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Abstract

In this paper, we investigate the spatiotemporal dynamics of a lattice
of coupled chaotic Ikeda maps whose coupling connections are dynami-
cally rewired to random sites with probability p. Ikeda map is defined
as

xn+1 = 1 + (b(xncos(tn) − ynsin(tn))

yn+1 = b(xnsin(tn) + yncos(tn))

where b is a positive constant and tn = 0.4− 6/(1+ x2
n

+ y2
n
). Firsly, we

consider a diffusively coupled network of Ikeda maps whose x-component
can only diffuse. Bifurcation analysis of the lattice with respect to cou-
pling strength is done. The variation of synchronized basin size with
respect to coupling strength are shown for different values of rewiring
probability. The variation of synchronized basin size with respect to
rewiring probability are shown for different values of coupling strength.
We do not observe complete synchronization in this type of network.
In search for a network where complete synchronization can occur we
consider a completely random network where both x and y components
can diffuse. For the second type of network we observe synchronized
spatiotemporal fixed point.
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1 Introduction

In recent years, complex networks have provided an increasingly chal-
lenging framework for the study of collective behaviors in complex systems,
based on the interplay between the wiring architecture and the dynamical
properties of the coupled units [1]. In recent years it has become evident that
modelling large interactive systems by finite dimensional lattices on one hand,
and fully random networks on the other, is inadequate, as various networks,
ranging from collaborations of scientists to metabolic networks, do not fit in
either paradigm [2]. In fact, many systems of biological, technological and
physical significance are better described by randomizing some fraction of the
regular links [3,4,5]. The coupled map lattice (CML) is a model which can
capture the essential features of the nonlinear dynamics of extented systems
[6]. A very well-studied coupling form in CMLs is the nearest-neighbour cou-
pling. However, some degree of randomness in spatial coupling can be closer
to physical reality than strict nearest neighbour scenarious. In this paper,
we will study the spatiotemporal dynamics of coupled map latices(CML) of
Ikeda maps where some of its coupling connections rewired randomly. Firsly,
we consider a network of Ikeda maps whose x-component can only diffuse.
The variation of synchronized basin size with respect to coupling strength are
shown for different values of rewiring probability. The variation of synchro-
nized basin size with respect to rewiring probability are shown for different
values of coupling strength. Complete synchronization is not observed in this
type of network. Secondly, we consider a completely random network where
both x and y components of Ikeda maps can diffuse. The variation of basin of
attraction of the synchronized state with respect to diffusion coefficient of x

variable is shown for fixed values of diffusion coefficient of y.

2 Model

We consider a one dimensional ring of coupled two dimensional Ikeda maps.
The sites are denoted by integers i = 1, 2, ..., N , where N is the linear size of
the lattice. On each site a continuous state variable denoted by (x

n
(i), y

n
(i)) is

defined which corresponds to the physical variables of interest. The evolution
of this lattice, under standard nearest neighbour interactions, in discrete time
n is given by

x
n+1(i) = (1 − ǫ)f(x

n
(i), y

n
(i)) +

ǫ

2
{x

n
(i + 1) + x

n
(i − 1)}

y
n+1(i) = g(x

n
(i), y

n
(i)) (1)

Here ǫ denotes the coupling strength. Now we will consider the above sys-
tem with its coupling connections rewired randomly in varying degrees, and
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try to determine what dynamical properties are significantly affected under
this rewiring. In our study, at every update we will connect a fraction p of
randomly chosen sites in the lattice, to two other random sites, instead of
their nearest neighbors as in equation (1). That is, we will replace a fraction
p of nearest neighbor links by random connections. The dynamical equations
of this randomly rewired systems where only x component of the maps can
diffuse with p probability are the following

x
n+1(i) = (1 − ǫ)f(x

n
(i), y

n
(i)) +

ǫ

2
{x

n
(ξ) + x

n
(η)}

y
n+1(i) = g(x

n
(i), y

n
(i)) (2)

where ξ and η are random integers drawn from a uniform distribution of the
integers i = 1, 2, ..., N , and with (1 − p) probability the evolution equations
are

x
n+1(i) = (1 − ǫ)f(x

n
(i), y

n
(i)) +

ǫ

2
{x

n
(i + 1) + x

n
(i − 1)}

y
n+1(i) = g(x

n
(i), y

n
(i)) (3)

The case p = 0 correspond to the usual nearest neighbor interaction, while
p = 1 corresponds to completely random coupling. This scenario is like small
world networks at low p.
Secondly, we consider completely random network of Ikeda maps of the follow-
ing type. The dynamical equations of this randomly rewired network where
both x and y components of the maps can diffuse are

x
n+1(i) = (1 − ǫ1)f(x

n
(i), y

n
(i)) +

ǫ1

2
{x

n
(ξ) + x

n
(η)}

y
n+1(i) = (1 − ǫ2)g(x

n
(i), y

n
(i)) +

ǫ2

2
{y

n
(ξ) + y

n
(η)} (4)

where ξ and η are random integers drawn from a uniform distribution of the
integers i = 1, 2, ..., N .

