

On the integer solutions of the Pell equation $x^2 = 13y^2 - 3^2$

V.Sangeetha 1*, M.A.Gopalan 2, Manju Somanath 3

1.3 Assistant professor, dept. of mathematics, national college, Trichy-620001, Trichy, Tamilnadu, India ² Professor, dept. of mathematics, srimathi indira Gandhi college, trichy-620002, Tamilnadu, India *Corresponding author E-mail: prasansangee@gmail.com

Copyright © 2014 V.Sangeetha et al. This is an open access article distributed under the <u>Creative Commons Attribution License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The binary quadratic Diophantine equation represented by $x^2 = 13y^2 - 3^t$, t > 0 is considered and analyzed for its non-zero distinct integer solutions for the choices of t given by (i) t = 1 (ii) t = 3 (iii) t = 5 (iv) t = 2k and (v) t = 2k + 5. A few interesting relations among the solutions are presented. Further, recurrence relations on the solutions are obtained.

Keywords: Pell equation, integer solutions of Pell equation, binary quadratic Diophantine equation.

1. Introduction

It is well known that the Pell equation $x^2 - Dy^2 = 1$ (D > 0 and square free) has always positive integer solutions. When $N \ne 1$, the Pell equation $x^2 - Dy^2 = N$ may not have any positive integer solutions. For example, the equations $x^2 = 3y^2 - 1$ and $x^2 = 7y^2 - 4$ have no integer solutions. When k is a positive integer and $D \in (k^2 \pm 4, k^2 \pm 1)$, positive integer solutions of the equations $x^2 - Dy^2 = \pm 4$ and $x^2 - Dy^2 = \pm 1$ have been investigated by Jones in [9].In [3], [6], [10], [15], some specific Pell equation and their integer solutions are considered. In [1], the integer solutions of the Pell equation $x^2 - (k^2 + k)y^2 = 2^t$ has been considered. In [2], the Pell equation $x^2 - (k^2 - k)y^2 = 2^t$ is analyzed for the integer solutions. In [7], the Pell equation $x^2 - 18y^2 = 4^k$ is considered. In [8], the Pell equation $x^2 - 3y^2 = (k^2 + 4k + 1)^t$ is analyzed for its positive integer solutions.

This communication concerns with the Pell equation $x^2 = 13y^2 - 3^t$, where t > 0 and infinitely many positive integer solutions are obtained for the choices of t given by (i) t = 1 (ii) t = 3 (iii) t = 5 (iv) t = 2k and (v) t = 2k + 5. A few interesting relations among the solutions are presented. Further, recurrence relations on the solutions are derived.

(1)

2. Notation

 $t_{4,n}$ = Square number of rank n.

3. Method of analysis

3.1. Choice 1:t=1

The Pell equation is
$$x^2 = 13y^2 - 3$$

Let (X_0, Y_0) be the initial solution of (1) given by $X_0 = 7$; $Y_0 = 2$
To find the other solutions of (1), consider the Pellian equation $x^2 = 13y^2 + 1$
whose initial solution $(\tilde{x}_n, \tilde{y}_n)$ is given by

$$\tilde{x}_n = \frac{1}{2} f_n$$

$$\tilde{y}_n = \frac{1}{2\sqrt{13}} g_n$$

Where
$$f_n = (649 + 180\sqrt{13})^{n+1} + (649 - 180\sqrt{13})^{n+1}$$

$$g_n = (649 + 180\sqrt{13})^{n+1} - (649 - 180\sqrt{13})^{n+1}, n = 0,1,2,...$$

Applying Brahmagupta lemma between (X_0, Y_0) and $(\tilde{x}_n, \tilde{y}_n)$, the sequence of non-zero distinct integer solutions to (1) are obtained as

$$X_{n+1} = \frac{1}{2} [7f_n + 2\sqrt{13}g_n]$$

$$Y_{n+1} = \frac{1}{2\sqrt{13}} [2\sqrt{13}f_n + 7g_n]$$
(2)

