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Abstract 

Effects of Hall current on unsteady MHD natural convection flow of 
a viscous, incompressible, electrically conducting and heat absorbing 
fluid past an impulsively moving vertical plate with ramped 
temperature in a porous medium, in the presence of thermal diffusion, 
is studied. The exact solution of momentum and energy equations, 
under Boussinesq approximation, is obtained in closed form by 
Laplace transform technique for both ramped temperature and 
isothermal plates. Solution is also obtained in the case of unit Prandtl 
number for ramped temperature plate. The expressions for skin friction 
due to primary and secondary flows and Nusselt number for both 
ramped temperature and isothermal plates are also derived. 
Mathematical formulation of the problem, in non-dimensional form, 
contains six pertinent flow parameters viz. 2M (magnetic parameter), 
m (Hall current parameter) rG (Grashof number), 1K (permeability 
parameter), rP (Prandtl number) and  (heat absorption coefficient). 
The numerical values of primary and secondary fluid velocities are 
displayed graphically versus boundary layer coordinate y for various 
values of 1, , , and timerm G K t  while that of fluid temperature are 
presented in graphical form versus y for different values of 
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,   and rP t  for both ramped temperature and isothermal plates. For 
both ramped temperature and isothermal plates, the numerical values 
of skin friction due to primary and secondary flows are presented in 
tabular form for various values of 1, , , andrm G K t  whereas that of 
Nusselt number are given in tables for different values of , andrP t . 

Keywords: Hall current, Heat absorption coefficient, Natural convection, 

Ramped temperature, Thermal buoyancy force. 

 

1 Introduction 

Theoretical/experimental investigation of natural convection flow under the 

influence of gravitational force past a solid body with different geometries 

embedded in a fluid-saturated porous medium is of considerable importance due 

to frequent occurrence of such fluid flow in nature as well as in science and 

technology viz. geothermal reservoirs, drying of porous solids, thermal insulators, 

heat exchanger devices, enhanced recovery of petroleum resources, underground 

energy transport etc. Taking into consideration the importance of such study 

Cheng and Minkowycz [1] obtained similarity solution for free convection flow 

from a vertical plate embedded in a fluid-saturated porous medium. Nakayama 

and Koyama [2] analyzed free and forced convection flow in Darcian and non-

Darcian porous medium. Hsieh et al [3] obtained non-similar solution for free and 

forced convection flow from vertical surfaces in a porous medium. Interest in 

magnetohydrodynamic convective flow within porous and non-porous media has 

gained considerable attention of many researchers due to appreciable influence of 

magnetic field on boundary layer control, thermal insulation of buildings, 

geothermal energy extraction, plasma studies, enhanced recovery of petroleum 

resources, sensible heat storage bed and on the performance of many engineering 

devices using electrically conducting fluids, namely, MHD energy generators, 

MHD pumps, MHD accelerators, Flow-meters, Plasma jet engines, controlled 

thermonuclear reactors etc. Raptis and Kafousias [4] investigated influence of 

magnetic field on steady free convection flow through a porous medium bounded 

by an infinite vertical plate. Raptis [5] studied mathematically the case of time 

varying two-dimensional natural convection flow of a viscous, incompressible and 

electrically conducting fluid past an infinite vertical porous plate embedded in a 

porous medium. Chamkha [6] analyzed hydromagnetic free convection from an 

isothermal inclined surface which is near to a thermally stratified porous medium. 

Sahoo and Sahoo [7] considered MHD free convection and mass transfer flow 

past an impulsively moving vertical plate through porous medium while Jha [8] 

discussed this problem when the vertical plate moves with uniform acceleration 

and applied magnetic field is fixed with the moving plate. Aldoss et al [9] 

investigated combined free and forced convection flow from a vertical plate 

embedded in a porous medium in the presence of a magnetic field. Takhar and 
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Ram [10] considered hydromagnetic free convection flow of water at 4
o
C through 

porous medium. Kim [11] investigated hydromagnetic natural convection flow 

past a vertical moving plate embedded in a porous medium. Ibrahim et al [12] 

considered unsteady hydromagnetic flow of micro-polar fluid and heat transfer 

past a vertical porous plate through a porous medium in the presence of thermal 

and mass diffusion with a constant heat source. Makinde [13] studied MHD 

mixed convection flow and mass transfer past a vertical porous plate with constant 

heat flux embedded in a porous medium.  

