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Abstract 

 

This paper deals with the stability of triangular Lagrangian points in the elliptical restricted three body problem, under 

the effect of radiation pressure stemming from the more massive primary on the infinitesimal. We adopted a set of 

rotating pulsating axes centered at the centre of mass of the two primaries Sun and Jupiter. We have exploited method 

of averaging used by Grebenikov, throughout the analysis of stability of the system. The critical mass ratio depends on 

the radiation pressure, eccentricity and the range of stability decreases as the radiation parameter increases. 
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1. Introduction 

The restricted three body problem (R3BP) describes the motion of an infinitesimal mass moving under the gravitational 

effect of the two finite masses, called primaries, which move in circular orbits around their centre of masses on account 

of their mutual attraction and the infinitesimal mass not influencing the motion of primaries. The primaries move in 

circular keplarian orbit and hence the name circular restricted three body problems (CR3BP). Synodic reference system 

is used for the circular problem, in which the primaries are fixed with respect to uniformly rotating axes; hence the 

Hamiltonian does not depend on time explicitly. But (CR3BP) has a disadvantage that this formulation cannot treat the 

long-time behavior of practically important dynamical systems in celestial mechanics. The reason is that significant 

effects might be expected because of the eccentricity of the orbits of the primaries. On the other hand, in Elliptic 

restricted three body problems (ER3BP), the primaries move in an elliptical keplarian orbit. The introduction of non-

uniformly rotating and pulsating co-ordinate system results again in fixed location of primaries. The elliptical restricted 

three body problem generalizes the original circular restricted three body problems, while some useful properties of 

circular model still can be satisfied to the elliptical case. The Hamiltonian however, in this case, does depend explicitly 

on time “as given by Szebehely [1]”. The ER3BP describes the dynamical system more accurately as the primaries 

move along the elliptical orbit. 

In spite of the large amount of analytical and numerical work in CR3BP, there are relatively a few analytical results in 

ER3BP. The stability of the infinitesimal around the triangular equilibrium points in the elliptical restricted three body 

is “described in considerable details by Grebenikov [1], Danby [3], Bennet [4], Rabe [5], [6], Meire [7], Markeellos [8], 

Roberts [9], Zimvoschikov and Thakai [10], Ammar [11]”. The linear stability of elliptic Lagrange orbits in ER3BP by 

numerical integration technique has been “studied by Danby [3]”. The linear stability of the periodic orbits of Lagrange 

in the ER3BP using perturbation technique has been “investigated by Roberts [9]”; he proved that for some mass 

values; the elliptic orbits are linearly stable. The librational solutions to the photogravitational restricted three body 

problems by considering both primaries as radiating have been “studied by Khasan [12], [13]”. The effect of solar 

radiation pressure on the location and stability of lagrangian points in ER3BP has been “studied by Ammar [11]” and 

was seen that radiation pressure plays the role of reducing the effective mass and slightly changes the location of the 

Lagrangian points. It was found that the triangular equilibrium points are stable for 0.5  , satisfying the 

conditions 2(27 6 ) (1 ) (1 4 cos )e v      , where v is the true anomaly of the either primaries and   the radiation 
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pressure emanating from more massive primaries. The analytical investigation concerning the structure of asymptotic 

perturbative approximation for small amplitude motions has been “performed by Selaru and Cucu- Dumitrescu [14], 

[15]”, provided the third point mass lies in the neighbourhood of a Lagrangian equilateral points in the planer , elliptical 

restricted three bodies. 

Non-linear stability of the triangular equilibrium points of the elliptical restricted three body problem was “studied by 

Gyorgrey [16], Kumar and Choudhary [17], Erdi [18]”. Furthermore, the nonlinear stability of the infinitesimal in the 

orbits or the size of the stable region around L4 was “studied by Gyorgrey [16]” and the parametric resonance stability 

around L4, in elliptical restricted three body problem was “studied by Erdi [18]”. The influence of the eccentricity of the 

orbit of the primary bodies with or without radiation pressure on the existence of the equilibrium points and there 

stability was “discussed to some extent by Khasan [12], [13], Pinyol [19], Floria [20], Halan and Rana [21], Markeev 

[22], Selaru and Dumitrescu [14], [15], Nayayan and Ramesh [23], [24]”. The stability of triangular points in the 

elliptical restricted three body problem under radiating and oblate primaries was “studied by Singh and Umar [25], 

[26]”.  

