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Abstract

Recently Many results on coupled fixed point theory exist in the
literature, for more details, one can see in [2,11,22]. We established
coupled coincidence and common fixed point theorems for two self mixed
g-monotone mappings in the settings of Menger PM-spaces. Our result
is also substantiated with the aid of an appropriate example and some
open problems are also suggested for further studies.
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1 Introduction

Menger [10] introduced the notion of a probabilistic metric space in 1942, since
then the theory of probabilistic metric spaces is an important generalization of
the metric space and appears to be of interest in the investigation of physical
quantities and physiological thresholds (see [5,6,8,14,17]).It is also of funda-
mental importance in probabilistic functional analysis. In recent years there
has been a growing interest in studying the existence of fixed points for contrac-
tive mappings satisfying monotone properties in ordered metric spaces. This
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trend was initiated by Ran and Reurings in [1] where they extended the Ba-
nach contraction principle in partially ordered sets with some applications to
matrix equations. Recently, Ran and Reurings [1], Bhaskar and Lakshmikan-
tham [20], Nieto and Lopez [7],Agarwal, El-Gebeily and O’Regan [15] and
Lakshmikantham and Ciric [21] presented some new results for contractions
in partially ordered metric spaces. The main idea in [1,7] involve combining
the ideas of the iterative technique in the contraction mapping principle with
those in the monotone technique. Bhaskar and Lakshmikantham [20] intro-
duced the notion of a coupled fixed point and proved some coupled fixed point
theorems for mixed monotone mappings in ordered metric spaces. Afterwards,
Lakshmikantham and ciric [21] had established coupled coincidence and cou-
pled fixed point theorems for two mappings F and g where F has the mixed
g-monotone property. Many other results on coupled fixed point theory exist
in the literature, for more details, we refer the reader to [2,11,12,22].

2 Preliminary Notes

Definition 2.1. [4] A mapping ∆ : [0, 1]×[0, 1]→ [0, 1] is called a triangular
norm (shortly t-norm) if

(i) ∆(a, 1) = a,∆(a, 0) = 0,
(ii)∆(a, b) = ∆(b, a),

(iii)∆(a, b) ≤ ∆(c, d) for a ≤ c, b ≤ d,
(iv)∆(∆(a, b)), c) = ∆(a∆(b, c)) for all a, b, c ∈ [0, 1].

Remark 2.1. The following are the basic t-norms:
(i) The minimum t-norm: TM(a, b) = min {a, b}.
(ii) The weakest t-norm, the drastic product:

H(x) =

{
min(a, b) if max (a, b) = 1

0 otherwise

Throughout this paper, ∆ stands for an arbitrary continuous t-norm.

Definition 2.2. [4] A mapping F : < → <+ is called distribution function
if it is non-decreasing, left continuous with

inf{F(t) : t ∈ <} = 0, sup{F(t) : t ∈ <} = 1.

Let L be the set of all distribution functions whereas H stands for the specific
distribution function (also known as Heaviside function) defined by

H(x) =

{
0 if x ≤ 0
1 if x > 0
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Definition 2.3. [4, 10] A triplet (X,F ,∆) is called a Menger probabilistic
metric space (for short, a Menger PM-space) if X is a non empty set, ∆ is a t-
norm and F is a mapping from X×X to D satisfying the following conditions:
for all x, y, z ∈ X we denote F(x, y) by Fx,y.:

(MS-1)Fx,y(t) = H(t) for all t ∈ R if and only if x = y;
(MS-2)Fx,y(t) = Fy,x(t); for all x, y ∈ X and t ∈ R;
(MS-3)Fx,y(s+ t) ≥ ∆(Fx,z(s), Fz,y(t)) for all x, y, z ∈ X and s, t ≥ 0.