It may be noted that there may be significant temperature difference between the 

ambient fluid and surface of the solid in so many fluid flow problems of physical 

interest. This requires the consideration of temperature-dependent heat sources 

and/or sinks which may have strong influence on heat transfer characteristics 

(Vajravelu and Nayfeh [14]). Study of the effects of heat generation or absorption 

in fluid flow is of much significance in several physical problems of practical 

interest viz. fluids undergoing exothermic and/or endothermic chemical reaction 

(Vajravelu and Nayfeh [14]), applications in the field of nuclear energy (Crepeau 

and Clarksean [15]), convection in Earth’s mantle (McKenzie et al [16]), post 

accident heat removal (Baker et al [17]), fire and combustion modeling 

(Delichatsios [18]), development of metal waste from spent nuclear fuel 

(Westphal et al [19]) etc. It is noticed that the exact modeling of internal heat 

generation/absorption is much complicated. It is found that some simple 

mathematical models yet idealized may express their average behavior for most of 

the physical situations. Keeping in view of this fact, Sparrow and Cess [20] 

considered temperature-dependent heat absorption in their research study on 

steady stagnation point flow and heat transfer. Moalem [21] investigated steady 

heat transfer in a porous medium with temperature-dependent heat generation. Jha 

and Ajibade [22] studied free convection flow of heat generating/absorbing fluid 

within a parallel plate vertical porous channel due to periodic heating of the plates. 

In their study they considered temperature-dependent heat source/sink. Kamel 

[23] investigated unsteady hydromagnetic convection flow due to heat and mass 

transfer through a porous medium bounded by an infinite vertical porous plate 

with temperature-dependent heat sources/sinks. Chamkha [24] considered 

unsteady two dimensional convective heat and mass transfer flow of a viscous, 

incompressible, electrically conducting and temperature-dependent heat absorbing 

fluid along a semi-infinite vertical permeable moving plate with thermal and 

concentration buoyancy effects. In all these investigations, analytical/numerical 

solution is obtained by assuming conditions for the velocity and temperature at the 

plate as continuous and well defined. However, there are several problems of 

practical interest which may require non-uniform or arbitrary conditions at the 

plate. Taking into consideration of this fact, several researchers investigated fluid 

flow problems of free convection from a vertical plate with step discontinuities in 

the surface temperature. Mention may be made of the research studies of Hayday 

et al [25], Kelleher [26], Kao [27], Lee and Yovanovich [28], Chandran et al [29], 

Seth and Ansari [30] and Seth et al [31]. Seth and Ansari [30] investigated 
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unsteady MHD natural convection flow of a viscous, incompressible, electrically 

conducting and heat absorbing fluid past an impulsively moving vertical plate 

with ramped temperature in a porous medium taking into account the effects of 

thermal diffusion. It may be noted that when the density of an electrically 

conducting fluid is low and/or applied magnetic field is strong (Sutton and 

Sherman [32]), the effects of Hall current become significant. It plays an 

important role in determining flow-features of the fluid flow problems because it 

induces secondary flow in the fluid. Therefore it is of considerable interest to 

study the effects of Hall current on MHD fluid flow problems. Keeping in view of 

this fact, Takhar and Ram [33] studied the effects of Hall current on 

hydromagnetic free convection boundary layer flow of heat generating fluid past a 

plate in a porous medium using harmonic analysis. 

The purpose of present investigation is to study the effects of Hall current on 

unsteady hydromagnetic natural convection transient flow of a viscous, 

incompressible, electrically conducting and heat absorbing fluid past an 

impulsively moving vertical plate embedded in a fluid saturated porous medium, 

under Boussinesq approximation, taking into account the effects of thermal 

diffusion when temperature of the plate has a temporarily ramped profile. Natural 

convection flow resulting from such a plate temperature profile may have bearing 

on several engineering problems especially where the initial temperature profiles 

are of much significance in the designing of electromagnetic devices and several 

natural phenomena which occur due to natural convection and heat 

generation/absorption. 