The present study aims to examine the combined effects of gravitational forces of the primaries rotating in an elliptic 

orbit around their centre of mass and radiation pressure emanating from the Sun on the infinitesimal particle analytically 

and numerically. An application of this problem can be seen in the motion of the Trojan asteroids around the triangular 

points L4. The asteroids in this case are only influenced by the gravitational forces of the Sun and Jupiter and the orbit 

of Jupiter around the sun is assumed to be fixed ellipse. We have exploited the method of averaging“used by 

Grebenikov [2]”, throughout the analysis for studying the existence and stability of infinitesimal. Attempt has been 

made to study the condition of convergence of the series representing the solution of problem by Fourier series 

expansion. Finally, transition Curves are plotted between critical mass ratio ( *  ) and eccentricity (e) for different 

values of radiation pressure using Matlab 7.1 Software. 

2. Equation of motion  

The ER3BP models the motion of a test particle having infinitesimal mass m, and moving under the influence of the 

gravitational field of two massive bodies of masses m1 and m2 that revolve in an elliptic orbit. Accordingly to the usual 

practice and without loss of generality we choose a system of units as the gravitational constants and the sum of the 

finite masses equals to the unity, i.e. 

1 2 1;m m   2 1

1 2 1 2

1
;1 ;0 .

2

m m

m m m m
      

                                                                                                          (2.1)
 

If in addition to this the value of the orbital angular momentum of the relative motion of the primaries is unity, then the 

semi-latus rectum of the elliptical orbit will be equals to one and the polar equation of ellipse will take the form 

1

1 cos
r

e v



                                                                                                                                                                   (2.2) 

Where v is the true anomaly of the either primaries. 

 
Fig. 1: The location of the sun (S), Jupiter (J) and the particle in the rotating frame. 

 

The equations of motion of the infinitesimal mass in the elliptic restricted three body problem in rotating pulsating 

coordinate system are presented below “following Ammar [11]” by

     
2

2

1
2 ;

v v 1 cosv

d x dy U

d d e x


 

 
 

  

2

2

1
2 ;

v v 1 cosv

d y dx U

d d e y


 

 
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.

v v 1 cosv

d z dz U

d d e z


 

 
                                                                                                                                               (2.3)

 
Where, 

2
2 2

1 2

1 2

1 (1 ) 1 1 1
(1 ) ;

2 2 2

z
U r r

r r r


 
   

        
   

                                                                                                             (2.4) 

2 2 2 2

1 ( ) ;r x y z   
                                                                                                                                                    (2.5)

 

2 2 2 2

2 ( 1) .r x y z    
                                                                                                                                               (2.6) 

1 1 2 2; ; ; ;x rx y ry z rz r rr r rr    
                                                                                                                                  (2.7) 

The above transformation is used to convert the motion of infinitesimal from rotating frame of reference to pulsating 

coordinate system, 

Where v is the true anomaly as the independent variable in elliptical orbit.
 

The total action from the Sun on the particle can be expressed by the acceleration “as given by Ammar [11]”. 

1

2

1

(1 )
(1 ) ;total gr rad gr

m
F F F F

r





     

                                                                                                                         (2.8)
 

Equation (2.3) has the particular solution “as given by Ammar [11]”.  

2/3

0

1
(1 ) ;

2
x     

2/3
1/3

0

(1 )
(1 ) 1 ;

4
y





   

0 0;z 

                                                                                               (2.9)

 

The three bodies nearly form an equilateral triangle in the coordinate system mentioned above. Since the equilateral 

points are symmetrical to each other, the nature of motion near the two triangular points is the same. Therefore, it is 

sufficient to analyze the motion of the triangular equilibrium points having the location ( 0 0, 0,x y z  ). 