Remark 2.2. [3, 5] Point out that if the t-norm ∆ of a Menger PM-space
(X,F ,4) satisfies the condition sup0<t<1 ∆(t, t) = 1, then (X,F ,4) is a
Hausdorff topologic space in the (ε, λ)-topology J i.e. the family of sets

{∪x(ε, λ) : ε > 0, λ ∈ (0, 1]} (x ∈ X)

is a basis of neighbourhood of point x for J , where

∪x(ε, λ) = {y ∈ X : Fx,y(ε) > 1− λ}.

By virtue of this topology J , a sequence {xn} in (X,F ,4) is said to be

J -convergent to x ∈ X (we write xn
−→
J x if limn→∞Fxn, x(t) = 1 for

all t > 0; {xn} is called a J -Cauchy sequence in (X,F ,4) if for any given
ε > 0 and λ ∈ (0, 1], there exists a positive integer N = N(ε, λ) such that
limn→∞Fxn, xm(ε) > 1 − λ, whenever n,m ≥ N ; (X,F ,4) is said to be J -
complete, if each J -Cauchy sequence in X is J -convergent to some point in
X.
in the sequel, we will always assume that (X,F ,4) is a Menger space with the
(ε, λ)-topology.

Lemma 2.1. [9] Let {yn} be a sequence in a Menger PM-space (X,F ,4),
where the t-norm ∆ = ∆M . If there exists a function φ ∈ Φ such that

Fyn,yn+1(φ(t)) ≥ min{[Fyn−1,yn(t), Fyn,yn+!
(t)

for all t > 0, n ∈ N. The {yn} is a Cauchy sequence in X.

Lemma 2.2. [18] If (X,F ,4) is a Menger PM-space, ∆ is continuous, then
probabilistic distance function F is a low semi continuous function of points,i.e.
for every fixed point t > 0, if xn → x, yn → y, then lim

n→∞
Fxn,yn(t) = Fx,y(t).

Lemma 2.3. [9] Let (X,F ,4) is a Menger PM-space where the t-norm
∆ = ∆M . and x, y ∈ X. If there exists a function φ ∈ Φ such that

Fx,y(φ(t) + 0) ≥ Fx,y(t) for all t > 0.

then x = y.
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Definition 2.4. [20] An element (x, y) ∈ X×X is called coupled fixed point
of the mapping G : X ×X → X if

G(x, y) = x, G(y, x) = y.

Definition 2.5. [20] Let (X,�) be a partially ordered set and G : X ×
X → X. The mapping G is said to has the mixed monotone property if G is
monotone, non-decreasing in its first argument and is monotone non-increasing
in its second argument, that is, for any x, y ∈ X,

x1, x2 ∈ X, x1 � x2 ⇒ G(x1, y) � G(x2, y) (1)

and

y1, y2 ∈ X, y1 � y2 ⇒ G(x, y1) � G(x, y2) (2)

Definition 2.6. [19] An element (x, y) ∈ X×X is called coupled coincidence
point of the mapping G : X ×X → X and g : X ×X if

G(x, y) = g(x), G(y, x) = g(y).

Definition 2.7. [19] Let X be a non-empty set, G : X × X → X and
g : X ×X, we say G and g are commutative if

g(G(x, y)) = x, G(g(x), g(y)) = y for all x, y ∈ X.

Definition 2.8. [19] Let (X,�) be a partially ordered set and G : X×X →
X and The mapping g : X → X. We say G has mixed g-monotone property if
G is monotone, g non-decreasing in its first argument and is monotone g-non-
increasing in its second argument that is, for any x, y ∈ X,

x1, x2 ∈ X, g(x1) � g(x2) ⇒ G(x1, y) � G(x2, y), (3)

and

y1, y2 ∈ X, g(y1) � g(y2)⇒ G(x, y1) � G(x, y2). (4)

If we take g as identity mapping then this definition reduced in mixed mono-
tone property.

