International Journal of Applied Mathematical Research, 3 (3) (2014) 260-264
©Science Publishing Corporation

www.sciencepubco.com/index.php/IJAMR

doi: 10.14419/ijamr.v3i3.2901

Research Paper

SPC

Solving the Kuramoto-Sivashinsky equation via
Variational Iteration Method
Majeed A. Yousif *, Saad A. Manaa, Fadhil H. Easif

Department of Mathematics, Faculty of Science, University of Zakho,Duhok, Kurdistan Region, Iraq
*Corresponding author E-mail: majeed.ahmed@uod.ac

Copyright © 2014 Yousif et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this study, the approximate solutions for the Kuramoto-Sivashinsky equation by using the Variational Iteration
Method (VIM) are obtained. Comparisons with the exact solutions and the solutions obtained by the Homotopy
Perturbation Method (HPM), the numerical example show that the Variational Iteration Method (VIM) is accurate and
effective and suitable for this kind of problem.
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1. Introduction

It is well known that most of the phenomena that arise in mathematical physics and engineering fields can be described
by partial differential equations (PDESs) [1], one of the recently method for solving (PDESs) is Variational Iteration
Method, VIM was introduced by Ji-Huan He in 1997.[2] The method has been favorably applied to various kinds of
problems; for example, this scheme is used for solving the fractional KdV-Burgers—Kuramoto equation.[3] This
technique computes the exact solution of equations using the initial condition only. It is also important to note that the
present method does not require discretization of the equation. Therefore, it is not affected by computation round-off
errors and one is not faced with the necessity of large computer memory and time. Furthermore, using this idea we do
not need to solve any linear or nonlinear system of equations. (VIM) is employed to solve fourth-order parabolic
equations. [4] Also, this method is employed to solve delay differential equations. [5]

2. Mathematical model

The Kuramoto-Sivashinsky equation was derived by Kuramoto [6] as a model for phase turbulence in reaction
diffusion systems and by Sivashinsky [7] as a model for plane flame propagation. This equation describes many kinds
of physical phenomenons such as the flow of thin liquid films on inclined planes and dendritic fronts in dilute binary
alloys. Boundary control of Kuramoto-Sivashinsky equation has practical applications in engineering. However, even
after we linearize the Kuramoto-Sivashinsky equation by dropping the quadratic convective term, the problems of the
boundary control of the linearized Kuramoto-Sivashinsky equation are still largely unexplored (see [8]), and there are
few results obtained.[9]

Consider the Kuramoto-Sivashinsky equation [10]

ou ou 9%u a3u *u
E‘FM&‘FCI@‘FY@‘FB@—O (1)

Where a,y and g are arbitrary constants,

Subject to the initial condition

u(x,0) = f(x) a<x<b 2
And boundary conditions

u(a,t) = g:(t), u(b,t) = g,(t), t>0. @)
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And Neumann boundary condition
62

= =h;, at x=aand x=»b where h; = 0. 4)

3. Basic idea of Variational Iteration Method
To clarify the basic ideas of VIM, we consider the following differential equation
Lu+ Nu = g(x,t) (5)

Where L is a linear operator defined by L = a_m ,m € N, N is a nonlinear operator and g(x,t) is a known analytic
function. According to VIM, we can write down a correction functional as follows:

U (6, 8) = up(x, t) + fot/l [Lu, (x,7) + Nii,(x,7) — g(x,7)] dz (6)
Where A is a general lagrangian multiplier defined as: [11]

— (=™ _ #\ym-1
A(t,7) = D (t—1t) ,m=>1. (7)

The subscript n indicates the nth approximation and i, is considered as a restricted variation. [2]

4. Derivative of (VIM) for Kuramoto-Sivashinsky equation

To solve Kuramoto-Sivashinsky equation (1), with initial condition (2) by means of VIM, we construct a correction
functional:

255 35y 45
uﬂ+1(x t) _ un(x t) +f A(aun(x T) n( )6un(x ,T) + aa ua,;(zx,‘[) + ya 1;,;(3}(,‘[) + [),0 1;,;(4x,r)) dz (8)
In our equation, m = 1, then by formula (7), 1 = —1 substituting in equation (8) we get:
2
Upyq (2, 1) = Uy (x, t) — fot (Mrg—(rx,r) + u, (x, 1) au’;(;‘r) +a’ 12’;(2"’1) + ya u"(x L2 B 2 u"(x T)) dr, n=0,1,. 9)

We start with the initial approximation of u(x, 0) given by equation (2). Using the iteration formula (9), we can obtain
the other components as follows:

uy(x,t) = u(x,0) = f(x). (10)
For n=0;

u; (%, t) = up(x, t) — f (au"(r”) + uy(x,7) au(;(;c,‘r) +a 621;1(;,:) +y 6321(;:;) + B 641;‘;5@) dr (11)
For n=1,;

uy(x,t) = uy(x, t) — f (aul(rxr) uy (x, )auz(; D4a 621;;(;;) +y 631;;(;'1) + B 641;;(f’r)) dr (12)

And by the same way forn = 2,3, ...