3 Results and Discussions

We will now present evidence of significant effects of random rewiring on spa-
tiotemporal order. The numerical results have been obtained by sampling a
large set (100) of random initial conditions and with lattice size 100. Figure
1(a) and 1(b) displays the bifurcation diagram of single Ikeda map with respect
to bifurcation parameter b for different u. Figure 2 shows the variation of syn-
chronized basin size with respect to coupling strength ǫ for different rewiring
probability for a network of coupled Ikeda maps. Figure 2(a) shows that basin
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Figure 1: Bifurcation diagram of the Ikeda map with respect to bifurcation
parameter b (a) for u = 0.7 and (b) for u = 0.9.
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Figure 2: Size of the basin of attraction of the synchronized state with respect
to coupling strength ǫ for rewiring probability (a) p = 0.0, p = 0.05, p = 0.2
and (b) p = 0.0, p = 0.5 ,p = 1.0.
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Figure 3: Size of the basin of attraction of the synchronized state with respect
to rewiring probability for coupling strength ǫ (a) ǫ = 0.0, ǫ = 0.4, ǫ = 0.55
and (b) ǫ = 0.75, ǫ = 0.95, ǫ = 1.0.
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Figure 4: Bifurcation diagram with respect to coupling strength, for (a) ǫ2 =
0.90, u = 0.9 and for (b) ǫ2 = 0.90, u = 0.7.
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Figure 5: Bifurcation diagram with respect to coupling strength, for (a) ǫ2 =
0.95, u = 0.7 and for (b) ǫ2 = 0.95, u = 0.9.
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Figure 6: Size of the basin of attraction of the synchronized state with respect
to rewiring probability for coupling strength ǫ2 = 0.90, ǫ2 = 0.95, u = 0.9.
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Figure 7: Size of the basin of attraction of the synchronized state with respect
to rewiring probability for coupling strength ǫ2 = 0.90, ǫ2 = 0.95, u = 0.7.

size is smallest for p = 0, and for p = 0.05 basin size is maximum for coupling
strength ǫ in the interval 0.4 ≤ ǫ ≤ 0.7. A significant change is observed in the
basin size for small non zero p values compair to zero p value here. In figure
3 the variation of basin size with respect to rewiring probability p is shown
for different coupling strength. The basin size is maximum for intermediate
values of coupling strength ǫ. Figure 3(a) shows the sensitivity of synchronized
basin size with respect to rewiring probability p for different coupling strength.
From figure 3 we observe that basin size of synchronization is minimum for
nearest neighbour couplinng (p = 0.0). The basin size increases for increasing
randomness in connectivity for 0.0 ≤ p ≤ 0.2. In the interval 0.2 ≤ p ≤ 0.5
for increasing p spatiotemporal regularity occurs for small value of coupling
strength ǫ. Basin size remain almost same for 0.5 ≤ p ≤ 0.95. The important
point is that complete synchronization is not observed here. Now we compute
the bifurcation diagram of the system of equations (3) with respect to coupling
strength in the figure 4 and figure 5 for different u in a completely random
network. We observe no synchronization for weak coupling but complete syn-
chronization for strong coupling strength. We have calculated the synchronized
basin size with respect to ǫ1 for different fixed ǫ2 in figure 6 and figure 7. From
the figure 6 we observe that complete synchronization is occuring for coupling
strength ǫ1 > 0.4. for ǫ2 = 0.95 and for coupling strength ǫ1 > 0.44. for
ǫ2 = 0.9 for u = 0.9. From the figure 7 we observe that complete synchroniza-
tion is occuring for coupling strength ǫ1 > 0.2. for ǫ2 = 0.95 and for coupling
strength ǫ1 > 0.24. for ǫ2 = 0.9 for u = 0.7. Therefore synchronized basin size
for ǫ2 = 0.95 is greater than the basin size for ǫ2 = 0.9 in both the cases. This
type of network may be useful for controlling spatially extended systems.
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