3 Main Results

Theorem 3.1. Let (X,F ,∆) be a complete Menger PM space under con-
tinuous t-norm ∆ = ∆M . and (X,�) be a partially ordered set and Let G :
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X × X → X, g : X × X be two self mappings such that G has a mixed g-
monotone property and there exists φ ∈ Φ such that

FG(x,y),G(u,v)(φ(t)) ≥min
{
Fg(x),G(x,y)(t), Fg(u),G(u,v)(t),

1

Fg(x),G(u,v)(2t)Fg(u),G(x,y)(2t)
,

Fg(x),g(u)(t),
Fg(u),G(x,y)(2t)

Fg(x),G(u,v)(2t)

} (5)

for all x, y, u, v ∈ X, t > 0 for which g(x) � g(u) and g(y) � g(v) or g(x) �
g(u) and g(y) � g(v).
Suppose G(X × X) ⊆ g(X) is continuous and commutes with G and also
suppose either
(i) G is continuous or
(ii) X has the following properties:

(a) If a non decreasing sequence xn → X then xn � x for all n, and
(b) If a non increasing sequence yn → y then yn � y for all n.

if there exists an x0, y0 ∈ X such that

g(x0) � G(x0, y0) g(y0) � G(y0, x0)

then there exists x, y ∈ X such that
g(x) = G(x, y) and g(y) = G(y, x).
then G and g have a coupled coincidence point.

Proof : Let x0, y0 ∈ X such that X. By g(x0) � G(x0, y0) and g(y0) �
G(y0, x0). Since G(X × X) ⊆ g(X), we can choose x1, y1 ∈ X such that
g(x1) = G(x0, y0) and g(y1) = G(y0, x0). Again from G(X × X) ⊆ g(X), we
can choose x2, y2 ∈ X such that g(x2) = G(x1, y1) and g(y2) = G(y1, x1).
Repeating this process we get the sequences xn+1 and yn+1 in X such that

g(xn+1) = G(xn, yn) and g(yn+1) = G(yn, xn). for all n ≥ 0. (6)

we have to show that

g(xn) � g(xn+1) for all n ≥ 0, (7)

and
g(yn) � g(yn+1) for all n ≥ 0. (8)

Now by the mathematical induction.
Let n = 0. g(x0) � G(x0, y0) , g(y0) � G(y0, x0)
and g(x1) = G(x0, y0), g(y1) = G(y0, x0), we have g(x0) � g(x1) and g(y0) �
g(y1). Thus eq.(7) and eq.(8) holds for n = 0. suppose now that eq.(7) and
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eq.(8)holds for n ≥ 0. since g(xn) � g(xn+1) and g(yn) � g(yn+1), and as G
has the mixed g−monotone property, from eq.(3),we get

g(xn+1) = G(xn, yn) � G(xn+1, yn) and G(yn+1, xn) � G(yn, xn) = g(yn+1)
(9)

and from eq.(3) we get

g(xn+2) = G(xn+1, yn+1) � G(xn+1, yn),

G(yn+1, xn) � G(yn+1, xn+1) = g(yn+2).
(10)

now from eq. (9) and eq.(10) we get g(xn+1) � g(xn+2) and g(yn+1) � g(yn+2).
thus by the mathematical induction we conclude that eq.(7) and eq.(8) holds
for all n ≥ 0. therefore,

g(x0) � g(x1) � g(x2) � · · · � g(xn) � g(xn+1) � · · · (11)

and
g(y0) � g(y1) � g(y2) · · · � g(yn) � g(yn+1) � · · · (12)

Now putting x = xn−1 , y = yn−1 and u = xn , v = yn in eq.(5)

FG(xn,yn),G(xn−1,yn−1)(φ(t)) ≥ min{Fg(xn−1),G(xn−1,n−1y)(t), Fg(xn),G(xn,yn)(t),

1

Fg(xn−1),G(xn,yn)(2t)Fg(xn),G(xn−1,yn−1)(2t)
,

Fg(xn),g(xn−1)(t),
Fg(xn),G(xn−1,yn−1)(2t)

Fg(xn−1),G(xn,yn)(2t)

}
Fg(xn+1,g(xn)(φ(t)) ≥min{Fg(xn−1),g(xn)(t), Fg(xn),g(xn+1)(t),

1

1.∆[Fg(xn−1),g(xn)(t), Fg(xn),g(xn+1)(t)]
,

Fg(xn),g(xn−1)(t),
1

∆[Fg(xn−1),g(xn)(t), Fg(xn),g(xn+1)(t)]
}

By using eq.(6)

