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Abstract 

In this paper, we propose the theory for generalized synchronization 
(GS) of a chaotic star network. We derive sufficient conditions for 
generalized synchronization of any chaotic system on a star network. 
The relationship among the state variables at GS are completely 
known in our method. The effectiveness and feasibility of the 
synchronization strategy is confirmed and demonstrated by numerical 
simulation. 
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1 Introduction 

The study of synchronization in coupled chaotic system is of fundamental 

importance in nature and science [1] due to its potential applications in the field of 

laser dynamics, electronic circuits, biological systems and secure communication 

[2]. Synchronization of chaos is a phenomenon that may occur when two or more 

chaotic oscillators are coupled or when a chaotic oscillator drives another 

oscillator. If 1 2( , ,..., )nx x x and 1 2( , ,..., )ny y y denote the set of dynamical variables 

that describe the state of the first and second oscillator respectively, then it is said 

that identical synchronization occurs when there is a set of initial conditions

1 2( (0), (0),..., (0))nx x x and 1 2( (0), (0),..., (0))ny y y such that depending on time t, 

( ) ( ) 0i ix t y t   for 1,2,...i n , when t  . This type of synchronization is 

known as identical synchronization [1]. A generalization of this concept was 



 

 

 

410 Mohammad Ali Khan 

 

proposed by Rulkov et.al. in 1995 [3]. Generalized synchronization occurs when 

there is a functional  such that after a transitory evolution from appropriate initial 

conditions i.e. 1 2 1 2( ( ), ( ),..., ( )) ( ( ), ( ),..., ( ))n ny t y t y t x t x t x t . This means that 

the dynamical state of one of the oscillator is completely determined by the state 

of the other. Several other types of synchronization, such as phase 

synchronization [4,5,6], lag synchronization [7,8,9], adaptive synchronization 

[10,11,12,13,14], anti-synchronization [15,16,17,18,19] are studied theoretically 

and observed experimentally. The subject of complex networks not only just 

possesses a great challenge but also provides a great opportunity for Scientists, 

Mathematicians, Physicists and Engineers with significant impacts on the modern 

industry, commercial markets and beyond, therefore is worth further pursuing. 

The last decade has witnessed the birth of a new movement of interest and 

research in the study of complex networks. In this context two seminal papers,  

that by Watts and Strogatz [20] on a small-world networks appeared in Nature in 

1998 and that by R. Albert et.al. [21] on scale-free networks appeared one year 

later in Science. Complex network is a large-scale network whose structure is 

irregular, complex and dynamically evolving in time. It analyzes the systems with 

thousands or millions of nodes connected by edges. The nodes in complex 

network are basic units of a system which has specific power and information 

content and the edge means the relationship or contact of two basic units. 

Recently L.Tang and Z.Kang [22] proposed synchronization scheme for a three 

dimensional hyperchaotic star network. They have developed identical 

synchronization among the states of the nodes of a chaotic star network. We 

discuss our method by taking same hyperchaotic system as L.Tang et.al.[22]. We 

obtain the results of L.Tang et.al.[22] as a special case of our model. Our 

synchronization scheme works for any chaotic system. The functional relationship 

among the state variables of the non-central nodes are known in our 

synchronization method. We have presented the simulation results to show the 

efficiency of our method.  

 

2 Lorenz Chaotic Systems  

We consider the dynamical system 

 

( ) 

  

 

x y x

y rx y xz

z xy dz



                                                                                                      (1) 

 

Here , r, d (>0) are parameters. Ed.Lorenz (1963) derives this three-dimensional 

system from a drastically simplified model of convection rolls in the atmosphere. 

The same equations also arise in models of lasers and dynamics. This system 
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shows a chaotic behavior for 10,   r=28 and d= 8
3

. The dynamical system (1) 

can be written as  

 

( ) ( ) X L X NL X                                                                                              (2) 

 

where ( )L X  is the linear part and ( )NL X  is the non-linear part of the system. The 

linear part ( )L X  can be written as  

 

( )L X AX                                                                                                              (3) 

 

where A is a full rank constant matrix and all eigen values have negative real parts. 

Therefore (2) becomes  

 

( ) X AX NL X                                                                                                 (4) 

where 

,

 
 
 

  
 
  

x

X y

z

 

0

1 0 ,

0 0

A r

d

   
 
 

  
 
  

 

x

X y

z

 
 
 

  
 
  

 and 

2

( )

y

NL X xz

xy

 
 
 

  
 
  

                   (5) 

 

 
Fig.1: Phase diagram of Lorenz system for 10,  r=28 and d= 8

3
. 

