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Abstract

In this paper we study the Legender conformable fractional differential equation. It turns out that in certain cases,
similar to the classical case, certain solutions are fractional polynomials. Further, we study basic properties of such
fractional polynomials.
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1. Introduction

The subject of fractional derivative is as old as calculus. In 1695, L,Hopital asked if the expression d0.5

dx0.5 f has
any meaning. Since then, many researchers have been trying to generalize the concept of the usual derivative
to fractional derivatives. These days, many definitions for the fractional derivative are available. Most of these
definitions use an integral form. The most popular definitions are:

(i) Riemann - Liouville Definition: If n is a positive integer and α ∈ [n− 1, n), the αth derivative of f is given
by

Dα
a (f)(t) =

1

Γ(n− α)

dn

dtn

t∫
a

f(x)

(t− x)
α−n+1 dx.

(ii) Caputo Definition. For α ∈ [n− 1, n), the α derivative of f is

Dα
a (f)(t) =

1

Γ(n− α)

t∫
a

f (n)(x)

(t− x)
α−n+1 dx.

Now, all definitions are attempted to satisfy the usual properties of the standard derivative. The only property
inherited by all definitions of fractional derivative is the linearity property. However, the following are the setbacks
of one definition or another:

(i) The Riemann-Liouville derivative does not satisfy Dα
a (1) = 0 (Dα

a (1) = 0 for the Caputo derivative), if α
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is not a natural number.

(ii) All fractional derivatives do not satisfy the known product rule:

Dα
a (fg) = fD

α
a (g) + gD

α
a (f).

(iii) All fractional derivatives do not satisfy the known quotient rule:

Dα
a (f/g) =

gDα
a (f)− fDα

a (g)

g2
.

(iv) All fractional derivatives do not satisfy the chain rule:

Dα
a (f ◦ g)(t) =f (α)g(t) g(α)(t).

(v) All fractional derivatives do not satisfy: DαDβf = Dα+βf in general

(vi) Caputo definition assumes that the function f is differentiable.
(v) T1(λ) = 0, for all constant functions f(t) = λ.

In [ 2], a new definition called conformable fractional derivative was introduced. The new definition satisfies:
1.Tα(af + bg) = aTα(f) + bTα(g), for all a, b ∈ R.
2.Tα(λ) = 0, for all constant functions f(t) = λ.
Further, for α ∈ (0, 1] and and f, g be α−differentiable at a point t, with g(t) 6= 0. Then
3. Tα(fg) = fTα(g) + gTα(f).

4. Tα( fg ) = gTα(f)−fTα(g)
g2

We list here the fractional derivatives of certain functions, for the purpose of comparing the results of the new
definition with the usual definition of the derivative:

1. Tα(tp) = p tp−α .

2. Tα(sin 1
α t
α) = cos 1

α t
α.

3. Tα(cos 1
α t
α) = − sin 1

α t
α.

4. Tα(e
1
α t
α

) = e
1
α t
α

.

On letting α = 1 in these derivatives, we get the corresponding ordinary derivatives. Recently, [1], used the
conformable definition of fractional derivative to introduce fractional Laplace transform, and fractional Taylor
expansion. We refer to [4], [5], [6], and [7] for the basic properties and history of fractional calculus.

2. Preliminaries

The classical Legendre differential(
1− x2

)
y′′ − 2xy′ + k (k + 1) y = 0

The point x = 0 is an ordinary point for the equation. Solving the equation around x = 0, using series solution,
and assuming that k is a natural number, gives polynomial solution, called Legender polynomials, given by the
formula:

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n

These sets of polynomials turned to be orthogonal polynomials in the sense
1∫
−1
Pn(x)Pm(x)dx = 0 for n 6= m. Such

polynomials turned out to be of particular interest in many problems in mathematical physics like heat distribution
in spherical regions and in the structure of atoms.