= min{Fg(xn−1),g(xn)(t), Fg(xn),g(xn+1)(t),

1

min[Fg(xn−1),g(xn)(t), Fg(xn),g(xn+1)(t)]
, Fg(xn−1),g(xn)(t),

1

min[Fg(xn−1),g(xn)(t), Fg(xn),g(xn+1)(t)]
}

Case-I
If Fg(xn−1),g(xn)(t) < Fg(xn),g(xn+1)(t) then by above

Fg(xn+1,g(xn)(φ(t)) ≥ min{Fg(xn),g(xn−1)(t),
1

Fg(xn)(t), g(xn−1)
,

1

Fg(xn−1),g(xn)(t)
}
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Now by Lemma (2.1) {g(xn)} is Cauchy sequence.
Case-II
If Fg(xn),g(xn+1)(t) < Fg(xn−1),g(xn)(t) then

Fg(xn+1,g(xn)(φ(t)) ≥ min{Fg(xn),g(xn+1)(t),
1

Fg(xn),g(xn+1)(t)
,

1

Fg(xn),g(xn+1)(t)
}

Now by Lemma (2.1) {g(xn)} is Cauchy sequence.
Again putting x = yn, y = xn and u = yn−1 v = xn−1 in eq.(5) we have

FG(yn,xn),G(yn−1,xn−1)(φ(t)) ≥min{Fg(yn),G(yn,xn)(t), Fg(yn−1),G(yn−1,xn−1)(t),

1

Fg(yn),G(yn−1,xn−1)(2t)
, Fg(x),g(yn−1)(t),

FFg(yn−1),G(yn,xn)
(2t)

Fg(yn),G(yn−1,xn−1)(2t)
}

Fg(yn+1,g(yn))(φ(t)) ≥min{Fg(yn),g(yn+1)(t), Fg(yn−1),g(yn)(t),

1

Fg(yn),g(yn)(2t).Fg(yn−1),g(yn+1)(2t)
, Fg(x),g(yn−1)(t),

Fg(yn−1),g(yn+1)(2t)

Fg(yn),g(yn)(2t)
}

= min{Fg(yn),g(yn+1)(t), Fg(yn−1),g(yn)(t),

1

1.∆[Fg(yn−1),g(yn)(t), Fg(yn),g(yn+1)(t)]
, Fg(x),g(yn−1)(t),

∆[Fg(yn−1),g(yn)(t), Fg(yn),g(yn+1)(t)]

1
}

= min{Fg(yn),g(yn+1)(t), Fg(yn−1),g(yn)(t),

1

min[Fg(yn−1),g(yn)(t), Fg(yn),g(yn+1)(t)]
,

Fg(yn),g(yn+1)(t),min[Fg(yn−1),g(yn)(t), Fg(yn),g(yn+1)(t)]}
Here arises two cases as follows
Case-I
If Fg(yn−1),g(yn)(t) < Fg(yn),g(yn+1)(t) then

Fg(yn+1,g(yn)(φ(t)) ≥ min{Fg(yn),g(yn−1)(t)

Now by Lemma (2.1) {g(yn)} is also a Cauchy sequence.
Case-II
If Fg(yn−1),g(yn)(t) > Fg(yn),g(xn+1)(t) then

Fg(yn+1,g(yn)(φ(t)) ≥ min{Fg(yn),g(yn+1)(t)}
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Now by Lemma (2.1) {g(yn)} is also a Cauchy sequence.
Since X is complete, there exists x, y ∈ X such that

limn→∞g(xn) = x and limn→∞g(yn) = y (13)

Since g is continuous therefore

limn→∞g(g(xn)) = g(x) and limn→∞g(g(yn)) = g(y) (14)