 

3 Generalized Synchronization of Star Network 

Star  networks are one of the most simple networks topologies. A star network 

consists of one central node which connects to other nodes.The central node in 

star network acts as transmit information to other nodes. The star network 

prevents the passing of the data packets through an excessive number of nodes 

and it is easy to understand, establish and navigate. The main disadvantage of star 

network is the high dependence of the system on the functioning of the central 

node. 
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Fig.2. Star network 

 

Theorem 3.1 
A star network with the central node dynamics 

 

( ) X AX NL X                                                                                                 (6) 

 

where  AX is the linear part and ( )NL X is the non-linear part of a chaotic system 

and with the branch nodes dynamics 

 

0( ) [ ( ) ( )]   i i i i i iX AX NL X NL X NL X                                                 (7) 

 

where  ( 1,2,3,..., )iX i n  are the state vectors of the thi node of the network and 

( 1,2,3,...., )i i n   are the coefficients of the coupling strength and 

( 1,2,3,...., )i i n  are arbitrary matrices such that each i commutes with A . 

Then the dynamics of all non-central node will synchronize if and only if A is 

negative definite matrix and i i  . 

 

Proof: Let us define the synchronization error as 0( 1,2,3,...., )i i ie X X i n   . 

Then the evolutional equation for the synchronization error ( )e t is given by 

 

0 i i ie X X                                                     ( 1,2,3,...., )i n  

                                                              

0 0 0( ) [ ( ) ( )] [ ( )]i i i i i iAX NL X NL X NL X AX NL X       

0( )[ ( ) ( )]i i i iAe NL X NL X                                                                           (8) 
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From the above evolution equation we observe that when i i  , then origin is 

an asymptotically stable fixed point. Hence the dynamics of the branch node 

dynamics will synchronize with each other. We notice that the branch node 

dynamics will not synchronize with the central node dynamics in general. In our 

model if we choose i i I   , then we obtain the results of L.Tang et.al.[22]. In 

this case the total network will identically synchronize. Since A  is invertible 

matrix , therefore we can have infinite number of choices for matrices i  which 

commutes with A .                                          
Fig.3. shows the synchronization error tends to zero after a short transient process. 

 

 
Fig.3: Change of synchronization error  over time in star network. 

 

4 Simulation Results 

We present here four simulation results depending upon different choices of i  

and i  and use one central node and three branch nodes. The parameters of the 

chaotic system are chosen as follows 10,   28r   and 8
3

d  . Fourth order 

Runge-Kutta method  is used for these simulations. We denote the central node 

state variable by subscript 0 and other node state variables by subscripts 1, 2 and 3. 

Then the dynamics of star network are governed by following differential 

equations 

0 0 0

0 0 0 0 0

0 0 0 0

( ) 

   

  

x y x

y x z rx y

z x y dz



                                                                                            (9) 

 

11 11 12 12 13 13

11 0 12 0 0 13 0 0

( ) 2 ( ) ( ) ( )

2

        

  

i i i i i i

i i i i i i i i

i i i

x x y y x z x y

y x z x y

       

  

21 21 22 22 23 23

21 0 22 0 0 23 0 0

2 ( ) ( ) ( )

2

       

  

i i i i i i

i i i i i i i i

i i i

y rx y y x z x y

y x z x y

      

  
               (10) 
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            31 31 32 32 33 33

31 0 32 0 0 33 0 0

2 ( ) ( ) ( )

2

       

  

i i i i i i

i i i i i i i

i i i

z dz y x z x y

y x z x y

      

  
 

1,2,3i   

 

Where 

 

11 12 13

21 22 23

31 32 33

i i i

i i i

i

i i i

  

  

  

 
 

   
 
 

   and  

11 12 13

21 22 23

31 32 33

i i i

i i i

i

i i i

  

   
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 
 

  
 
 

                                              (11) 

   

Simulation 1 

In this simulation we choose 

1 2 3

0 0

0 0

0 0







 
 

       
 
 

 with 0                                                                 (12) 

1 2 3

0 0

0 0

0 0



   



 
 

    
 
 

 with  0                                                                (13) 

Then the dynamics of non-central nodes are given by 

 

 

0( ) 2 ( ) 2     i i i ix x y y y      

0 0( )    i i i i iy rx y x z x z                                                                       (14) 

0 0( )    i i i iz dz x y x y    

1,2,3i   

 

 
Fig.4(a). Time evolution of 1x , 2x and 3x when    for simulation 1. 
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Fig.4(b). Time evolution of 1y , 2y and 3y when    for simulation 1. 

 

 
Fig.4(c). Time evolution of 1z , 2z and 3z when    for simulation 1. 

