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Abstract 

 

In this paper, three types of parabolic inverse problems are solved by homotopy analysis method (HAM).  In order to 

solve these types of problems, an overspecified boundary condition is given.  There are advantages to using HAM, 

firstly it is independent of small/large physical parameters, there is always a guarantee of convergence; there is 

flexibility on the choice of base function and initial guess of solution and lastly there is great generality. The numerical 

results obtained from this method indicate high accuracy and a strong rate of convergence. 
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1. Introduction 

Most problems that arise in science and engineering are nonlinear in nature and are modeled with differential equations. 

We employ the use of approximate analytical methods to solve problems whose solutions are not so easily obtained 

analytically. In recent years many analytical methods have been developed; some of the methods employed are the 

homotopy analysis method [1], [10], [11], [15], [16], the homotopy perturbation method [13], [14], variational iteration 

method [13] and the adomain decomposition method [2], [3], [4], [11]. We utilize the homotopy analysis method 

(HAM) proposed by Liao [15, 16] to help us obtain exact and approximate solutions to inverse problems.  

Unlike other perturbation methods, HAM avoids discretization, provides us with efficient numerical solution with high 

accuracy; there is minimal calculation and the avoidance of physically unrealistic assumptions. The convergence region 

for the series solution obtained by HAM is determined by the auxiliary parameter  . 

In this paper, the Homotopy Analysis Method will be used to obtain an approximate analytic solution to a space 

dependent source term, a time dependent source term, a non-homogeneous unknown control function and the 

determination of the source function for a nonlinear parabolic heat equation. 

When we solve inverse problems we determine or predict model parameters in this case the source term from the 

knowledge of the measured parameters or data. A lot of work and research has been done in solving inverse problems to 

nonlinear partial differential equations, some of the work may be found in [2], [5], [6], [8], [9], [11], [14], [18], and 

[19]. 

This article contains the following sections: 

In section 2 we discuss the methodology of the Homotopy analysis method. We look at the solution of parabolic inverse 

problems with unknown control function in section 3. At the end of section 3, we discuss and analyze the results. 

2. Homotopy analysis method 

To illustrate the basic idea of the HAM, we consider the following differential equation: 

   , , ,N u x t s x t                                                                                                                                                        (2.1) 
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Where N is a nonlinear operator, x and t denote independent and dependent variables respectively, u is an unknown 

function and s(x,t) is the nonhomogeneous term.  By means of HAM, we first construct a zeroth-order deformation 

equation 

         01 , ; , , ; , ,q L x t q u x t q N x t q s x t          h                                                                                          (2.2) 

Where  0,1q is the embedding parameter, 0h  is an auxiliary parameter, L is an auxiliary linear operator, 

 , ;x t q is an unknown factor,  0 ,u x t  is an initial guess of u(x,t). It is obvious that when the embedding parameter q 

goes from 0 to 1, the values for  , ;x t q  becomes 

       0, ;0 , , , ;1 , ,x t u x t x t u x t                                                                                                                (2.3) 

Respectively. Thus as q increases from 0 to 1, the solution  , ;x t q  varies from the initial guess  
0

,u x t  to the solution 

u(x,t). Expanding  , ;x t q  in Taylor series with respect to q, we obtain 

     0

1

, ; , , ,m

m

m

x t q u x t u x t q




                                                                                                                 (2.4) 

Where  

 
 

0

, ;1
, | ,

!

m

m qm

x t q
u x t

m q








                                                                                                                                       (2.5) 

The convergence of the series (4) depends upon the auxiliary parameter h . 

With HAM, we have the freedom to choose the initial guess  
0

,u x t , the auxiliary linear operator L, the nonzero auxiliary 

parameter h  and the auxiliary function H(x,t). We assume that all of them are properly chosen so that: 

1) The solution  , ;x t q of the zeroth-order deformation equation (2) exists for all  0,1q . 

2) The homotopy analysis derivative   , ;D x t qm   exists for m = 1, 2, 3,…,  . 

3) The power series (4) of  , ;x t q  converges at q=1. 