Using the commutativity of g and G and eq.(6) we have

g(g(xn+1)) = g(G(xn, yn) = G(g(xn), g(yn)), (15)

g(g(yn+1)) = g(G(yn, xn) = G(g(yn), g(xn)). (16)

Now we show that g(x) = G(x, y) and g(y) = G(y, x). Suppose that the as-
sumption (i) holds. On taking n→∞ in eq.(15) and eq.(16) by eq.(13)eq.(14)
and continuity of G we get.

g(x) = lim
n→∞

g(g(xn+1)) = lim
n→∞

G(g(xn), g(yn)) = G( lim
n→∞

g(xn), lim
n→∞

g(yn) = G(x, y).

g(y) = lim
n→∞

g(g(yn+1)) = lim
n→∞

G(g(yn), g(xn)) = G( lim
n→∞

g(yn), lim
n→∞

g(xn) = G(y, x).

i.e.g(x) = G(x, y) and g(y) = G(y, x).
Suppose that the assumption (ii) holds. Since {g(xn)} is non-decreasing and
g(xn)→ x, and {g(yn)} is non-increasing and g(yn)→ y, we have by g(xn) � x
and g(yn) � y for all n. Then by (MS-3), eq. (5), eq.(15) and eq.(16) we get

Fg(x),G(x,y)(φ(t)) ≥min{Fg(x),g(g(xn+1))(φ(t)− φ(qt)), Fg(g(xn+1)),G(x,y)(φ(qt))}
= min{Fg(x),g(g(xn+1))(φ(t)− φ(qt)), FG(g(xn),g(yn),G(x,y))(φ(qt))}
≥{Fg(x),g(g(xn+1))(φ(t)− φ(qt)), Fg(g(xn)),G(g(xn),g(yn))(qt),

Fg(x),G(x,y)(qt),
1

Fg(g(xn)),G(x,y)(2qt).Fg(x),G(g(xn),g(yn))(2qt)
,

Fg(g(xn)),g(x)(qt),
Fg(x),G(g(xn),g(yn))(2qt)

Fg(g(xn)),G(x,y)(2qt)
}

For all t > 0 , q ∈ (0, 1).

Fg(x), G(x, y)(φ(t)) ≥
min{Fg(x),g(g(xn+1))(φ(t)− φ(qt)), Fg(g(xn)),G(g(xn),g(yn))(qt), Fg(x),G(x,y)(qt),

1

min[Fg(g(xn)),g(g(xn−1))(qt), Fg(g(xn)),g(x)(qt)].min[Fg(x),g(g(xn−1))(qt), Fg(g(xn−1)),g(g(xn))(qt)]

Fg(g(xn)),g(x)(qt),
min[Fg(x),g(g(xn−1))(qt), Fg(g(xn−1)),g(g(xn))(qt)]

min[Fg(g(xn)),g(g(xn−1))(qt), Fg(g(xn)),g(x)(qt)]
}
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Fg(x),G(x,y)(φ(t)) ≥min{Fg(x),g(x)(φ(t)− φ(qt)), Fg(x),G(g(x,y))(qt),

Fg(x),G(x,y)(qt),
1

Fg(g(xn)),G(x,y)(2qt).Fg(x),G(g(xn),g(yn))(2qt)
,

Fg(x),g(x)(qt),
Fg(x),G(g(xn),g(yn))(2qt)

Fg(g(xn)),G(x,y)(2qt)
}

which on letting n→∞ and taking lower limit,by Lemma(2.2) we get

Fg(x),G(x,y)(φ(t)) ≥min{1, Fg(x),G(g(x,y))(qt), Fg(x),G(x,y)(qt), 1, 1, 1}
= Fg(x),G(g(x,y))(qt)

Taking q → 1 with the left continuity of F , gives

Fg(x),G(x,y)(φ(t)) ≥ Fg(x),G(g(x,y))(t)

by Lemma(2.3) we get g(x) = G(x, y).
Similarly we can show that g(y) = G(y, x). Thus G and g have a coupled
coincidence point.
We are giving two corollaries, in corollary first taking identity map-
ping in place of g and in corrollary second replacing φ(t) to qt in
Theorem (3.1) as :