In order to investigate the stability of the equilibrium points (2.9) in the first approximation, we derive the equation for 

variations in the coordinates. Let , ,    denotes small displacement in 0 0, 0,x y z   

Then 
0 0; ; .x x y y z                                                                                                                                        (2.10) 

Differentiating with respect tov , we get;
 

' ';x y   
                                                                                                                                                             (2.11) 

'' '';x y   
 

Assuming 1( , , ) (1 cos ) .x y z U e v      

Where U  defined by equation (2.4), is potential function. From the third equation of the system (2.3), the conditions 

0z  ,implies that 0z  .That is all the critical points are planar and no equilibrium points can be found outside 

the x y plane “as explained by Szebehely [1]”.Considering, 

0 0( , ) ( , )x x xx y x y                                                                                                                                       (2.12) 

Applying Taylor’s theorem in equation (2.11) and retaining first order terms in the infinitesimal  and , we get:
 

0 0 0 ;x x xx xy      
                                                                                                                                                (2.13) 

0 0 0 .y y yx yy      
                                                                                                                                                (2.14) 

Here, the subscript in  indicates the first and the second  order partial derivative as the subscript appears once or twice, 

and the  superscript '0 ' denotes partial derivatives evaluated at  the equilibrium point ( 
0 0,x y ).Also at the equilibrium 

point, ( 
0 0,x y ), we have;  0 0 0.x y    

 The perturbations in , ,    are given by the equations: 

 0 01
2 ;

1 cos
xx xy

e v
        

                                                                                                                                (2.15) 

.   
 

Now, we have:   

 0 3
(4 )(1 ) ;

4(1 cos )
xx Q Q Q

e v
    


  

 0 3
(4 ) 1 3 ;

4(1 cos )
xy Q Q Q

e v
      


                                                                                                                (2.16) 

 0 3
4 (4 )(1 ) .

4(1 cos )
yy Q Q Q

e v
     


 

Where 2/3(1 ) .Q  

 From equations (2.15) and (2.16), the perturbations in , ,     are given by the following equations: 

 0 01
2 ;

1 cos
xy yy

e v
        

 
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3 3

2 (4 )(1 ) (4 )(1 3 ) ;
4(1 cos ) 4(1 cos )

Q Q Q Q Q Q
e v e v

                
  

 
3 3

2 (4 )(1 3 ) (4 (4 )(1 ) ;
4(1 cos ) 41 cos )

Q Q Q Q Q Q
e v e v

                 
  

 

.   
                                                                                                                                                                         (2.17) 

The  last equation of (2.17) yields: 

1 2cos sin .C v C v  
                                                                                                                                                     (2.18)

 

Where 
1C  and 

2C  are arbitrary constants. Hence in order to investigate the stability of equilibrium points, we consider 

first two equations of (2.17).The stability of the equilibrium points has been investigated by introducing a new variable 

given by:  

1 ;x  2 ;x  3
v

d
x

d


 ; 4 .

v

d
x

d


                                                                                                                                   (2.19) 

The equations of motion (2.17) in the variables 
1 2 3 4, , ,x x x x can be written as:  

1 1 2 2 3 3 4 4;i
i i i i

dx
P x P x P x P x

dv
      1,2,3,4i                                                                                                                 (2.20) 

Where,
11 12 14 21 22 23 33 44 0;P P P P P P P P        13 24 34 431 , 1, 2, 2;P P P P      

 0

31

1 3
(4 )(1 ) ;

(1 cos ) 4(1 cos )
xxP Q Q Q

e v e v
     

   

0

32 41

1 3
(4 )(1 3 ) ;

(1 cos ) 4(1 cos )
xyP Q Q Q P

e v e v
 

 
        

  
                                                                            (2.21)

 

 0

42

1 3
4 (4 )(1 ) .

(1 cos ) 4(1 cos )
yyP Q Q Q

e v e v
      

 
 

The coefficients in the system of equation (2.20) are periodic function of ‘v ’ with period 2 .  Considering the averaged 

system “as given by Grebenikov [2]”, suitable for finding solution of the problem we get; 
(0)

(0) (0) (0) (0) (0) (0) (0) (0)

1 1 2 2 3 3 4 4
v

i
i i i i

dx
P x P x P x P x

d
   

                                                                                                         (2.22) 

 
2

(0)

,
0

1
;

2
i s isP P v dv




  , 1,2,3,4i s 

                                                                                                                              (2.23)

 

4
(0) (0)

1

;i s is

s

x C x



                                                                                                                                                           (2.24)

 

Where 
sC are arbitrary constants and  (0)

isx are the fundamental system of solution, of equation (2.22) and solution is 

given by equation (2.9) and equation (2.10). 

