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Abstract

This paper investigates the oscillation of a class of fractional difference equations with damping term of the form

t-lH+o 4
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where A” denotes the Riemann-Liouville difference operator of order 0 <« <landy>0 is a quotient of odd positive

integers. Based on a generalized Riccati transformation and some inequalities, we establish some sufficient conditions
of oscillation criteria for it. Some applications are also presented for the established results.
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1. Introduction

Recent years have witnessed the study of qualitative properties, especially oscillation of solutions, of fractional
difference equations, [3], and [7]. In this paper, we investigate the oscillatory properties a class of fractional difference
equations with damping term of the form

t-l+a
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where A” denotes the Riemann-Liouville difference operator of order g < o <1 and y > 0is a quotient of odd positive
integers.
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A solution x (t) of (1) is said to be oscillatory if it is neither eventually positive nor eventually negative; otherwise,
it is nonoscillatory. Equation (1) is said to be oscillatory if all its solutions are oscillatory.

2. Preliminaries and basic lemmas

In this section, we introduce some preliminary results of discrete fractional calculus, which will be used throughout this
paper.

Definition 2.1: (See [8]) Letv>0. The v -th fractional sum f is defined by
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Where f is defined for s= @ mod (1) and A7V is defined for t =(a+v)mod(1) and (V) =
A7V maps functions defined on N, to functions defined on N4, .

Definition 2.2: (see [8]) let x>0 and m —1< x<m where m denotes a positive integer m=] x|. Setv=m—x. The u -
th fractional difference is defined as
AHE )=A" "V ©)=aT ATV 1 ).
2 _b?
Lemma 2.3: Leta>0,b,X R, thenb/aX —aX <

Lemma 2.4: Let x (t) be a solution of (1) and let
t-1+o

6= 3 (t-s-DCDx() )
S:to
Then
AG () =TA- 2)A% (X (t)). ©)
Proof:
_ t—(1—
6= 3 15— Dxe)= 5V —s T
s=tp s=tp

—Tt-a)a~ &y ),
which implies?
AG (1) =T (- a)A~E Dy 1) =T A— 2)A% t).
Now, we assume that c(t)>p(t) and define a sequence
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3. Main results

Theorem 3.1: Suppose that (H) holds and ;

=, there exists a positive sequence b (t) such that
s=tg u(s)e(s)
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Proof: Suppose that x (t) is a nonoscillatory solution of (1). Without loss of generality, we may assume that x(t) is an
eventually positive of (1). Then there exists ty>tg such that

x(t)>0 and G(t)>0 fort >tq, @)
where G is defined as in (2). Therefore, it follows from (1) that
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where Ab_ (s)=max {Ab(s),0},R (t)= . Then every solution of (1) is oscillatory.
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Thus u(t)et)(A%x (t))”) is a strictly non-increasing sequence and is eventually of one sign on t >t . First we show that
ult)et)a%xt))” is eventually positive.  Suppose there is an integer t;>tg such  that
u(t)e@)(A%x (t))” =5<0fort >t1,s0that

HECE)AYX ) < utye A% ()" =6 <0

(A% ) <2

<0
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which implies that
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Summing both sides of the inequality (9) from t; tot -1 yields
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This contradicts the fact that G (t) > 0. Hence u(t)c@)(A%x (t))” >0 is eventually positive. Define the function w(t) by
the Riccati substitution

ay )
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Then we have w(t) > 0fort >tq . It follows that
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Now using the following inequality (see [1]), we obtain
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We have
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Using the above inequality, we obtain
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Using Lemma 2.3, we get
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where R(t) = . Take a=R(t), b= and X=w(t+1).
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From (12), we conclude that
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Summing the above inequality from t tot —1 , we have
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Lettingt — oo, we get
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]s olt,) - a(t) <o(t,) <o, fort > t,
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(Ab, ()’
4b* (s +1)R(s)
This contradicts (6). The proof is complete.

limsup i(b(s)q(s)y(s +1)—

t—wo s=t,

]Sa)(tl)< o0,

Theorem 3.2: Suppose that (H) holds. Furthermore, assume that there exists a positive sequence b (t) such that
H(t,t)=0 for t>t, H(t,s)>0 t>s>t,
AH(t,s)=H(t,s+1)—H(t,s)<0 for t>s>t,.

If
: S __hts) 13
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Proof: Suppose the contrary that x (t) is a nonoscillatory solution of (1). Without loss of generality, we may assume that

X (t) is an eventually positive solution of (1). We proceed as in the proof of Theorem (3.1) to get (12) hold.

Multiplying (12) by H(t,S) and summing from t, to t —1, we obtain

t-1 t-1 t-1 1
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Using summation by parts formula, we get
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where h_(t,s)=A,H(t,s)+ and Ab, (s) = max[Ab(s),0]. Then every solution of (1) is oscillatory.

Now, we have

3 bS5 +DH ) < HE L) + 3 (0, (9ol +1) - HEIRE +1) (16)
where h_(t,s) = A,H (t, ) + H (t,s)Ab, (s)
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Taking a=H(t,s)R(s), b= and X=w(t+1) and using the Lemma 2.3, we get
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We have 0 < H(t,t) <H(tt)) for t >t >t , from equation (16),
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Since 0<H(t,s) <H(t,tg)fort >s >tg, we have o<——=<1fort >s >ty. Hence it follows that

H (t.tg)
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Lettingt — oo, we have
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This is a contradiction to (13). The proof is complete.

Example 3.3: Consider the fractional difference equation

t-l+a

A(A%x (1)) s 1A% O+— > (t-s-0"%xeE) =0, (17)
t+1

t+1 s=tg

1 1
wherea = 0.5,y =1,c(t) =1, p(t)=——andq(t) = —.Since

t+1 t+1

t-1 1
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1
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we find that (H) holds. We will apply Theorem (3.1) and it remains to show condition (6) is satisfied. Taking b(s) = s,
we obtain
ot (ab ) | ot 1
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which implies that (6) holds. Therefore, by Theorem (3.1) every solution of (17) is oscillatory.
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