Corollary 3.1. Let (X,F ,∆) be a complete Menger PM space under con-
tinuous t-norm ∆ = ∆M . and (X,�) be a partially ordered set and Let G :
X × X → X, be a self mapping of X such that G has a mixed g-monotone
property and there exists φ ∈ Φ such that

FG(x,y),G(u,v)(φ(t)) ≥min{Fx,G(x,y)(t), Fu,G(u,v)(t),
1

Fx,G(u,v)(2t)Fu,G(x,y)(2t)
,

Fx,u(t),
Fu,G(x,y)(2t)

Fx,G(u,v)(2t)
}

for all x, y, u, v ∈ X, t > 0 for which x � u and y � v.
Suppose either
(i) G is continuous or
(ii) X has the following properties:

(a) If a non decreasing sequence xn → X then xn � x for all n, and
(b) If a non increasing sequence yn → y then yn � y for all n.

if there exists an x0, y0 ∈ X such that

x0 � G(x0, y0) and y0 � G(y0, x0)

then there exists x, y ∈ X such that
x = G(x, y) and y = G(y, x).
then G has a coupled fixed point.
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Corollary 3.2. Let (X,F ,∆) be a complete Menger PM space under con-
tinuous t-norm ∆ = ∆M . and (X,�) be a partially ordered set and Let G :
X × X → X, g : X × X be two self mappings such that G has a mixed g-
monotone property and there exists q ∈ (0, 1) such that

FG(x,y),G(u,v)(qt) ≥min{Fg(x),G(x,y)(t), Fg(u),G(u,v)(t),
1

Fg(x),G(u,v)(2t)Fg(u),G(x,y)(2t)
,

Fg(x),g(u)(t),
Fg(u),G(x,y)(2t)

Fg(x),G(u,v)(2t)
}

for all x, y, u, v ∈ X, t > 0 for which g(x) � g(u) and g(y) � g(v).
Suppose G(X × X) ⊆ g(X) is continuous and commutes with G and also
suppose either
(i) G is continuous or
(ii) X has the following properties:

(a) If a non decreasing sequence xn → X then xn � x for all n, and
(b) If a non increasing sequence yn → y then yn � y for all n.

if there exists an x0, y0 ∈ X such that

g(x0) � G(x0, y0) and g(y0) � G(y0, x0)

then there exists x, y ∈ X such that
g(x) = G(x, y) and g(y) = G(y, x).
then G and g have a coupled coincidence point.

Theorem 3.2. In addition to the hypotheses of Theorem (3.1), suppose
that for every (x, y), (x∗, y∗) ∈ X ×X there exists a (u, v) ∈ X ×X satisfying
g(u) � g(v) or g(v) � g(u) such that G(u, v), G(v, u) ∈ X ×X is comparable
to (G(x, y), G(y, x)) and (G(x∗, y∗), G(y∗, x∗)). Then G and g have a unique
coupled fixed point, that is , there exists a unuque (x, y) ∈ X ×X such that
x = g(x) = G(x, y) and y = g(y) = G(y, x).

Proof : we have to show that if (x, y), (x∗, y∗) are coupled coincidence
points, that is if g(x) = G(x, y) and g(y) = G(y, x). and
g(x∗) = G(x∗, y∗) and g(y∗) = G(y∗, x∗). then

g(x) = g(x∗) and g(y) = g(y∗). (17)

By assumption there is (u, v) ∈ X × X such that G(u, v), G(v, u) ∈ X × X
is comparable to (G(x, y), G(y, x)) and (G(x∗, y∗), G(y∗, x∗)). Putting u0 =
u, v0 = v and choose u1, v1 ∈ X so that g(u1) = G(u0, v0) and g(v1) =
G(v0, u0). We define the sequence {g(un)} and {g(vn)} such that g(un+1) =
G(un, vn) and g(vn+1) = G(vn, un). These two sequences {g(un)} and
{g(vn)} exists as similar proof given in Theorem (3.1). In addition put x0 =
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x, y0 = y, x∗0 = x∗, y∗0 = y∗ and on the same way define the sequence {g(xn)} ,
{g(yn)} and {g(x∗n)} and {g(y∗n)} such that

g(xn+1) = G(xn, yn) and g(yn+1) = G(yn, xn).

g(xn+1) = G(xn, yn) and g(yn+1) = G(yn, xn).