 

2 Formulation of the Problem and its Solution 

 Consider unsteady flow of a viscous, incompressible, electrically 

conducting and temperature-dependent heat absorbing fluid past an infinite 

vertical plate embedded in a uniform porous medium. Coordinate system is 

chosen in such a way that x - axis is considered along the plate in upward 

direction and y - axis normal to the plane of the plate in the fluid. Fluid is 

permeated by a uniform transverse magnetic field 0B  which is applied parallel to 

y - axis. Initially i.e. at time 0t  , both the fluid and plate are at rest and at a 

uniform temperature T
 . At time 0t  , plate starts moving in x - direction with 

uniform velocity 0U  and temperature of the plate is raised or lowered to 

 
0

w

t
T T T

t
 


     when 0t t  , and thereafter, it is maintained at uniform 

temperature wT  . Geometry of the problem is presented in figure 1. 
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Fig. 1: Geometry of the Problem 

 

Since plate is of infinite extent in x  and z  directions and is electrically non-

conducting all physical quantities, except pressure, depend on y  and t  only. 

Also no applied or polarized voltages exist so the effect of polarization of fluid is 

negligible (Meyer [34]) i.e. (0,0,0)E


 . This corresponds to the case where no 

energy is added or extracted from the fluid by electrical means. It is assumed that 

induced magnetic field generated by fluid motion is negligible in comparison to 

the applied one i.e. 0(0, ,0)B B


 . This assumption is valid because magnetic 

Reynolds number is very small for liquid metals and partially ionized fluids 

(Cramer and Pai [35]). 

 Keeping in view of the assumptions made above, the governing equations 

for natural convection flow of a viscous, incompressible, electrically conducting 

and temperature-dependent heat absorbing fluid in a uniform porous medium, 

under Boussinesq approximation, taking Hall current into account are given by 
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where 1 1, , , , , , , , , , , , , ,e e e e pu w K g T T m k c       
       and 0Q  are, 

respectively, fluid velocity along x - direction, fluid velocity along z - direction, 

kinematic coefficient of viscosity, electrical conductivity, density, permeability of 

porous medium, acceleration due to gravity, coefficient of thermal expansion, 

fluid temperature, temperature in reference state, Hall current parameter, 

cyclotron frequency, electron collision time, thermal conductivity, specific heat at 

constant pressure and heat absorption coefficient. 

Initial and boundary conditions for the problem are 
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0 0
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Equations (1) to (3), in non dimensional form, assume the form 
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2

1, ,  , ,  and r rT M K G P   are, respectively, non-dimensional fluid temperature, 

magnetic parameter, permeability parameter,  Grashof number, Prandtl number 

and non-dimensional heat absorption coefficient. 

It may be noted that characteristic time 0t  may be defined, according to the non-

dimensional process mentioned above, as 
2

0 0t U .         (9) 

Initial and boundary conditions (4), in non-dimensional form, become 

0, 0    for 0 and 0u w T y t     ,     (10a) 

1, 0 at 0   for 0u w y t    ,      (10b) 

  at 0   for 0 1T t y t    ,       (10c) 

1 at  0   for  1T y t   ,       (10d) 

0, 0; 0 as for 0u w T y t     .     (10e) 

Combining equations (5) and (6), we obtain 
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. 

Initial and boundary conditions (10a) to (10e), in compact form, are given by 

0, 0    for 0 and 0F T y t    ,      (12a) 

1, at 0   for 0F y t   ,       (12b) 

  at 0   for 0 1T t y t    ,       (12c) 

1 at  0   for  1T y t   ,       (12d) 

0,   0 as for 0F T y t    .     (12e) 

Equations (7) and (11) with the help of Laplace transform technique and initial 

conditions (12a) reduce to 
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where        
0 0

, , and , , , 0st stF y s F y t e dt T y s T y t e dt s

 

     ( s being the 

Laplace transform parameter). 

Boundary conditions (12b) to (12e), after taking Laplace transform, become 
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Solving equations (13) and (14) subject to the boundary conditions (15), we 

obtain 
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where  1r rG P   ,  11N K    and    1r rP P     . 

Exact solution for the fluid temperature  ,T y t  and fluid velocity  ,F y t  is 

obtained by taking inverse Laplace transform of equations (16) and (17) and is 

expressed in the following form after simplification (Abramowitz and Stegun 

[36]). 