After evaluation we get: 
(0) (0) (0) (0) (0) (0) (0) (0)

11 12 14 21 22 23 33 44 0.P P P P P P P P        (0) (0) (0) (0)

13 24 34 431 1 2 2.P P P P    
                                 (2.25)

 

 
2

(0)

31 31
20

1 3
(4 )(1 ) ;

2 4 1
P P dv Q Q Q

e






       



2

(0) (0)

32 32 41
20

1 3
(4 )(1 3 )

2 4 1
P P dv Q Q Q P

e



 


       
 




2
(0)

41 32
20

1 3
(4 )(1 3 ) ;

2 4 1
P P dv Q Q Q

e



 


      
 




 

 
2

(0)

42 42
20

1 3
4 (4 )(1 ) .

2 4 1
P P dv Q Q Q

e






        



                                                                                              (2.26)

 

3. Stability of triangular equilibrium points  

The characteristics equation for the system of equation of variations (3.22) is given by: 
4 2 0;T R   

                                                                                                                                                            (3.1)
 

Where, (0) (0)

31 42 4;T P P  

 

2

3
4.

4 1 e
 


                                                                                                                     (3.2)

 

(0) (0) (0) (0)

31 42 32 41
2

9
(4 ) (1 );

4 1
R P P P P Q

e
       


                                                                                                     (3.3) 
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We obtained the characteristics roots given by: 

 

1/2
2 1/2( 4 )

;
2 2

T T R


 
   

 
                                                                                                                                             (3.4)

  

2

3
2 .

2 1 e


 
     

 
                                                                                                                                              (3.5) 

Where, 

2

2 2

3 9 (1 )(4 )
2 4 .

2 1 4 1

Q

e e

    
    

  
                                                                                                              (3.6) 

For the stability of Lagrangian points, the eccentricity satisfies the inequality given by 

2

3
2 0 ;

2 1 e

 
  

 
                                                                                                                                                           (3.7)

 

. Thus in case the eccentricity does not satisfy inequality (3.7), the characteristics roots will be either real or complex 

conjugate. In case of complex roots, there must be roots with positive real parts leading to instability of the equilibrium 

points in the first approximation.   

Thus, if the eccentricity satisfies the inequality 0

7
1

4
e e   , the triangular Lagrangian points are unstable. The result 

is in conformity with “that of Grebenikov [2]”. 

The characteristics roots will be purely imaginary if: 
0;T 

                                                                                                                                                                              (3.8) 
2 4 0;T R 

                                                                                                                                                                     (3.9)
 

 
From the inequality (3.8), it follows that:  

2 2(1 )(27 6 ) (3 4 1 )e                                                                                                                                          (3.10)

 
It is clear that when 0, 0e    , equation (3.10) reduces to the well-known condition for stability of the triangular 

equilibrium points in the CR3BP, that is 27 (1 ) 1.     

“Ammar [11]” found that the triangular equilibrium points are stable for 0.5  , satisfying the 

conditions 2(27 6 ) (1 ) (1 4 cos )e v      , where v is the true anomaly of the either primaries and   the radiation 

pressure emanating from more massive primaries. 

Since 1
2

  , the inequality (3.10) is satisfied, when 0 *     

Where 
2 21 1 4(4 1 3)

* 1 .
2 2 27 6

e




 
  



                                                                                                                          (3.11) 

The value of *  “as per Ammar [11]” is  
1 1 4 32 (1 2 )

* 1 .
2 2 27 6

e e




 
  


  

Slight difference in the expression of *  is found“as compared to Ammar [11]”. It is possible that the difference in 

result may be due to method of averaging adopted. 

The two roots of equation (3.1) are represented as follows:  

1
2

3
2 ;

2 1 e
    


                                                                                                                                                (3.12) 

2
2

3
2 ;

2 1 e
    


                                                                                                                                               (3.13) 

We have 2 2

1 2
2

3
4 ;

1 e
 

 
   

 
                                                                                                                                  (3.14) 

Hence, taking the limit as 2 2

1 2
0
0

lim ( ) 1.
e


 



                                                                                                                  (3.15) 

For values of the eccentricity close to
0e , both 1  and 2  are small quantities .For small eccentricities, when one of the 

quantities 1  is small, the others differ a little from unity.  

The schematic behavior of the system  can be investigated when the infinitesimal move around the triangular 

equilibriums points under the radiating bigger primaries by plotting the transition curves for different values of ‘e’ and  

parameters ‘β’ using MATLAB 7.1 version of software. We have plotted curves between different values of eccentricity 

of the orbit and µ
*
 (critical mass ratio) by varying radiation parameter. We observe that when the radiation parameter 
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increases the region stability of the infinitesimal around triangular points decreases which is obvious from the figure2. 