Then from Eqs. (2.3) and (2.4), we have under these assumptions the solution series 

     0

1

, , , ,m

m

u x t u x t u x t




                                                                                                                                         (2.6) 

Which must be one of the solutions of the original nonlinear equation, as proven by Liao [16]. Define the vectors 

      0 1, , , ,..., , ,n nu u x t u x t u x t


                                                                                                                              (2.7) 

Differentiating the zeroth-order deformation equation (2.2) m – times with respect to q and then dividing them by m! 

And finally setting q = 0 (Taking the mth – order homotopy derivative). Firstly, since L is a linear operator independent 

of q, it holds 

      

        

0

0 0

1 , ; ,

, ; , ; , , ,

m

m

D q L x t q u x t

D L x t q q x t q u x t q u x t



 

   

     

                                                                                               (2.8) 

And using Homotopy Properties (see Appendix) (i) and (ii) 

        

      

0 0

0

, ; , ; , ,

, ; , ; ,

m

m m m

D L x t q q x t q u x t q u x t

L D x t q D q x t q u D q

 

 

    

    

                                                                                               (2.9) 

 

And Homotopy Property (iii) and (IV) 

         

       

0

1 0

, ; , ; ,

, , , ,

m m m

m m m

L D x t q D q x t q u x t D q

L u x t u x t u x t D q

 



   

    

                                                                                                (2.10) 

Which equals the  mL x  when m=1, and  1m mL x x  when m > 1, respectively. Thus, the m th – order deformation 

equation becomes 

   1 1, , ,m m m m mL u x t u x t R u


 

 
     

 
h                                                                                                                  (2.11) 

Where 

 

   1

1 01

, ; ,1
| ,

1 !

m

m m qm

N x t q g x t
R u

m q




 

     
 

  
                                                                                        (2.12) 

And 
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0, 1
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1, 1
m

m

m



 


                                                                                                                                                           (2.13) 

It should be emphasized that  ,mu x t  for 1m   is governed by the linear equation (11) with linear boundary conditions 

that come from the original problem. Therefore the solution to the differential equation obtained by HAM is a family of 

solutions expressed using the auxiliary parameter h .  

3. Inverse parabolic problems with unknown control function 

In this paper, we use HAM to obtain an approximate analytical solution to the following inverse problem of finding 

both the control parameter p = p (t) and u(x,t) in the quasilinear time-dependent diffusion equation. 

     
2

02
, , : 0 , 0 ,

u u
p t u x t z x t x l t T

t x

 
      

 
                                                                                                (3.1) 

With initial condition and boundary conditions: 

           0 1 0,0 , 0, , , ; 0 , 0 ,u x f x u t g t u l t g t t T x l                                                                            (3.2) 

The over specified boundary condition is 

   1 1 1 0, ; 0 1, 0 ,u x t k t x t T                                                                                                                             (3.3) 

All the conditions in (3.2) and (3.3) are known, 
1 0,x T  and  l  are positive numbers.  Our aim is to solve for the 

unknowns, mainly the temperature  ,u x t  and the control function  p t .  Equation (3.1) is used to describe a heat 

converting process with source parameters and equation (3.3) displays the temperature at point 
1x  at time t. The 

purpose of this paper is to determine the control parameters that are used to find the temperature u(x, t) at any time t at 

the given point
1x . 

The existence and uniqueness of (3.1)-(3.3) has been proved in references [5], [6], [7], [8], [11]. 

By using the conversion 

       
 

0, , ; ,

t

p s ds

v x t r t u x t r t e


                                                                                                                             (3.4) 

Equation (3.1) to (3.3) becomes as follows: 

    0, ; 0 , 0 ,t xxv v r t z x t x l t T       

               0 1 0,0 , 0, , , ; 0 ,0 ,v x f x v t r t g t v l t r t g t x l t T                                                                   (3.5) 

Where we have: 

 
 

 
1

0

1

,
; 0 ,

v x t
r t t T

k t
                                                                                                                                             (3.6) 

And 

 
 

 
0

'
; 0 ,

r t
p t t T

r t
                                                                                                                                           (3.7) 

To solve (3.5) by HAM 

Using the solution procedure by HAM, we define a linear operator in the form  

 
 , ;

, ; ,
x t q

L x t q
t





   

                                                                                                                                            (3.8) 

With the property 

 1 0,L c x                                                                                                                                                                     (3.9) 

