1. (23)

Substituting from equation (23) into equation (18), we obtain

u(x, t) = A1e
i(kx−ωt) +A3e

3i(kx−ωt) +A5e
5i(kx−ωt) +A7e

7i(kx−ωt) +A9e
9i(kx−ωt) + ... =

A1e
i(kx−ωt) +

(
1 + k2

24k2

)
A3

1e
3i(kx−ωt) +

(
1 + k2

24k2

)2

A5
1e

5i(kx−ωt) +

(
1 + k2

24k2

)3

A7
1e

7i(kx−ωt) + .... (24)

If we take A1 = 2k
√

6/(1 + k2), then equation (24) takes the form:

u(x, t) = 2k

√
6

1 + k2
ei(kx−ωt)

(
1 + e2i(kx−ωt) + e4i(kx−ωt) + e6i(kx−ωt)

)
....= ik

√
6

1+k2 cosec
(
kx+ k3

1+k2 t
)
. (25)

If we take k = a in (25), then we can obtain the solitary wave solution of (1) as:

u(x, t) = a

√
6

1 + a2
csc

(
a

(
x+

a2

1 + a2
t

))
. (26)

Also if we take k = ia in (25), then we can obtain the solitary wave solution of (1) as:

u(x, t) = ia

√
6

1− a2
cosech

(
a

(
x− a2

1− a2
t

))
. (27)

In (24) if we take k = ia and A1 = 2a
√

6/(1− a2), we obtain a new solitary solution of (1)

u(x, t) = a

√
6

1− a2
sech

(
a

(
x− a2

a2 − 1
t

))
. (28)

We have represented these solutions (25)-(27) for a set of parameter values in Figs. (2)-(4) respectively.

5. Conclusion

In this paper, the Bäcklund transformations and a series of new exact explicit solutions of the IMKdV equation have
been established. An extension of the homogeneous balance method was successfully used to develop these solutions.
The solutions include, the algebraic solitary wave solution of rational function, single-soliton solutions, singular
traveling solutions, and the periodic wave solutions of trigonometric function type. Linearized transformation
method was described to find exact solutions of the Improved Modified KdV (IMkdV) equation. Consequently,
three exact soliton solutions were obtained to the IMkdV equation. In spite of the fact that these new soliton
solutions may be important for physical problems, this study also suggests that one may find different solutions by
choosing different methods. Therefore, this method can be utilized to solve many equations of nonlinear partial
differential equation arising in the theory of soliton and other related areas of research.
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Fig. 2: The solitary solution u(x, t) defined in equation (26).

Fig. 3: The solitary solution u(x, t) defined in equation (27).

Fig. 4: The solitary solution u(x, t) defined in equation (28).



International Journal of Applied Mathematical Research 271

References

[1] M.J. Abowitz, P.A. Clarkson, Soliton, ”Nonlinear evolution equations and inverse scattering”. Cambridge University
Press (1991).

[2] M. Ablowitz, D. Kaup, A. Newell, H. Segur, ”The inverse scattering transform-Fourier analysis for nonlinear problems”,
Studies in Applied Mathematics, Vol.53, (1974), pp.249-315.
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[7] J. Weiss, M. Tabor, and G. Carnevale, The Painlevé property for partial differential equations, Journal of Mathematical
Physics, vol.24, No.3, (1983), pp.522-526.

[8] J. Weiss, ”The Painlevé property for partial differential equations. II: Bäcklund transformation, Lax pairs, and the
Schwarzian derivative”, Journal Mathematical Physics, Vol.24, (1983), pp.1405-1413.
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[23] Liu Chun-Ping and Zhou Ling,”A new auto-Bäacklund transformation and two-soliton solution for (3+1)-
dimensional Jimbo-Miwa equation” Communications in Theoretical Physics, Vol.55, (2011), pp.213-216.

[24] Qin Yi, Gao Yi-Tian, Yu Xin and Meng Gao-Qing,”Bell polynomial approach and N-soliton solutions for a
coupled KdV-mKdV system ” Communications in Theoretical Physics, Vol.58, No.1, (2012) pp.73-77.


	Introduction
	Painlevé analysis
	Auto-Bäcklund transformations for IMKdV equation
	Linearized transformation for IMKdV equation
	Conclusion