Throughout this paper, we let Dαy denote the conformable fractional derivative of y, where α ∈ (0, 1]. The
second α−derivative of y will be denoted by DαDαy. A series is called a fractional power series if it can be
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written in the form
∞∑
n=0

anx
nα, for α ∈ (0, 1]. Further,[ 2], we let I0α(f)x =

x∫
0

f(t)
t1−α dt, . We refer to [1 ] and [2 ] for

the basic structure of conformable fractional derivatives, integrals and fractional power series.
In this paper, we will be studying the fractional Legender equation:

(
1− x2α

)
DαDαy−2αxαDαy+α2k (k + 1) y =

0. We find that if k is a natural number then one gets fractional polynomial solutions, to be called Legender fractional
polynomials.

3. Solution of fractional Legender equation

Consider the equation(
1− x2α

)
DαDαy−2αxαDαy+α2k (k + 1) y = 0 (∗)

where α ∈ (0, 1], and k is any real number. Clearly, if α = 1, then equation (∗) is just the classical Legender
equation. We will use series solution around x = 0 to get polynomial solutions for equation (∗), when k is assumed
to be a natural number.

Now x = 0 is an ordinary point for the equation. Using the fractional power series expansion given in [2 ], and
for x > 0, we let

y =

∞∑
n=0

anx
nα

So

Dαy =

∞∑
n=1

αnanx
nα−α

DαDαy =

∞∑
n=2

α2n (n− 1) anx
nα−2α

Substitute these in equation (∗) we get:

∞∑
n=2

α2n (n− 1) anx
nα−2α−x2α

∞∑
n=2

α2n (n− 1) anx
nα−2α−2αxα

∞∑
n=1

αnanx
nα−α+α2k (k + 1)

∞∑
n=0

anx
nα = 0 (∗∗)

In the first sum in (∗∗), replacing n by n+ 2 we get

∞∑
n=0

an+2α
2(n+ 2) (n+ 1)xnα (1)

The second term sum needs no change of variables and it is equal to:

−
∞∑
n=2

α2n (n− 1) anx
nα (2)

The third term sum needs no change of variables and it is equal to:

−
∞∑
n=1

2α2nanx
nα (3)
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The forth term sum needs no change of variables and it is equal to:

∞∑
n=0

α2k (k + 1) anx
nα (4)

Now,unifying all summations to start from n = 2 and put them in one summation we get:

(2α2a2 + α2k (k + 1) a0) + (6α2a3 − 2α2a1 + α2k (k + 1) a1)x

+

∞∑
n=2

[an+2α
2(n+ 2) (n+ 1)− α2n (n− 1) an − 2α2nan + α2k (k + 1) an]xnα = 0

From which we get:

a2 = −k (k + 1)

2
a0 (5)

a3 =
2− k (k + 1)

6
a1 (6)

and

an+2 =
n (n+ 1)− k (k + 1)

(n+ 1) (n+ 2)
an (7)

Hence there are two independent solutions y1 which is the sum over the odd terms and y2 which is the sum over
the even terms. However, such solutions do not have finite value at 1 and at −1, which means that such solutions
are not physically feasible . Thus the only series solutions of interest are those that terminate after finitely many
steps. That means polynomial solutions. Thus in equation (7) if k is a natural number, then ak+2 = 0 and so
ak+2n = 0. However, one may still have ak(2n+1) 6= 0 for all n. Hence by choosing one of a0 (or a1) equal to zero,
we can make all even-numbered coefficients (or all odd-numbered coefficients) equal to zero.