 
Fig. 2: Correlation between µ* (critical mass ratio) and e (eccentricity) for [0 : 0.14)   

 

Thus, the triangular equilibrium points are stable if the eccentricity ‘e’ satisfies the condition (3.7) and the mass ratio µ* 

obeys the equation (3.11).The dependence of µ* on the eccentricity are plotted in graph for different values of radiation 

pressure. It is observed that as radiation pressure is increasing the range of stability is decreasing.   

4. Solutions of the un averaged equations 

We analyze further, that the Fourier expansion of the co-efficient of the Eq. (2.20) can be written as:  

(0) ( )

1

, , 1,2,3,4.k

is is is

k

P P P i s




  
                                                                                                                                     (4.1)

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

11 12 13 14 21 22 23 24 33 34 43 44 0,k k k k k k k k k k k kP P P P P P P P P P P P             

1,2,3,......k 
                                                                                                                                                                    (4.2)

 

 ( )

31

3
(4 )(1 ) cos ;

4

k

kP Q Q Q a kv        

( )

32

3
(4 )(1 3 ) cos ;

4

k

kP Q Q Q a kv     
 

                                                                                                                    (4.3) 

( )

41

3
(4 )(1 3 ) cos ;

4

k

kP Q Q Q a kv     
 

 

 ( )

42

3
4 (4 )(1 ) cos ;

4

k

kP Q Q Q a kv       
 

1,2,3,4.k 

 
Where 

0

2 cos
.

1 cos
k

kvdv
a

e v







                                                                                                                                                (4.4)

 

Using, the expansion of the elliptic function, it can be shown, that
ka is a power series whose first term starts at ke  and 

that: 

2 .k

ka e
                                                                                                                                                                         (4.5)

 

 All the coefficients of Eq. (4.3) satisfy the inequality given as follows: 

(9 / 2) .k

isP e
                                                                                                                                                                 (4.6)

 

We look for an analytical solution of system of the form:  

(0) ( )

1

;k

i i i

k

x x x




 
                                                                                                                                                          (4.7)

 

Where  (0)

ix  is the general solution of the homogenous system of Eq. (4.20). It is given by  

4
(0) (0)

1

;i s is

s

x C x



                                                                                                                                                           (4.8) 

Where sC are arbitrary constants and  (0)

isx   are the fundamental system of solution, of system of equation (2.20) given 

as follows:  
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(0) (1) (2)

11 1 1 1 1cos sin ,x l v l v   (0) (1) (2)

12 1 1 1 1sin cos ,x l v l v   (0) (3) (4)

13 1 2 1 2cos sin ,x l v l v    (0) (3) (4)

14 1 2 1 2sin cos ,x l v l v  
 

(0) (1)

21 2 1cos ,x l v (0) (1)

22 2 1sin ,x l v (0) (3)

23 2 2cos ,x l v  
(0) (3)

24 2 2sin ,x l v (0) (1) (2)

31 3 1 3 1cos sin ,x l v l v   (0) (1) (2)

32 3 1 3 1sin cos ,x l v l v   (0) (3) (4)

33 3 2 3 2cos sin ,x l v l v  

(0) (3) (4)

34 3 2 3 2sin cos ,x l v l v   (0) (2)

41 4 1sin ,x l v  (0) (2)

42 4 1cos ,x l v (0) (4)

43 4 2sin ,x l v   (0) (4)

44 4 2cos .x l v            (4.9)
 

Where
 

(1)

1

3
(4 )(1 3 ) ,

4
l Q Q Q     

 

      
(3)

1

3
(4 )(1 3 ) ,

4
l Q Q Q      

 
(2)

1 12 ,l   (4)

1 22 ,l   (1) 2

2 1

3
,

4
l   (3) 2

2 2

3
,

4
l   (1) 2

3 12 ,l 
 

(2)

3 1

3
(4 )(1 3 ) ,

4
l Q Q Q       

 
 

(3) 2

3 22 ,l 
 

(4)

3 2

3
(4 )(1 3 ) ,

4
l Q Q Q       

 
(2) 2

4 1 1

3
,

4
l  

 
  
 

 (4) 2

4 2 2

3
,

4
l  

 
  
 

                                            (4.10) 

The k
th

 approximation is given by the system of equation: 