       , , 1 , 1T y t G y t H t G y t    ,     (18) 
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 1H t   and  erfc x  are, respectively, the unit step function and complementary 

error function. 

3 Solution in Case of Unit Prandtl Number 

It may be noted that the solution (19) for the fluid velocity is not valid for fluids 

with unit Prandtl number. Since Prandtl number is a measure of the relative 

strength of viscosity and thermal conductivity of fluid, then fluid flow problem 

with 1rP   corresponds to those fluids for which both viscous and thermal 

boundary layer thicknesses are of same order of magnitude. There are some fluids 

of physical interest which belong to this category (Cebeci [37]).  Setting 1rP   in 

Equation (7) and following the same procedure as before, exact solution for fluid 

temperature  ,T y t  and fluid velocity  ,F y t  is obtained and is presented in the 

following form 
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      
                    

       
             
       

 

It is observed from the solution (18) that solution (20) for fluid temperature 

 ,T y t  may also be obtained directly by setting 1rP   in solution (18). 

4 Solution in Case of Isothermal Plate 

Solutions (18) and (19) represent analytical solution for the fluid temperature and 

velocity for flow of a viscous, incompressible, electrically conducting and 

temperature-dependent heat absorbing fluid past an impulsively moving vertical 

plate with ramped temperature taking Hall current into account. In order to 

highlight the influence of ramped temperature distribution within the plate on the 

fluid flow, it may be justified to compare such a flow with the one past an 

impulsively moving vertical plate with uniform temperature. Keeping in view the 

assumptions made in this paper, the solution for the fluid temperature and velocity 

for flow past an impulsively moving isothermal vertical plate is obtained and is 

presented in the following form 

 
1

,
2 2 2

r ry P y Pr rP Py y
T y t e erfc t e erfc t

t t

 
 


    

          
     

, (22) 
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 


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     

,      (23) 

where 

 * 1r rd G P   . 
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5 Skin Friction and Nusselt Number 

Expressions for the primary skin friction x , secondary skin friction z  and 

Nusselt number Nu , which are measures of shear stress at the plate due to 

primary flow, shear stress at the plate due to secondary flow and rate of heat 

transfer at the plate respectively, are presented in the following form for ramped 

temperature and isothermal plates. 

(i) For ramped temperature plate: 

      

        2 2

0

1 , 1 , 1x z

y

F
i erfc t F y t H t F y t

y
    




         

 

1 te
t





 ,                     (24)
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, 1 , 1
y

T
Nu G y t H t G y t

y



     


,    (25) 

where 
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(ii) For isothermal plate: 
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6 Results and Discussion 

In order to analyze the effects of Hall current, thermal buoyancy force, 

permeability of the medium, heat absorption and time on the flow-field, the 

numerical values of the primary and secondary fluid velocities in the boundary 

layer region, computed from the analytical solution (19), are displayed graphically 

versus boundary layer coordinate y for various values of Hall current parameter m, 

Grashof number rG , permeability parameter 1K , heat absorption coefficient   
and time t taking magnetic parameter 2 15M   and Prandtl number 0.71rP   in 

figures 2 to 13. Figures 2 to 13 reveal that, for both ramped temperature and 

isothermal plates, primary velocity u  and secondary velocity w  attain a 

distinctive maximum value near the surface of the plate and then decrease 

properly on increasing boundary layer coordinate y  to approach free stream 

value. Figures 2 to 4 depict the influence of Hall current on the primary velocity 

u  and secondary velocity w  for both ramped temperature and isothermal plates. 

For ramped temperature plate primary velocity u  increases while, for isothermal 

plate, it decreases on increasing Hall current parameter m . On the other hand, 

secondary velocity w  increases on increasing m  for both the ramped temperature 

and isothermal plates. This implies that Hall current tends to accelerate fluid flow 

in the primary flow direction for ramped temperature plate whereas it has reverse 

effect on the fluid flow in the primary flow direction for isothermal plate. Hall 

current tends to accelerate fluid flow in the secondary flow direction for both 

ramped temperature and isothermal plates. 
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y 

Fig. 2: Primary velocity profiles for ramped temperature plate                        

when 16, 0.5, 4 and 0.4rG K t     
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Fig. 3: Primary velocity profiles for isothermal plate  

when 16, 0.5, 4 and 0.4rG K t   
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Fig. 4: Secondary velocity profiles when 16, 0.5, 4 and 0.4rG K t     

Figures 5 and 6 illustrate the effects of thermal buoyancy force on the primary and 

secondary velocities. As Grashof number increases the primary velocity u  

increases for both ramped temperature and isothermal plates whereas secondary 

velocity w  decreases for ramped temperature plate and it increases for isothermal 

plate. This implies that thermal buoyancy force tends to accelerate fluid flow in 

the primary flow direction for both ramped temperature and isothermal plates. 

