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Abstract 

In this paper, we introduce the concept of the total block edge cut 
vertex graph. We obtain some properties of these graphs. We present 
characterization of graphs whose total block edge cut vertex graphs 
planar, outer planar, minimally non outer planar and crossing number 
one. 
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1 Introduction 

By a graph, we mean a finite, undirected graph without loops or multiple edges. 

Definitions not given here may be found in [1]. We now define the total block 

edge cut vertex graph. For any graph G with cut vertex set C(G), edge set E(G) 

and block set B(G). The total block edge cut vertex graph B** (G) of G is defined 

as the graph having vertex set C(G)E(G)B(G), with two vertices adjacent if 

they correspond to two adjacent edges of G or one corresponds to an edge of G 

and other to a block of G and ei lies in Bj or one corresponds to a block and other 

to a cut vertex cj of G and   cj lies on Bj or both cut vertices are adjacent. 

 

2 Preliminary Results 

 

Theorem 2.1 [1] If G is a (p, q) graph whose vertices have degree di then L(G) 

has q vertices and qL edges where  

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Theorem 2.2 [2] The line graph L(G) of a graph is planar if and only if G is 

planar,  (G)  4 and if deg v = 4 for a vertex v of G, then v is a cut vertex. 
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Theorem 2.3 [3] A graph is planar if and only if it has no sub graph 

homeomorphic to K5 or K3,3. 

 

Theorem 2.4 [ 3]  A graph is outer planar if and only if it has no sub graph  

homeomorphic to K4 or K2,3. 

 

Theorem 2.5 [5]  The block edge cut vertex graph B*(G) of a graph G has 

crossing number one if and only if G is planar and satisfies the following 

conditions. 

1. Degree of every vertex is at most 4 and 

2. G has a unique vertex of degree 4 which is a cut vertex  or 

3. in G any one block with exactly two non cut vertices of degree 3 which are 

adjacent and all other vertices of degree at most 3. 

The following observations are of use. 

Lemma 2.1 For any graph G, the line graph L(G) is a sub graph of B**(G). 

 

Lemma 2.2  If G is a cycle Cn, then B*(G) becomes a wheel Wn. 

 

Lemma 2.3  If K1,p , p  2 having a cut vertex of degree p is a sub graph of G then 

Kp is a sub graph of B**(G). 

 

Lemma 2.4  If   K1,p , p  2 having a non cut vertex of degree p is a sub graph of 

G then Kp+1 is a sub graph of B**(G).  
 

3 Main Results. 

The first theorem determines the number of vertices and edges in the total block 

edge cut vertex graph of a graph. 

Theorem 3.1 If G is nontrivial connected (p, q) graph with b block and k cut 

vertices, whose vertices have degree di, li be the number of edges to which block 

bi belongs and ni be the number of blocks to which the cut vertex ci belongs in G, 

then the total block edge cut vertex graph B**(G)  has (q+b+k) vertices and 
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Proof.  By definition of total block edge cut vertex graph B**(G) , it has (q +b 

+k) vertices. The number of edges of B**(G) is the sum of the number of edges in 

L(G), the number of edges in each block, the number of blocks incident to cut 

vertices ni of G and the number of edges in a cut vertex graph. Now G has q edges 
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and by Theorem 2.1, L(G) has  -q +
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Theorem 3.2 Let G be a nontrivial connected (p, q) graph. The graphs G and 

B**(G) are isomorphic if and only if G = K2. 

 

Proof . Suppose G is isomorphic B**(G) . Assume G is a connected graph with  p

  3. We consider the following cases: 

case 1. Suppose G is not a tree with p vertices. Then it has at least p edges and has 

at least one block. Thus B*(G) has at least p+1 vertices. Hence the number of 

vertices in G is less than that in B**(G). Then G  B**(G), a contradiction. 

case 2. Suppose G is a tree with p vertices. Then it has p-1 edges and p-1 blocks. 

Thus B**(G) has 2p-2 +k vertices where k is the number of cut vertices. Hence 

the number of vertices of G is less than that is B*(G). Thus the graphs G and 

B**(G) are not isomorphic, a contradiction. 

  In each case we arrive a contradiction. Thus, G   K2.   

 

Theorem 3.3 The total block edge cut vertex graph B**(G) and the block edge 

cut vertex graph B*(G) are isomorphic if and only if G has at most one cut vertex. 

 

Proof. Suppose B*(G)   B**(G).From the Theorem 2.1 and the Theorem 3.1, the 

graph B*(G) and B**(G) have   ii nd
2
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edges respectively. Since B*(G)   B**(G), this implies that 
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If ,0ic  then G has no cut vertex, since G is connected and it must be a block. 

If ,1ic then G has only end blocks. This implies that G has at most one cut 

vertex.  

Conversely, suppose G has at most one cut vertex. We consider the following the 

cases: 

Case ( i ). Suppose G has no cut vertex. Then G is a block. Obviously B*(G) and 

B**(G) have the same number of vertices and edges.  
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Case (ii). Suppose G has a cut vertex. Let it be incident with more than two edges. 

Then the cut vertex together with its n incident edges forms 1nK  has a sub 

graph of B*(G) and hence in B**(G). Hence B*(G)   B**(G). 

 

Theorem 3.4. The total block edge cut vertex graph B**(G) of a graph G is 

planar if and only if G satisfies the following conditions:  

  i).  3)(  G     

 ii).  every block of G is either a cycle or K2 . 

iii). each nontrivial block contains nonadjacent cut vertices. 