$$Y_{n+1} = \frac{1}{2\sqrt{13}} \left[2\sqrt{13}f_n + 7g_n \right] \tag{3}$$

The recurrence relations satisfied by the solutions of (1) are given by

$$X_{n+3} - 1298X_{n+2} + X_{n+1} = 0$$
; $X_1 = 9223$, $X_2 = 11971447$

$$Y_{n+3} - 1298Y_{n+2} + Y_{n+1} = 0$$
; $Y_1 = 2558, Y_2 = 3320282$

From (2) and (3), the values of f_n and g_n are found to be

$$f_n = \frac{1}{3}(52Y_{n+1} - 14X_{n+1})$$
 ; $g_n = \frac{1}{3}(4\sqrt{13}X_{n+1} - 14\sqrt{13}Y_{n+1})$ (4)

Properties

- $936Y_{2n+2} 252X_{2n+2} + 108$ is a nasty number. 1.
- $468Y_{3n+3} 126X_{3n+3} + 1404Y_{n+1} 378X_{n+1}$ is a cubic integer. 2.
- $1404Y_{4n+4} 378X_{4n+4} + 324t_{4,f_n} 162$ is a bi-quadratic integer. 3.

3.2. Choice 2: t = 3.

The Pell equation is

$$x^2 = 13y^2 - 27 \tag{5}$$

Let (X_0, Y_0) be the initial solution of (5) given by

$$X_0 = 5$$
 ; $Y_0 = 2$

Applying Brahmagupta lemma between (X_0, Y_0) and $(\tilde{x}_n, \tilde{y}_n)$, the sequence of non-zero distinct integer solutions to (5)

$$X_{n+1} = \frac{1}{2} [5f_n + 2\sqrt{13}g_n] \tag{6}$$

$$X_{n+1} = \frac{1}{2} [5f_n + 2\sqrt{13}g_n]$$

$$Y_{n+1} = \frac{1}{2\sqrt{13}} [2\sqrt{13}f_n + 5g_n]$$
(6)

The recurrence relations satisfied by the solutions of (5) are given by

$$X_{n+3} - 1298X_{n+2} + X_{n+1} = 0$$
; $X_1 = 7925$, $X_2 = 10286645$

$$Y_{n+3} - 1298Y_{n+2} + Y_{n+1} = 0$$
; $Y_1 = 2198, Y_2 = 2853002$

$$Y_{n+3} - 1298Y_{n+2} + Y_{n+1} = 0 \; ; Y_1 = 2198, Y_2 = 2853002$$
From (6) and (7), the values of f_n and g_n are found to be
$$f_n = \frac{1}{27} (52Y_{n+1} - 10X_{n+1}) \quad ; \quad g_n = \frac{1}{27} (4\sqrt{13}X_{n+1} - 10\sqrt{13}Y_{n+1})$$
(8)

Properties

- $6(468Y_{2n+2} 90X_{2n+2} + 1458)$ is a nasty number. 1.
- 2. $468Y_{3n+3} - 90X_{3n+3} + 468Y_{n+1} - 90X_{n+1}$ is a cubic integer.
- $52Y_{4n+4} 10X_{4n+4} + 324t_{4,f_n} 162$ is a bi-quadratic integer.

3.3. Choice 3: t = 5

The Pell equation is

$$x^2 = 13y^2 - 243\tag{9}$$

Let (X_0, Y_0) be the initial solution of (9) given by

$$X_0 = 15$$
; $Y_0 = 6$

Applying Brahmagupta lemma between (X_0, Y_0) and $(\tilde{x}_n, \tilde{y}_n)$, the sequence of non-zero distinct integer solutions to (9)

$$X_{n+1} = \frac{1}{2} [15f_n + 6\sqrt{13}g_n] \tag{10}$$

$$X_{n+1} = \frac{1}{2} [15f_n + 6\sqrt{13}g_n]$$

$$Y_{n+1} = \frac{1}{2\sqrt{13}} [6\sqrt{13}f_n + 15g_n]$$
(10)