Thermal buoyancy force tends to retard fluid flow in the secondary flow direction 

for ramped temperature plate and it has reverse effect on the fluid flow in the 
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secondary flow direction for isothermal plate. Also there exists reverse flow in the 

secondary flow direction in the vicinity of isothermal plate when 4rG  . 
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Fig. 5: Primary velocity profiles when 
10.5, 0.5, 4 and 0.4m K t     
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Fig. 6: Secondary velocity profiles when 
10.5, 0.5, 4 and 0.4m K t     

Figures 7 and 8 demonstrate the influence of permeability of porous medium on 

both primary and secondary velocities. An increase in 1K , leads to an increase in 

primary and secondary velocities for both ramped temperature and isothermal 

plates. This is due to the fact that an increase in  1K  implies that there is a 

decrease in the resistance of the porous medium which tends to accelerate fluid 

flow in both the primary and secondary flow directions for both ramped 
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temperature and isothermal plates. Also there exists reverse flow in the secondary 

flow direction near isothermal plate when 1 0.2K  . 
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Fig. 7: Primary velocity profiles when 0.5, 6, 4 and 0.4rm G t   
 

0.0 0.5 1.0 1.5 2.0 2.5

0.04

0.02

0.00

0.02

 
y 

Fig. 8: Secondary velocity profiles when 0.5, 6, 4 and 0.4rm G t     

Figures 9 to 11 display the influence of heat absorption coefficient on the primary 

and secondary velocities. Primary velocity u  decreases on increasing   for both 

ramped temperature and isothermal plates. On increasing   secondary velocity w  

decreases in the vicinity of the plate whereas it increases in the region away from 

the plate for ramped temperature plate. Secondary velocity w  decreases in the 

region away from the plate on increasing   for isothermal plate. This implies that 

heat absorption tends to retard fluid flow in the primary flow direction for both 

1 0.2, 0.5, 0.8K 
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ramped temperature and isothermal plates. Heat absorption tends to retard fluid 

flow in the secondary flow direction in the vicinity of the plate whereas it has 

reverse effect on the fluid flow in secondary flow direction in the region away 

from the plate for ramped temperature plate. For isothermal plate, heat absorption 

tends to retard fluid flow in the secondary flow direction in the region away from 

the plate. 
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Fig. 9: Primary velocity profiles when 10.5, 6, 0.5 and 0.4rm G K t     

0.0 0.5 1.0 1.5 2.0

0.04

0.03

0.02

0.01

0.00

 
y 

Fig. 10: Secondary velocity profiles for ramped temperature plate  

when 10.5, 6, 0.5 and 0.4rm G K t     
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Fig. 11: Secondary velocity profiles for isothermal plate  

when 10.5, 6, 0.5 and 0.4rm G K t   
 

Figures 12 and 13 depict the influence of time on the primary and secondary 

velocities. As time increases primary velocity u  increases for both ramped 

temperature and isothermal plates whereas secondary velocity w  decreases for 

ramped temperature plate and it increases for isothermal plate. This implies that, 

as time progresses, there is an enhancement in fluid velocity in the primary flow 

direction for both ramped temperature and isothermal plates whereas there is a 

reduction in fluid velocity in the secondary flow direction for ramped temperature 

plate and an enhancement in fluid velocity in the secondary flow direction for 

isothermal plate. 
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Fig. 12: Primary velocity profiles when 10.5, 6, 0.5 and 4rm G K    
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Fig. 13: Secondary velocity profiles when 10.5, 6, 0.5 and 4rm G K    
 