Simplifying the recurrence formula in (7), to get

an+2 = − (k − n)(n+ k + 1)

(n+ 1)(n+ 2)
an (8)

Notice, if one substitute in the recurrence formula (8), n = 0, we get a2 = −k(k+1)
2 a0, which is equation (5). If

n = 2, we get a4 = k(k−2)(k+3)(k+1)
4! a0. And son on to get

a2n = (−1)n
k(k − 2)...(k − 2(n− 1)).(k + 2n− 1)(k + 2n− 3)...(k + 1)

(2n)!
a0 (9)

So if k is an even natural number, one can simplify (9) to get

a2n = (−1)n
(k + 2n)![(k2 )!]2

(2n)!k!(k2 + n)!(k2 − n)!
a0 (10)

The constant a0 is usually chosen so that so that the polynomial solution at x = 1 equals 1. So, the value to be
given to a0 is a0 = (−1)

k
2

k!
2k[( k2 )!]

2 . So

for k = 0, we get the polynomial P0(x) = 1. For k = 2, we get the polynomial P2(x) = 1
2 (3x2α − 1).

Similarly, for n = 4, 6, 8, .... There are similar formulas and structure if k is an odd natural number: P1(x) = xα,
P3(x) = 1

2 (5x3α − 3xα), ...
Let Dnα = DαDα....Dα , n−times. With such notation and using the known formula [2 ], Dαxp = pxp−1, we

can have a nice closed formula for all such polynomials, as follows:

Pn(x) =
1

αn2nn!
Dnα(x2α − 1)n (11)
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4. Orthogonality of Legendre fractional polynomials

In the classical sense, two functions f, g are orthogonal on an interval [a, b], if
b∫
a

f(x)g(x)dx = 0. For the case

of Legendre polynomials, the interval that mathematicians consider is [−1, 1], for physical applications. So if we
want to study the orthogonality of fractional Legendre polynomials on such interval, then we have to extend the
definition of Dαf(x) to include negative values of x. In the definition given in [2 ], the definition was Dαf(t) =

lim
ε→0

f(t+εt1−α)−f(t)
ε , t > 0. To avoid the trouble of being undefined on [−1, 0], we assume α to be of the form

1
k , with k an odd natural number. So throughout this section we assume α = 1

2j+1 , with j any natural number.

In such a case t1−α is defined for all t ∈ R, and xnα is defined for all x ∈ R, and all n. So we can put the following:

Definition 4.1. For 0 < α = 1
2j+1 ≤ 1, we let Dαf(t) = lim

ε→0

f(t+εt1−α)−f(t)
ε , t 6= 0. If t = 0, then we

define Dαf(0) = lim
t→0

Dαf(t). It follows from the definition, that for the case of fractional polynomials we have

Dαxnα = nαx(n−1)α, for all x ∈ R.

Let I−1α (f)(1) =
1∫
−1

f(x)
x1−α dx. Now we can state:

Theorem 4.2.
1∫
−1
Pn(x)Pm(x)dx = 0 for n 6= m.

Proof. Since Pn, is a solution for the fractional equation
(
1− x2α

)
DαDαy − 2αxαDαy + α2n (n+ 1) y = 0,

then

Dα[(1− x2α)DαPn(x)] + α2n(n+ 1)Pn(x) = 0 (12)

Similarly for Pm(x) :

Dα[(1− x2α)DαPm(x)] + α2m(m+ 1)Pm(x) = 0 (13)

Multiply (12) by Pm and (13) by Pn and subtract the resulting equation to get

J = Pm(x)[Dα[(1−x2α)DαPn(x)]+α2n(n+1)Pn(x)]−Pn(x)[Dα[(1−x2α)DαPm(x)]+α2m(m+1)Pm(x)] = 0 (14)

Now, apply the fractional integral I−1α to equation (14) to get:

I−1α (J) =

1∫
−1

J(x)

x1−α
dx = 0 =

1∫
−1

(Pm(x)[Dα[(1− x2α)DαPn(x)]− Pn(x)[Dα[(1− x2α)DαPm(x)])

x1−α
dx

+

1∫
−1

α2[n(n+ 1)−m(m+ 1)]Pn(x)Pm
x1−α

dx = 0

(15)

Using integration by parts that was introduced in [ 1] for fractional derivatives, and the fact that n 6= m we get
the result.
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