Where  1c x is the integration constant the nonlinear operator is taken as 

         , ; , ; , ; , ,t xxN x t q v x t q v x t q r t z x t                                                                                                      (3.10) 

So we can define mR  as 

   
   

2

1 1

1 12

, ,
, ,

m m

m m m

v x t v x t
R v r t z x t

t x


 

 

  
    

  
                                                                                        (3.11) 

Using (2.11),(2.13) and (3.10), we can get 

     1 1 1, , ,m m m m mv x t v x t R v dt c x


 

 
   

 
h                                                                                                        (3.12) 

The parameters used during the application of HAM are defined as follows: 
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The initial guess is 

     0 , ,0 ,v x t u x f x                                                                                                                                             (3.13) 

The calculations for    , ,r t u x t  and p (t) is as follows:  

   
 

 
0 1 2

0 0 1

0,
...,

m

m

m m

v t
r t r t r r r

g t

 

 

        

   
 

 
0 1 2

0 0

,
, , ...,

m

m

m m m

v x t
u x t u x t u u u

r t

 

 

        

   
       

 
0 1 2

0 0

, , ,
...,

,

m mt xx

m

m m m

u x t u x t z x t
p t p t p p p

u x t

 

 

 
                                                                     (3.14) 

 

Example 3.1: 

       2 2, [ cos cos ] (1 )[ cos ],t tz x t e x x x e t x x                                                                                      (3.15) 

 1 ,tg t e                                                                                                                                                                 (3.16) 

 1 1

1 1
, ,

2 2

tk t e note x                                                                                                                                            (3.17) 

   cos ,f x x x                                                                                                                                                    (3.18) 

For which the exact solution is 

   , [cos ]tu x t e x x                                                                                                                                               (3.19) 

And 

  21p t t                                                                                                                                                          (3.20) 

The results obtained for u(x,t) and p(t) computed for 
00.0, 1.0T h using HAM are listed below 

 

Table 1: Results for u with 
0

0, 1.0T h  

x Exact u HAM Absolute Error 

0.0 2.718281828 2.718281828 0 

0.05 2.820729359 2.820729359 0 

0.10 2.857067829 2.857067829 0 

0.15 2.829749117 2.829749117 0 

0.20 2.742792560 2.742792560 0 

0.25 2.601685971 2.601685971 0 

0.30 2.413250518 2.413250518 0 

0.35 2.185472765 2.185472765 0 

0.40 1.927308010 1.92308010 0 

0.45 1.648459787 1.648459787 0 

0.50 1.359140914 1.359140914 0 

0.55 1.069822040 1.069822040 0 

0.60 0.7909738171 0.7909738171 0 

0.65 0.532809062 0.532809062 0 

0.70 0.3050313084 0.3050313084 0 

0.75 0.1165958575 0.1165958575 0 

0.80 -0.02451073229 -0.02451073229 0 

0.85 -0.1114672901 -0.1114672901 0 

0.90 -0.1387860010 -0.1387860010 0 

0.95 -0.1024475314 -0.1024475314 0 

1.0 0 0 0 

 

Example 3.2: 

         
222, 1 cos sintz x t t e x x                                                                                                              (3.21) 

 
2

1

tg t e                                                                                                                                                                    (3.22) 

 
2

2

tg t e                                                                                                                                                                 (3.23) 

 
2

1 1, 1tk t e note x                                                                                                                                                (3.24) 
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     cos sinf x x x                                                                                                                                              (3.25) 

For which the exact solution is 

     
2

, [cos sin ]tu x t e x x                                                                                                                                    (3.26) 

And 

  21p t t                                                                                                                                                               (3.27) 

The results obtained for u(x,t) and p(t) using HAM are listed below 

 
 

Table 2: Results for p with 0h  

t Exact p HAM Absolute Error 

0.0 1 1 0 

0.05 1.002500000 1.002500000 0 

0.10 1.010000000 1.010000000 0 

0.15 1.022500000 1.022500000 0 

0.20 1.040000000 1.040000000 0 

0.25 1.062500000 1.062500000 0 

0.30 1.090000000 1.090000000 0 

0.35 1.122500000 1.122500000 0 

0.40 1.160000000 1.160000000 0 

0.45 1.202500000 1.202500000 0 

0.50 1.250000000 1.250000000 0 

0.55 1.302500000 1.302500000 0 

0.60 1.360000000 1.360000000 0 

0.65 1.422500000 1.422500000 0 

0.70 1.490000000 1.490000000 0 

0.75 1.562500000 1.562500000 0 

0.80 1.640000000 1.640000000 0 

0.85 1.722500000 1.722500000 0 

0.90 1.810000000 1.810000000 0 

0.95 1.902500000 1.902500000 0 

1.0 2.000000000 2.000000000 0 

 