The numerical values of fluid temperature T, computed from the analytical 

solution (18), are depicted graphically versus boundary layer coordinate y  for 

various values of Prandtl number rP , heat absorption coefficient  ,  and time t in 

figures 14 to 16. 
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Fig. 14: Temperature profiles when 4 and 0.4t    

Figures 14 to 16 reveal that, for both ramped temperature and isothermal plates, 

fluid temperature T increases on decreasing Prandtl number rP  and it decreases on 

increasing heat absorption coefficient  . Fluid temperature T increases on 
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increasing time t. rP  measures the relative strength of viscosity to thermal 

conductivity of fluid. rP  decreases when thermal conductivity of fluid increases. 
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Fig. 15: Temperature profiles when 0.71 and 0.4rP t    
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Fig. 16: Temperature profiles when 4 and 0.71rP     

This implies that thermal diffusion tends to enhance fluid temperature whereas 

heat absorption tends to reduce it for both ramped temperature and isothermal 

plates. As time progresses, there is an enhancement in fluid temperature for both 

ramped temperature and isothermal plates. Also fluid temperature is maximum at 

the surface of the plate for both ramped temperature and isothermal plates and it 

decreases on increasing boundary layer coordinate y to approach free stream 
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value. Also it is evident from figures 14 to 16 that fluid temperature is lower for 

ramped temperature plate than that of isothermal plate. 

           The numerical values of non-dimensional skin frictions, andx z   due to 

primary and secondary flow respectively for both ramped temperature and 

isothermal plates, computed from the analytical expressions (24) and (26), are 

presented in tabular form in tables 1 to 6 for various values of 1, , , andrm G K t  

taking 2 15M   and 0.71rP   whereas that of Nusselt number Nu for both 

ramped temperature and isothermal plates, computed from analytical expressions 

(25) and (27), are provided in tables 7 and 8 for different values of , andrP t . It 

is found from table 1 that, for ramped temperature plate, skin friction in primary 

flow direction i.e. x  decreases on increasing m  while it decreases on increasing 

rG  when 1.m   Skin friction in secondary flow direction i.e. z  increases on 

increasing m  while it decreases on increasing rG . This implies that, for ramped 

temperature plate, Hall current tends to reduce primary skin friction whereas it has 

reverse effect on secondary skin friction. On the other hand thermal buoyancy 

force tends to reduce primary skin friction when 1m   while it has same effect on 

secondary skin friction for every value of m .  

 

Table 1: Skin friction for ramped temperature plate  

when 1 0.5, 4 and 0.4K t    

 

m ↓ rG → 
x  z  

4 6 8 4 6 8 

0.5 3.64414 3.55478 3.46543 0.602713 0.50953 0.416346 

1 3.23202 3.20549 3.17896 0.873152 0.73609 0.599029 

1.5 2.89744 2.92667 2.95589 0.963824 0.813587 0.66335 

 

Table 2 reveals that, for isothermal plate, x  increases on increasing m  when 

6rG   while it decreases on increasing .rG  z  increases on increasing either 

or rm G . This implies that, for isothermal plate, Hall current tends to enhance 

primary skin friction when 6rG   while thermal buoyancy force has reverse 

effect on it for every value of m . Both the Hall current and thermal buoyancy 

force have tendency to enhance secondary skin friction. 
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Table 2: Skin friction for isothermal plate when 1 0.5, 4 and 0.4K t    

 

m ↓ rG → 
x  z  

4 6 8 4 6 8 

0.5 2.38391 1.66444 0.944975 0.268394 0.797131 1.32587 

1 2.28857 1.79032 1.29206 0.667822 1.57537 2.48292 

1.5 2.28594 2.00942 1.73289 1.10139 2.28424 3.46709 

 

It is noticed from table 3 that, for ramped temperature plate, x  decreases while 

z  increases on increasing 1K . This implies that, for ramped temperature plate, 

permeability of the medium has tendency to reduce primary skin friction whereas 

it has reverse effect on secondary skin friction. 