 

From the Fig.4(a)-Fig.4(c), it is clear that non-central nodes may or may not be 

synchronize  if i i  ,( 1,2,3i  ). But if i i  ( 1,2,3i  )

0 0

0 0

0 0







 
 


 
  

then 

the dynamics of non-central nodes are given by  

       

0( ) 2   i i ix x y y   

0 0  i i iy rx y x z                                                                                          (15) 

0 0  i iz dz x y  

1,2,3i   

 

Hence by the Theorem 3.1, the non-central nodes are synchronized shown in 

Fig.5(a)-Fig.5(c). 

 

 
Fig.5(a). Time evolution of 1x , 2x and 3x when    for simulation 1. 
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Fig.5(b): Time evolution of 1y , 2y and 3y when   for simulation 1. 

 

 
Fig.5(c): Time evolution of 1z , 2z and 3z when    for simulation 1. 

 

Simulation 2 

In this simulation we take  

1 2 3

0

1 0

0 0

A r

d

   
 

        
  

 and                                                            (16) 

1 1
( 1) 1

1 1
1 2 3 ( 1) 1

1

0

0

0 0

r r

r
r r

d

A




  

 



 

  
 

     
 
 

                                                             (17) 

 

Then the dynamics of non-central nodes are given by 

 
1 1 2 1

0 0 0( 1) 1 1 1
( ) 2 ( ) ( )

   
        i i i i i ir r r r

x x y y x z y x z


     

1 1 2 1
0 0 0( 1) 1 1 1

2 (1 ) (1 )
   

       r
i i i i i ir r r r

y rx y r y x z y x z


                       (18) 

1 1
0 0( )    i i i id d

z dz d x y x y                                               

1,2,3i   

 

Here the non-central nodes always not synchronize. But if we choose  

 

0

( 1,2,3) 1 0

0 0

i i i A r

d

 



  
 

     
 
  

                                                             (19) 
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Then the dynamics of non-central nodes are given by      

 
2

0 0 0( ) 2    i i ix x y y x z                                           

0 0 02   i i iy rx y ry x z                                                                               (20) 

0 0  i iz dz dx y  

1,2,3i   

 

According to Theorem 3.1. it is clear that non-central nodes are synchronized 

shown in Fig.6(a)-Fig.6(c). 

 

 
Fig.6(a): Time evolution of 1x , 2x and 3x when    for simulation 2. 

 

 
Fig.6(b): Time evolution of 1y , 2y and 3y when   for simulation 2. 

 

 
Fig.6(c): Time evolution of 1z , 2z and 3z when    for simulation 2. 

 

Simulation 3 

In this simulation we take  
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1 1
( 1) 1

1 1
1 2 3 ( 1) 1

1

0

0

0 0

r r

r
r r

d

A





 



 

  
 

        
 
 

                                                           (21) 

and  

1 2 3

0

1 0

0 0

A r

d

 

  

  
 

     
  

                                                                    (22) 

 

Then the dynamics of non-central nodes are given by  

 
21 1

0 0 0( 1) 1
( ) 2 ( ) ( ) 2

 
        i i i i i ir r

x x y y x z y x z


       

1 1
0 0 0( 1) 1

2 (1 ) (1 ) 2
 

       i i i i i ir r
y rx y r y x z ry x z


                            (23) 

1
0 0( )    i i i id

z dz d x y dx y  

1,2,3i        
 

In this case the non-central nodes are not always synchronize but it we choose  

 
1 1

( 1) 1

1 1
( 1) 1

1

0

( 1,2,3) 0

0 0

r r

r
i i r r

d

i A






 



 

  
 

      
 
 

                                                     (24) 

Then the dynamics of non-central nodes are given by  

 
2 1

0 0 01 1
( )

 
    i i i r r

x x y y x z  
2 1

0 0 01 1 
   r

i i i r r
y rx y y x z                                                                             (25) 

1
0 0  i i d

z dz x y  

1,2,3i   

Hence by Theorem 3.1. the non-central nodes are synchronized clearly, are shown 

in Fig.7(a)-Fig.7(c). 
 

 
Fig.7(a). Time evolution of 1x , 2x and 3x when    for simulation 3. 
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Fig.7(b): Time evolution of 1y , 2y and 3y when   for simulation 3. 

 

 
Fig.7(c): Time evolution of 1z , 2z and 3z when    for simulation 3. 

 

5 Conclusions 

We have nicely generalizes the results of Tang et.al.[22] on chaos synchronization 

of star network. We derive the sufficient condition for generalized 

synchronization in a star network. We have tested our conditions by numerical 

simulations and observe nice agreement with the analytical conditions. Our 

scheme is applicable for all chaotic systems i.e. our scheme is independent of 

chaotic systems. After generalized synchronization , the functional relationship 

among the state variables of the non-central nodes are known in advance in our 

method. Therfore we have complete control of designing the dynamics of the state 

variables of the non-central nodes. Our design of dynamics of the individual 

nodes in star network for generalized synchronization may have potential 

applications in secure communication, information processes and neurosciences. 
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