 

Table 3: Results for u, with 
0

0, 0.25T h  

x Exact u HAM Absolute Error 

0.0 0.9394130628 0.9394130628 0 

0.05 1.0748039090 1.0748039090 0 

0.10 1.1837295160 1.1837295160 0 

0.15 1.2635077740 1.2635077740 0 

0.20 1.3121742770 1.3121742770 0 

0.25 1.3285306940 1.3285306940 0 

0.30 1.3121742770 1.3121742770 0 

0.35 1.2635077740 1.2635077740 0 

0.40 1.1837295160 1.1837295160 0 

0.45 1.0748039090 1.0748039090 0 

0.50 0.9394130628 0.9394130628 0 

0.55 0.7808907485 0.7808907485 0 

0.60 0.6031403139 0.6031403139 0 

0.65 0.4105385618 0.4105385618 0 

0.70 0.2078279878 0.2078279878 0 

0.75 0.0000000001 0.0000000001 0 

0.80 -0.2078279887 -0.2078279887 0 

0.85 -0.4105385627 -0.4105385627 0 

0.90 -0.6031403147 -0.6031403147 0 

0.95 -0.7808907492 -0.7808907492 0 

1.0 -0.9394130628 -0.9394130628 0 
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Table 4: Results for p with 0h  

t Exact p HAM Absolute Error 

0.0 1 1 0 

0.05 1.002500000 1.002500000 0 

0.10 1.010000000 1.010000000 0 

0.15 1.022500000 1.022500000 0 

0.20 1.040000000 1.040000000 0 

0.25 1.062500000 1.062500000 0 

0.30 1.090000000 1.090000000 0 

0.35 1.122500000 1.122500000 0 

0.40 1.160000000 1.159999990 0.000000001 

0.45 1.202500000 1.202500000 0 

0.50 1.250000000 1.250000000 0 

0.55 1.302500000 1.302500000 0 

0.60 1.360000000 1.360000000 0 

0.65 1.422500000 1.422500000 0 

0.70 1.490000000 1.490000000 0 

0.75 1.562500000 1.562500001 0.000000001 

0.80 1.640000000 1.640000000 0 

0.85 1.722500000 1.722500000 0 

0.90 1.810000000 1.810000000 0 

0.95 1.902500000 1.902500001 0.000000001 

1.0 2.000000000 2.000000001 0.000000001 

 

4. Conclusion 

We have shown that HAM can be used to accurately predict the results for the temperature and the control function. The 

solution series obtained for analytical approximation for u(x, t) and p(t) contained the auxiliary term h . Instead of using 

the h -curve proposed by Liao [16], to determine the values of h  , we used the over specified boundary condition The 

freedom of choice in choosing h  enables us to adjust and control the convergence of the solutions series and this 

differentiates the homotopy analysis method from other existing methods such as the homotopy perturbation method, 

variational iteration method and Adomian decomposition method.  

MAPLE has been used for the computation in this paper. 
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APPENDIX 

Homotopy Properties (HP): For homotopy-series 

 
^ ^ ^

0 0

,i i

i i

i i

u u v q v v t q
 

 

 
  

 
   

The following properties are satisfied: 

i. Let f and g be functions independent of the homotopy – parameter q, then 

ii. 
^ ^ ^ ^

m m mD f u g v fD u gD v
     

       
     

.u 

iii. Let L be a linear operator independent of the homotopy – parameter q, then 

iv. 
^ ^

m mD Lu LD v
   

   
   

. 

v. 
^

m mD u u
 

 
 

. 

vi. 
^ ^

k

m m kD q u D u

   
   

   
. 

vii. If 
^ ^

u v in a domain  0,q a , then
^ ^

m mD u D v
   

   
   

, thus m mu v . 

For proof of these properties, see Liao [17]. 
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