 

Proof. Suppose the total block edge cut vertex graph B**(G) is planar. By lemma 

2.1 L(G) is planar. By Theorem 2.2, .4)(  G  

Suppose 4)(  G .Then there exist a vertex v in G such that deg (v) =4. By 

Theorem 2.2, v is a cut vertex .The four incident edges of the cut vertex form K4 

as a sub graph of B**(G) in which all the edges are interior and hence it is a non 

planar, a contradiction. Thus no vertex of G has degree 4. Hence, 3)(  G . This 

proves (i). 

    Assume that G is a block which is neither an edge nor a cycle. Clearly G 

contains at least five edges. The line graph L(B) of B has a sub graph of K4 –x, 

where x is any edge of K4. The vertex in B**(G) which corresponds to B is 

adjacent to every vertex of L(B). This produces a sub graph homeomorphic to K6 

– 2x in B**(G), where x is any edge of K6, which is non planar, a contradiction. 

Hence both conditions are satisfied. 

Further, we assume that each nontrivial block contains at least two adjacent cut 

vertices. Thus the cut vertices together with edge of block form K5 as a sub graph 

, which is non planar, contradiction. Hence all conditions are satisfied. 

    Conversely, suppose G satisfies all conditions of the theorem .Clearly every 

block of G is either a cycle or a K2. It is easy to see that G is planar and by 

Theorem 2.2, L(G) is planar. By lemma 2.1, L(G) is a sub graph B**(G). Assume 

that a cycle Cr is a block of G. Then L(Cr) is a cycle in the planar graph of L(G). 

Since in the planar drawing of L(G) every such cycle can be drawn with all its 

vertices on the boundary of one region, consider a crossing –free drawing of L(G) 

in which  all vertices of the sub graph L(Cr) are on the boundary of one region. 

Then the vertex ur corresponding to the block Cr of the graph G can be placed into 

this region in such a way that the edges joining ur with the vertices of L(cr) do not 

cross the edges of L(G). Next assume that K2 is a block of G. Then L(K2) is the 

vertex say wn in L(G). Let un be the vertex in B*(G) corresponding to the block 

K2 of G. Then the edge {unwn} is in B**(G). This edge can be placed in some 

region of B**(G) without losing planarity. Also the vertex v in B*(G) 

corresponding to the cut vertex of G and the edges joining v with the vertex wn do 

not cross the edges in B**(G). Thus B**(G) is planar. This completes the proof. 
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Theorem 3.5 The total block edge cut vertex graph B**(G) is outer planar if and 

only G is a path P3. 

 

Proof Suppose B**(G) is outer planar. Cleary B*(G) is planar, By Theorem 3.1, 

=3 and G is either a cycle or K2. Assume 3)(  G  and v is a vertex of G with 

degree three. If v is not a cut vertex, then it self is a block b. Then number of 

edges in a block is at least five. These five edges together with b form {K6-2x} is 

a sub graph of B**(G) , which is non planar, a contradiction. Also if v is a cut 

vertex, then it form K5 as a sub graph  which is non planar, a contradiction. 

   Assume that G is not a path. We consider the following cases. 

Case1. Suppose G is a cycle. Then by Theorem 4, B**(G) is a wheel, which is 

non outer planar, a contradiction. 

Case 2. Suppose G is a star K 1,3. Then L(G) is a K3. Also each edge is a block. 

Every vertex of L(G) is joins a vertex b1 , b2, b3 . Then bi together with cut vertex 

v form a graph which is homeomorphic to K4. By Theorem 2.4, B**(G) is non 

outer planar, a contradiction. Hence G must be a path Pn for n<4. 

    Conversely suppose G is a path Pn for n<4. Then every block of B**(G) is a 

cycle C5 . Hence B**(G) is outer planar. This completes the proof. 

 

Theorem 3.6 The total Block edge cut vertex graph B*(G) of G is minimally non 

outer planar if and only if G is  a path P4.  

 

Proof. Suppose B*(G) is minimally non outer planar. Assume that G is not a path 

P4. We consider the following cases: 

Case 1. G is a block. Clearly it contains at least five edges. Then the L(G) 

together with block b forms a graph {K6 – 2x} which has i(B**G) >2, a 

contradiction.  

Case 2. Assume that G contains at least one cut vertex of degree 3. Then L(G) 

together with cut vertex c and block b form at least two {K4} as induced sub 

graphs in B**(G). Thus i{B**(G)}>1, a contradiction.  

Case 3. Assume that G is a path Pn for n>4. If n = 5, then L[P5]=P4 and each block 

is an edge and each cut vertex incident with two edges. Also C(P4) is a path P3 . 

Clearly i[B**(P5)]=2, a contradiction.. Hence G = P4. 

    Conversely suppose G is a cycle Cn. By the definition, L(G) together with block 

b form a wheel Wn. It is known that every wheel is minimally non outer planar. 

This completes the proof. 

 

Theorem 3.7 The total block edge cut vertex graph B**(G) of a graph G has 

crossing number one if and only if G is planar and satisfies the following 

conditions. 

i). Degree of every vertex is at most 4 and 

ii). G has a unique vertex of degree 4 which is a cut vertex   or 

iii). In G any one block with exactly two non cut vertices of degree 3 which are 

adjacent and all other vertices of degree at most 3. 
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Proof.  Proof follows from the Theorem 2.5. 
 

4 Conclusion. 

 In this paper we presented the total block edge cut vertex graph of a graph. Also 

we presented the planarity, outer planarity and crossing number one.   
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