 
( ) 4 4 1

(0) ( ) ( ) ( )

1 1 0

.
v

k k
k k m mi

is i is s

s s m

dx
P x P x

d




  

                                                                                                                           (4.11) 

We look for a solution of a system of equation (4.11) which is represented in the form:  
( ) ( ) ( ) ( ) ( )

,0 ,0 1 ,0 ,0 1( )cos ( )sink k k k k

i i i i ix v v v v      
 

( ) ( ) ( ) ( )

,0 ,0 2 ,0 ,0 2( )cos ( )sink k k k

i i i iv C v v D v      
 

( ) ( ) ( ) ( )

, 1 , 1 , 1 , 1

1

[ cos( ) cos( ) sin( ) sin( )
k

k k k k

i s i s i s i s

s

A s v A s v B s v B s v    



        
( ) ( ) ( ) ( )

, 2 , 2 , 2 , 2cos( ) cos( ) sin( ) sin( ) ].k k k k

i s i s i s i sC s v C s v D s v D s v          

                                                                     (4.12)
 

The unknown coefficients of Eq. (12) ( ) ( )

,0 ,,.........,k k

i i sD   are determined by the algebraic equations given by: 

(0) 2 ( ) (0) ( ) (0) ( )
3431 1 1,0 32 2,0 4,0( ) 0,k k kP P P      

 
(0) ( ) (0) 2 ( ) (0) ( )

4341 1,0 42 1 2,0 3,0( ) 0,k k kP P P      
                                                                                                               (4.13) 

(0) 2 ( ) (0) 2 ( ) (0) ( )
3134 1 2,0 1 3,0 32 4,0( ) 0,k k kP P P         (0) 2 ( ) (0) 2 ( ) (0) 2 ( )

4241 1 1,0 41 1 3,0 1 4,0( ) 0.k k kP P P            

And 
(0) 2 ( ) (0) ( ) (0) ( )

3431 2 1,0 32 2,0 4,0( ) 0,k k kP P P      
 

(0) ( ) (0) 2 ( ) (0) ( )
4341 1,0 42 2 2,0 3,0( ) 0,k k kP P P      

                                                                                                               (4.14) 
(0) 2 ( ) (0) 2 ( ) (0) ( )

3134 2 2,0 2 3,0 32 4,0( ) 0,k k kP P P         (0) 2 ( ) (0) 2 ( ) (0) 2 ( )
4241 2 1,0 41 2 3,0 2 4,0( ) 0.k k kP P P           

The determinants of system (13) and (14) are different from zero,  
2

1(0) 2.74 13.0938 7.3397 ;D e  
                                                                                                                                (4.15) 
2

2(0) 6.2202 34.88088 57.42 ;D e  
                                                                                                                            (4.16) 

.Thus, it can be shown that the solution of the differential equations (4.11) giving the k
th

 approximation contains only 

periodic terms if it is assumed that its non-homogeneous part is of the expanded form of (4.11).  We will now show that 

the equations giving the (k+1)
 th

 approximation are of the same form. The (k+1)
 th

 approximation is obtained from the 

system. 
( 1) 4 4

(0) ( 1) ( 1 ) ( )

1 1 0

.
v

k k
k k m mi

is s is s

s s m

dx
P x P x

d


  

  

                                                                                                        (4.17) 

The non-homogenous part of equation (17) is of the form: 
4

( 1 ) ( )

1 0

.
k

k m m

is s

s m

P x 

 


4

(1) ( ) (2) ( 1) ( 1) (0)

1

[ ........... ];k k k

is s is s is s

s

P x P x P x 



   
 

4
(1) ( ) (2) ( 1) ( 1) (0)

1

[ cos cos2 ........... cos( 1) ].k k k

is s is s is s

s

a vx a vx a k vx 



     % % %  

The coefficients (1) ( 1),.........., k

is isa a % % are constants. The quantities ( ) ( 1) (0)cos ,cos2 ,.......cos( 1)k k

s s svx vx k vx  contain only 

variable periodic terms and so the solution of system (4.17) can be obtained in the form of (4.12). It should be noted that 

the coefficients of mixed terms ( 1) ( 1) ( 1) ( 1)

,0 ,0 ,0 ,0, , ,k k k k

i i i i       are determined by the system of algebraic 

equations“given by Grebenikov [2]” consequently, they are zero. The other coefficients of (k+1)
 th

 approximation are 

determined by a system of equations in same manner. 