The recurrence relations satisfied by the solutions of (9) are given by

$$X_{n+3} - 1298X_{n+2} + X_{n+1} = 0$$
; $X_1 = 23775$, $X_2 = 30859935$

$$Y_{n+3} - 1298Y_{n+2} + Y_{n+1} = 0$$
; $Y_1 = 6594, Y_2 = 8559006$

From (10) and (11), the values of f_n and g_n are found to be

$$f_n = \frac{1}{243} \left(156 Y_{n+1} - 30 X_{n+1} \right) \; ; \; g_n = \frac{1}{243} \left(12 \sqrt{13} X_{n+1} - 30 \sqrt{13} Y_{n+1} \right)$$
 (12)

Properties

- $104Y_{2n+2} 20X_{2n+2} + 108$) is a nasty number. 1.
- $52Y_{3n+3} 10X_{3n+3} + 156Y_{n+1} 30X_{n+1}$ is a cubic integer. 2.
- $156Y_{4n+4} 30X_{4n+4} + 324t_{4,f_n} 162$ is a bi-quadratic integer 3.

3.4. Choice 4: t = 2k, k > 0.

The Pell equation is

$$x^2 = 13y^2 - 3^{2k}, k > 0 ag{13}$$

Let (X_1, Y_1) be the initial solution of (13) given by

 $X_1 = 3^k.649$; $Y_1 = 3^k.180$

Applying Brahmagupta lemma between (X_1, Y_1) and $(\tilde{x}_n, \tilde{y}_n)$, the sequence of non-zero distinct integer solutions to (13) are obtained as

$$X_{n+1} = 3^k \cdot \frac{1}{2} f_n \tag{14}$$

$$X_{n+1} = 3^k \cdot \frac{1}{2} f_n$$

$$Y_{n+1} = 3^k \cdot \frac{1}{2\sqrt{13}} g_n , n = 1, 2, 3, \dots$$
(15)

The recurrence relations satisfied by the solutions of (13) are given by

 $X_{n+3} - 1298X_{n+2} + X_{n+1} = 0$; $X_2 = 3^k$. 842401, $X_3 = 3^k$. 1093435849

 $Y_{n+3}-1298Y_{n+2}+Y_{n+1}=0$; $Y_2=3^k.233640, Y_3=3^k.303264540$ From (14) and (15), the values of f_n and g_n are found to be

$$f_n = \frac{1}{3^k} (1298X_{n+2} - 4680Y_{n+2}) \; ; \; g_n = \frac{1}{3^k} (1298\sqrt{13}Y_{n+2} - 360\sqrt{13}X_{n+2})$$
 (16)

Properties

- When $k \equiv 0 \pmod{2}$, $6(1298X_{2n+3} 4680Y_{2n+3} + 2.3^{2k})$ is a nasty number.
- 2. When $k \equiv 0 \pmod{3}$, $1298X_{3n+4} - 4680Y_{3n+4} + 3(1298X_{n+2} - 4680Y_{n+2})$ is a cubic integer.

3.5. Choice 5: t = 2k + 5, k > 0

The Pell equation is

$$x^2 = 13y^2 - 3^{2k+5} \tag{17}$$

Let (X_0, Y_0) be the initial solution of (17) given by

$$X_0 = 3^{k-1}.19$$
; $Y_0 = 3^{k-1}.14$

Applying Brahmagupta lemma between (X_0, Y_0) and $(\tilde{x}_n, \tilde{y}_n)$, the sequence of non-zero distinct integer solutions to

$$X_{n+1} = \frac{3^{k-1}}{2} (19f_n + 14\sqrt{13}g_n) \tag{18}$$

$$X_{n+1} = \frac{3^{k-1}}{2} (19f_n + 14\sqrt{13}g_n)$$

$$Y_{n+1} = \frac{3^{k-1}}{2\sqrt{13}} (14\sqrt{13}f_n + 19g_n)$$
(18)

The recurrence relations satisfied by the solutions of (17) are given by

$$X_{n+3} - 1298X_{n+2} + X_{n+1} = 0$$
; $X_1 = 3^{k-1} \cdot 45091$, $X_2 = 3^{k-1} \cdot 58528099$
 $Y_{n+3} - 1298Y_{n+2} + Y_{n+1} = 0$; $Y_1 = 3^{k-1} \cdot 12506$, $Y_2 = 3^{k-1} \cdot 16232774$
From (18) and (19), the values of f_n and g_n are found to be

$$f_n = \frac{1}{3^{k+6}} \left(325156 Y_{n+2} - 90182 X_{n+2} \right) \; ; \; g_n = \frac{1}{3^{k+6}} \left(25012 \sqrt{13} X_{n+2} - 90182 \sqrt{13} Y_{n+2} \right)$$
 (20)

The integer solutions presented in each of the sections 1 to 5 satisfy the following relations.