 

Table 3: Skin friction for ramped temperature plate  

when 6, 4 and 0.4rG t    

 

m ↓ 1K → 
x  z  

0.2 0.5 0.8 0.2 0.5 0.8 

0.5 3.89425 3.55478 3.46948 0.49448 0.50953 0.514126 

1 3.4932 3.20549 3.14148 0.673763 0.73609 0.76242 

1.5 3.16177 2.92667 2.88331 0.664128 0.813587 0.887357 

 

It is observed from table 4 that, for isothermal plate, on increasing 1K , x  

decreases when 0.5m  , it decreases, attains a minimum and then increases when 

1m   and it increases when 1.5m  . z  increases on increasing 1K . This implies 

that, for isothermal plate, permeability of the medium has tendency to enhance 

secondary skin friction. Primary skin friction is of oscillatory nature with respect 

to permeability of the medium. 

 

Table 4: Skin friction for isothermal plate when 6, 4 and 0.4rG t    

 

m ↓ 1K → 
x  z  

0.2 0.5 0.8 0.2 0.5 0.8 

0.5 2.15269 1.66444 1.54853 0.448032 0.797131 0.914434 

1 1.87292 1.79032 1.84229 1.01791 1.57537 1.72533 

1.5 1.56226 2.00942 2.27139 1.63248 2.28424 2.37176 
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Table 5 illustrates that, for ramped temperature plate, x  increases on increasing 

  while it decreases on increasing t . z  decreases on increasing either or t . 

This implies that, for ramped temperature plate, heat absorption tends to enhance 

primary skin friction whereas it has reverse effect on secondary skin friction. Both 

primary and secondary skin frictions are getting reduced as time progresses. 

 

Table 5: Skin friction for ramped temperature plate 

when 10.5, 6 and 0.5rm G K    

 

 ↓  t → 
x  z  

0.2 0.4 0.6 0.2 0.4 0.6 

1 3.64174 3.46959 3.29878 0.780178 0.514633 0.363237 

4 3.68077 3.55478 3.42266 0.776461 0.50953 0.35078 

7 3.71592 3.62626 3.53146 0.768504 0.492907 0.322379 

 

It is revealed from table 6 that, for isothermal plate, x  decreases on increasing   

whereas it increases on increasing t . On the other hand z  increases on increasing 

  while it increases, attains a maximum and then decreases on increasing t . This 

implies that, for isothermal plate, heat absorption has tendency to reduce primary 

skin friction whereas it has reverse effect on secondary skin friction. Primary skin 

friction is getting enhanced as time progresses whereas secondary skin friction 

behaves in oscillatory manner as time progresses. 

 

Table 6: Skin friction for isothermal plate when 10.5, 6 and 0.5rm G K    

 

 ↓  t → 
x  z  

0.2 0.4 0.6 0.2 0.4 0.6 

1 1.99005 2.05589 2.08883 0.333701 0.367664 0.353767 

4 1.62832 1.66444 1.68417 0.764136 0.797131 0.787537 

7 1.26088 1.26347 1.27056 1.40266 1.43677 1.43287 

 

It is evident from tables 7 and 8 that Nu  increases on increasing either or rP  for 

both ramped temperature and isothermal plates. On increasing ,t Nu  increases for 

ramped temperature plate while it decreases for isothermal plate. This implies 

that, for both the ramped temperature and isothermal plates, heat absorption has 

tendency to enhance rate of heat transfer whereas thermal diffusion has reverse 

effect on it. As time progresses, rate of heat transfer is getting enhanced for 

ramped temperature plate while it is getting reduced for isothermal plate. 



 

 

 

484 G. S. Seth, G. K. Mahato, S. Sarkar, M. S. Ansari 

 

Table 7: Nusselt number Nu  when 0.71rP   

 

 ↓ t → 

For ramped temperature plate
 

For isothermal plate
 

0.2 0.4 0.6 0.2 0.4 0.6 

1 0.453002 0.678476 0.875635 1.2688 1.03378 0.949133 

4 0.530455 0.880298 1.22043 1.81588 1.71289 1.69295 

7 0.600496 1.05039 1.49675 2.28134 2.23502 2.23019 

 

Table 8: Nusselt number Nu   when 4   

 

rP ↓  t → 

For ramped temperature plate
 

For isothermal plate
 

0.2 0.4 0.6 0.2 0.4 0.6 

0.3 0.304607 0.640004 1.06556 1.18037 1.11343 1.10046 

0.5 0.341191 0.679009 1.10515 1.52385 1.43743 1.42069 

0.71 0.372295 0.71217 1.1388 1.81588 1.71289 1.69295 
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