Thus, we conclude that general solution of the system of differential equations (2.20) consists only of periodic term. 
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  We further investigate the problem of the convergence of the above series. It follows from   formula (3.12) and (3.13) 

that  

1 2. 
                                                                                                                                                                          (4.18)

 

It is easy to find that 
2

1
2 10 1 .

1
1 (1 )

2


    

  

                                                                                                                                      (4.19)

 

So that of all the quantities 
k  and1 k , the smallest in absolute magnitude is 

21 .                                              (4.20)
 

Suppose 
21 .      

( , , )
sup ,

( , , )

ijD s e
A

D s e





 
  

 
                                                                                                                                                   (4.21) 

Where ( , , )ijD s e   are the cofactors of the elements of the determinant ( , , )D s e   ,encountered in the solution of 

systems of form (4.17). sup /ijD D  Is taken in the following regions of variation of parameters:
7

0 ;
4

e   10 .
27

   

;  0,1,2,3..........s   

The quantity , A  is bounded from above in view of the fact that  ( , , )D s e   is everywhere non zero, for sufficiently 

large values of s increases as s
8
, while ( , , )ijD s e    increases as 6s . A  Is non-zero, because (0,0,0) 2.74D   

and (0,0,0) 0.1563ijD  . 

The k
th

 approximation contains (8 4)k    periodic terms each of which has a factor .It should be noted that in the k
th

 

approximation, the exponent of m  will not be greater than k and, therefore, taking into account estimates (4.6), (4.18), 

(4.19) and (4.21), we find  

( ) 9
(8 4).

2

k k

k k

i

e
x A C k



   
    
   

                                                                                                                                     (4.22) 

Where, C is a positive constant. 

Introducing the abbreviation, 

9
(8 4) (8 4).

2

k k

k ke
A C k C k



   
     

   
                                                                                                                          (4.23) 

Where 
9

.
2

e
A



 
  
 

  

The series 
0

(8 4),k k


 converges for  1   , so that for convergence of the series representing the solution of the 

problem is given by:
 
 

9
1,

2 *

e
A



 
 

 
                                                                                                                                                                  (4.24)

 

Where 
{ }

* inf 0.
e e


   

                                                                                                                                              (4.25)
 

2

2 2 2

3 3 (27 6 ) (1 )
* 1 2 2 ;

2 1 2 1 4 1e e e

  


   
      

   
                                                                                        (4.26) 

(27 6 ) (1 )
*

8

  


 
 , if 0e                                                                                                                                       (4.27) 

When 0, 0e   , the result agrees with “that of Grebenikov [2]”. 

 The series will converge for:

  2 *
0 .

9
e e

A


  

                                                                                                                                                             (4.28)

 

 The approximated value of e  is given by:  

(9 2 ) (1 )
.

12
e

A

   


                                                                                                                                                      (4.29) 

When β=0, the result is in conformity with “those of

 

Grebenikov [2]”. 
 The condition for the convergence of the series representing the solution of the problem is given by equation (4.31) 

.When β=0 equation (4.30) and equation (4.32) agree with“those of Grebenikov [2]”. It is observed that the eccentricity 
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of the orbit as well as condition of convergence of the series representing the solution of problem is highly affected by 

the radiation pressure.

 

5. Discussion and conclusion 

The stability of infinitesimal around the triangular equilibrium points of elliptical restricted three body problem in 

which bigger primaries is a source of radiation is studied, and the analysis of stability is investigated using the method 

of averaging “due to Grebenikov[2]”. It is shown that for 5.0 , satisfying the conditions 

2 2(27 6 ) (1 ) (3 4 1 )e       , where he is eccentricity of the either primaries, the triangular points are stable. The 

simulation technique is exploited to study the linear stability of triangular equilibrium points, using Matlab 7.1 

Software. It is observed that the range of stability decreases as the radiation pressure parameters increases. Also the 

condition for convergence of the series representing the solution of the problem is studied by using Fourier series 

analysis.  

The critical value of mass ratio given by equation (3.11), agree with “those of   Grebenikov [2]”, provided 0 .  

When 0 e , the result reduces to the well-known condition for stability of the triangular Lagrangian points in the 

CR3BP, that is .1)1(27    The approximated value of eccentricity given by equation (4.29) is in conformity 

with those “given by Grebenikov [2]” provided 0 . 
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