Since

(G(x, y), G(y, x)) = (g(x1), g(y1)) = (g(x), g(y))

and (G(u, v), G(v, u)) = (g(u1), g(v1)) are comparable, now we suppose that
g(x) � g(u1) and g(y) � g(v1). It is easy to show that (g(x), g(y)) andG(un, vn)
are comparable, that is g(x) � g(un) g(y) � g(vn) for all n ≥ 1 Thus from
eq.(5) we get

Fg(x),g(un+1)(φ(t)) =FG(x,y),G(un,vn)(φ(t)

≥min{Fg(x),G(x,y)(t), Fg(un),G(un,vn)(t),

1

Fg(x),G(un,vn)(2t).Fg(un),G(x,y)(2t)
,

Fg(x),g(un)(t),
Fg(un),G(x,y)(2t)

Fg(x),G(un,vn)(2t)
}

= min{Fg(x),g(x)(t), Fg(un),g(un+1)(t),
1

Fg(x),g(un+1)(2t)Fg(un+1),g(x)(2t)
,

Fg(x),g(un)(t),
Fg(un),g(x)(2t)

Fg(x),G(un)(2t)
}

= min{1, Fg(un),g(un+1)(t),
1

g(un), Fg(x)(2t).Fg(x),g(un+1)(2t)
,

Fg(x),g(un)(t),
Fg(un),g(x)(2t)

Fg(x),G(un)(2t)
}

Fg(y),g(vn+1)(φ(t)) =FG(y,x),G(vn,un)(φ(t)

≥min{Fg(x),G(y,x)(t), Fg(vn),G(vn,un)(t),

1

Fg(y),G(vn,un)(2t)Fg(vn),G(y,x)(2t)
,

Fg(y),g(vn)(t),
Fg(vn),G(y,x)(2t)

Fg(y),G(vn,un)(2t)
}
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= min{1, Fg(vn),g(vn+1)(t),
1

Fg(y),g(vn+1)(2t)Fg(vn+1),g(y)(2t)
,

Fg(y),g(vn)(t),
Fg(vn),g(y)(2t)

Fg(y),G(vn)(2t)
}

= min{1, Fg(vn),g(vn+1)(t),
1

g(vn), Fg(y)(2t).Fg(y),g(vn+1)(2t)
,

Fg(y),g(vn)(t),
Fg(vn),g(y)(2t)

Fg(y),G(vn)(2t)
}

for each n ≥ 1 on taking n→∞ and lower limit, by Lemma (2.2) and Lemma
(2.3) we get

limn→∞g(un+1) = g(x) and limn→∞g(vn+1) = g(y) (18)

similarly we can prove that

limn→∞g(un+1) = g(x∗) and limn→∞g(vn+1) = g(y∗) (19)

By (MS-3), eq. (18) and eq. (19).we have

Fg(x),g(x∗)(t) ≥ minFg(x),g(un+1)(t/2), Fg(un+1),g(x∗)(t/2)→ 1 as n→∞

which shows that g(x) = g(x∗). similarly we can prove that g(y) = g(y∗)
Since g(x) = G(x, y) and g(y) = G(y, x), be commutativity of G and g, we
have

g(g(x)) = g(G(x, y)) = G(g(x), g(y)) (20)

and
g(g(y)) = g(G(y, x)) = G(g(y), g(x)) (21)

say g(x) = Z, g(y) = w Then from eq.(20) and eq.(21)

g(z) = G(z, w) and g(w) = G(w, z) (22)

Thus (z, w) is a coupled common fixed point. Then from eq. (17) with x∗ = z
and y∗ = w, it follows g(z) = g(x) and g(w) = g(y), i.e.

g(z) = z and g(w) = w. (23)

now from (22)and (23),

z = g(z) = G(z, w) and w = g(w) = G(w, z).