5. Applications

In this section, we have solved the Kuramoto-Sivashinsy equation numerically by using Variational Iteration Method
(VIM). For clarifying, we take the following example:

Example:

Consider Kuramoto-Sivashinsky equation by [12]

Uy + UUy + Uyy + Uy = 0, x € [0,327x], t €[0,0.001] ; (13)
With the initial condition

u(x,0) = cos (116) (1 + sin (3—6)), (14)
And the exact solution of the problem is given by

u(x,t) = cos (f—ﬁ - t) (1 + sin (i - t)) (15)

For solving by (VIM) we obtain the recurrence relation

U1 (X, 8) = up(x, t) — f (a“"_(:r) u, (x, )aun(x T
Starting with the initial approximation

Uy (x,t) = cos (f—ﬁ) (1 + sin (%)) (7)

4
n 8%up(x,7) + 2 un(x,r)) dr, n=01,.. (16)
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w, () = cos( ) (1 + sin (i ) <8447 cos(Z)  cos3(X)sin(Z) B 3c0s3(2) N 575sin( 2 )cos(16)) 18)

16) 65536 8 16 4096
3(x 3(X in(E) cos(Z)  sin(*
uz(x t) _ COS( ) (1 1+ sin (%)) 383:;70658 6) _ cos (163 51n(16) 3 00j6(16) n 575 smE(l)Z);os(m) _ 51r61£4) _
3cos(i6) 319sin(§) 25 cos ) 7780863 cos(ﬁ> 6765 cos(i—’é‘) 1207 sin(%) 119199 sin(%) 3 sm(ij‘)
64 8192319 4096 4294967296 2097152 131072 33554432 2048
5 <440637 cos(%) N 34435 cos(%) 1127873 cos() 21 cos(Z%) B sin(%) 27937 sin(%) N 89601 sin(%) N 2685 sin(%)) (19)
17179869184 134217728 17179869184 131072 32768 1073741824 = 137438953472 8388608

Then by the same way for u;(x,t), us(x,t), ...

Table 1: Absolute Error of (HPM) and (VIM) At 3" Order, When t = 0.0004

X X1 |uexact - uHPMl |uexact - uVIMl
0 3.766364391323274x10~* 3.297496586894821x10~*
6.4 6.750910825057410x10~* 6.174481700532697x10*
12.8 1.248599280267992x10~* 1.511274889944847x10~*
19.2 3.679513787964717x10~* 3.862367434608327x10~*
25.6 5.536563414442614x10° 5.260390638544416x107°
32 3.766364391323274x10~* 3.297496586894821x10~*

Table 2: Absolute Error of (HPM) and (VIM) At 3" Order, when ¢t = 0.0008

XXT [Uexace — Unpul [Uexace = Uyiml
0 7.534327929941131x10~* 6.596600858967960x10~*
6.4 1.349941768170049x1073 1.234642967767430x1073
12.8 2.501510819914454x10~* 3.026732222584094x10~*
19.2 7.360770433769148x10~* 7.726453090434737x10~*
25.6 1.105927804877852x10~* 1.050693972385001x10~*
32 7.534327929941131x10~* 6.596600858967960x10~*
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Fig. 1: The Surface shows the solution u(x, t), when x € [0,32x],t € [0,0.001]: (A) Exact solution, (B) 3rd Order of approximate solution (VIM)
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Fig. 2: Absolute error of exact solution, when x € [0,327],t € [0,0.001] and: (A) 3 Order of (HPM), (B) 3" Order of (VIM) approximate solution
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Fig. 3: The curve shows the solution u(x, t), when x € [0,327], t = 0.0004: (A) Exact solution and 3 Order of (VIM), (B) Exact Solution, and 3"
Order of (HPM) and 3™ Order of (VIM).
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Fig. 4: The zoom curve shows the solution u(x, t) of exact solution, 3 Order of (HPM) and 3™ Order of (VIM): (A) when x € [0,0.0057],

¢ = 0.0004 , (B) when x € [28.795m, 28.87],t = 0.0004:.
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Fig. 5: The curve shows the solution u(x, t) By 3" Order of (VIM), when € [0,327],t = 0.0004 : (A)whena = -2, a=1, a=2,and g =1
B)wheng=-2, =1, f=2,and a = 1.

6. Conclusion

The Variational Iteration Method (VIM) applied to Kuramoto-Sivashinsky equation and comparing 3" order of VIM
with the exact solution and 3™ order of Homotopy Perturbation Method (HPM) those obtained by Fadhil [13], by Fig.1,
Fig.2, Fig.3 and Fig.4, and the absolute error between them in Tablel and Table2. Show that the Variational Iteration
Method (VIM) is more accurate and the absolute error is so small and the approximate solution is so closed to the exact
solution, Fig.5 show that « , 8 are so effective in this model.
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