- $X_{n+3} = 649X_{n+2} + 2340Y_{n+2}$. 1.
- 2. $X_{n+3} = 842401X_{n+1} + 3037230Y_{n+1}$
- 3.
- $Y_{n+3} = 180X_{n+2} + 649Y_{n+2}.$ $Y_{n+3} = 233640X_{n+1} + 842401Y_{n+1}$

4. Conclusion

To conclude, one may search for other patterns of solutions to the similar equation considered above.

References

- Ahmet Tekcan, Betul Gezer and Osman Bizin "On the integer solutions of the Pell equation $x^2 dy^2 = 2^{t}$ ", World Academy of Science, [1] Engineering and Technology, 1(2007) 522-526.
- Ahmet Tekcan "The Pell equation $x^2 (k^2 k)y^2 = 2^t$ ", World Academy of Science, Engineering and Technology, 19 (2008) 697-701. [2]
- Gopalan.M.A. and R.S. Yamuna "Remarkable observations on the ternary quadratic equation $y^2 = (k^2 + 1)x^2 + 1, k \in z \{0\}$," Impact J.Sci. [3] Tech., 4(4) (2010) 61-65.
- Gopalan, M.A. and R. Vijayalakshmi "Special Pythagorean triangles generated through the integral solutions of the equation $y^2 =$ [4] $(k^2 + 1)x^2 + 1$ ", Antarctica Journal of Mathematics, 7(5) (2010) 503-507.
- Gopalan.M.A. and A.Vijaya Sankar "Integral solutions of $y^2 = (k^2 1)x^2 1$ ", Antarctica Journal of Mathematics, 8(6) (2011) 465-468.
- Gopalan.M.A. and B.Sivakami "Special Pythagorean triangles generated through the integral solutions of the equation $y^2 = (k^2 + 2k)x^2 +$ 1", Diophantus Journal of Mathematics, 2(1) (2013) 25-30.
- Gopalan.M.A., V. Sangeetha and Manju Somanath "On the integer solutions of the Pell equation $x^2 18y^2 = 4^k$ " International Journal of [7] Engineering and Science Invention (IJESI), 2 (12) (2013) 01-03.
- Gopalan.M.A., V. Sangeetha and Manju Somanath "On the integer solutions of the Pell equation $x^2 3y^2 = (k^2 + 4k + 1)^t$ " To appear in [8] Proceedings of the International Conference on Mathematical Methods and Computation Jamal Mohamed College(Autonomous), Tiruchirappalli, India, February 2014.
- [9] Jones J.P. "Representation of solutions of Pell equations using Lucas sequences", Acta Academia Pead. Ag. Sectio Mathematicae, 30 (2003)
- Kaplan.P. and K.SWilliams., "Pell's equation $x^2 my^2 = -1$, -4 and continued fractions", Journal of Number Theory, 23(1986) 169-182. [10]
- Keskin.R. "Solutions of some quadratic Diophantine equations", Computers and Mathematics with Applications, 60(2010) 2225-2230.
- Lenstra.H.W. "Solving the Pell equation", *Notices of the AMS*, 49(2) (2002) 182-192. Matthews.K. "The Diophantine equation $x^2 Dy^2 = N$, D > 0", Expositiones Math., 18(2000) 323-331.
- Tekcan.A. O.Bizin and M.Bayraktar "Solving the Pell equation using the fundamental elements of the Field $Q(\sqrt{\Delta})$," South East Asian Bulletin [14] of Mathematics, 30 (2006) 355-366,
- Tekcan.A. "The Pell equation $x^2 Dy^2 = \pm 4$ ", Applied Mathematical Sciences, 1(8) (2007) 363-369. [15]