Therefore (z, w) is a coupled common fixed point of G and g. To prove the
uniqueness, assume that (p, q) is another couples common fixed point. Then
by eq.(17) we have

p = g(p) = g(z) = z and q = g(q) = g(w) = w.

Now we substiontiate our theorem with the aid of following example.
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Example 3.1. Consider X = [0, 6] with d(x, y) = |x− y|, Fx,y(t) = H(t−
d(x, y)),∆ = ∆M , then (X,F ,∆) is complete Menger PM space. let g : X×X
and G : X ×X be defined as g(x) = x

2
, for all x ∈ X

G(x, y) =


x−y
6

;x, y ∈ [0, 1], x ≥ y

0 ;x < y

G enjoys the mixed g-monotone property. G(X ×X) ⊂ g(X), g is contin-
uous and commute with G. G is also continuous.

Let φ(t) = (2/3)t, for all f ∈ [0,∞). Let x0 = 0 and y0 = c are two points
in X then

g(x0) = g(0) = G(0, c) ≤ G(x0, y0)

and

g(y0) = g(c) =
{ c

2
≥ c

6
= G(c, 0) = G(y0, x0)

}
.

Next we verify the inequality in Theorem (3.1). We take x, y, u, v ∈ X, such
that g(x) ≥ g(u) and g(y) ≥ g(v), that is, x ≥ u, y ≤ v.
Thus the inequality in Theorem(3.1)takes the following form:

H
(2t

3
− |G(x, y)−G(u, v)|

)
≥min

{
H
(
t− x

2
−G(x, y)

)
, H
(
t− |u

2
−G(u, v)|

)
,

1

H
(
2t− |x

2
−G(u, v)|

)
.H
(
2t− |u

2
−G(x, y)|

) ,
H
(
t− x− u

2

)
,
H
(
2t− |u

2
−G(x, y)|

)
H
(
2t− |x

2
−G(u, v)|

)}.
By the definition of H,we only need to verify that

2t

3
> |G(x, y)−G(u, v)| (24)

If t > |x
2
−G(x, y)|, t > |u

2
−G(u, v)|, t >

x− u
2

, 2t > |u
2
−G(x, y)|,

2t > |x
2
−G(u, v)|.

(25)

We consider the following cases
Case I

If x ≥ y and u ≥ v, i.e. y ≤ v ≤ u ≤ x, then eq.(25)implies

t >
x− u

2
t >

x

2
− x− y

6
=

2x+ y

6
, t >

u

2
− u− v

6
=

2u+ v

6
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we get t > 2x+y
6
≥ x

4
, and then eq.(24) holds.

t >
x

4
≥ x

4
− u− v

4
=
x− u

4
+
v

4
≥ x− u

4
+
v − y

4
,

which means that 2
3
t ≥ x−y

6
− u−v

6
, eq.(24) satisfied.

Case II
If x ≥ y and u < v, eq.(25)implies

t >
x

2
− x− y

6
=

2x+ y

6
≥ x− y

4

i.e. 2
3
t ≥ x−y

6
= |G(x, y)−G(u, v)|, eq.(24) satisfied.

Case III
If x < y and u ≥ v. it can not happen since u ≤ x and y ≤ v.

Case IV
If x < y and u < v. Since t > 0. obviously eq.(24) holds. Hence all the

conditions of Theorem (3.1) are satisfied and the coupled coincidence point is
(0, 0) of G and g in X.

Open Problem: Recently Luong and Thuan[13] presented some cou-
pled fixed point theorems for a mixed monotone mappings in a partially or-
dered metric space. Further a result on trippled coincidence points for mono-
tone operators in partially ordered metric spaces is obtained by Alsulami and
Alotaibi[16]. Whether our result can be obtained for trippled coincidence point
theorems in the settings of Menger PM-Spaces.
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