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Abstract

In this paper we established the Hyers-Ulam stability of a nonlinear
differential equation of second order with initial condition. We also
proved the Hyers -Ulam stability of a linear differential equation of
second order with initial condition.
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1 Introduction

In [1], Ulam posed the basic problem of the stability of functional equations:
Give conditions in order for a linear mapping near an approximately linear
mapping to exist . This problem was partially solved by Hyers in 1941, for
approximately additive mappings on Banach spaces [2]. In 1978 Rassias in his
work [3], has generalized that result obtained by Hyers.

After then, many mathematicians have extensively investigated the stabil-
ity problems of functional equations (see [4, 5, 6]).

Alsina and Ger [7] were the first mathematicians who investigated the
Hyers-Ulam stability of the differential equation ¢’ = ¢g.They proved that if
a differentiable function y : I — R satisfies |y’ —y| < € for all ¢ € I ,then
there exists a differentiable function ¢g : I — R satisfying ¢'(t) = ¢(t) for any
t € I such that |g —y| < 3e,for all ¢t € I. This result of Alsina and Ger has
been generalized by Takahasi et al. [8] to the case of the complex Banach space
valued differential equation iy’ = A\y.
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Furthermore, the results of Hyers-Ulam stability of differential equations of
first order were also generalized by Miura et al. [9], Wang et al. [10], and Jung
[11]. In the paper [12] Jung proved the Hyers-Ulam stability for Legendre’s
differential equation (1 — z?)y” — 2xy + p(p + 1)y = 0 when the function
y(x) has a power series form. In his paper Li [13] has established the Hyers-
Ulam stability of the equation y” = A\?y , while Gavruta et al. [14] proved the
Hyers-Ulam stability of the equation 3" + #(x)y = 0 with boundary and initial
conditions. Li and Shen [15] proved the stability of the nonhomogeneous linear
differential equation of second order 3" + p(x)y’ + q(z)y +r(x) = 0 in the sense
of the Hyers and Ulam . In the paper [16] Javadian et al. have proved the
Hyers and Ulam stability of the nonhomogeneous linear differential equation
of second order y” + p(z)y’ + q(x)y = f(x) in a complex Banach space with
the condition that there exists a solution of the corresponding homogeneous
equation.

In this paper we investigate the Hyers-Ulam stability of the following non-
linear differential equation of second order

2"+ p(x)2 + q(x)z = h(x) |z|5 e(%)fp(m)dwsgnz , B€(0,1) (1)
with the initial conditions
z(20) = 0 = 2'(wo) (2)

where ¢ € C°(I), ,h,p € CYI), I = [xg,x] C R,z9 > 0,p(z) > 0, and
h(z) is a bounded for all sufficiently large = in R. Moreover we proved the
Hyers-Ulam stability of the linear differential equation of second order

2"+ p(x)2 + (¢(x) — afz)) 2=0 (3)
with the initial conditions
2(z0) = 0 = 2' (o) (4)

where a(z) is a bounded function for all sufficiently large x in R.
It should be note here that we may assume that z > 0 in equation (1) because
if z<0weset z=—u ,u>0.So we will consider in future the equation

4 p(2)2 + q(x)z = h(x)Pel5T) IP@d g 1) (5)

2 Preliminaries and Auxiliary Results

Definition 2.1: We will say that the equation (3) has the Hyers -Ulam sta-
bility with the initial conditions (4) if there exists a positive constant K > 0
with the following property:
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For every ¢ > 0, z € C*(I) where x is sufficiently large in R, if

12" +p(x)2 + (q(x) — a(z)) 2| <e (6)

then there exists some solution w € C?(I) of the equation (5), such that
|2(z) —w(z)| < Ke and satisfies the initial conditions

w(zg) = 0 = w'(z0) (7)

Definition 2.2: We say that equation (5) has the Hyers -Ulam stability with
initial conditions (4) if there exists a positive constant K > 0 with the following

property:
For every ¢ > 0, z € C?(I) where z is sufficiently large in R, if

2+ (@)% + q@)z = (@) TR | <o ®)
then there exists some solution w € C?(I) of the equation (5) and
w(xo) = w'(x) =0 (9)

such that |z(z) — w(z)| < Ke.

Definition 2.3: We will say that the equations (3),(5) have the Hyers -Ulam
asymptotic stability with the initial conditions (4) if the equation is stable in
the sense of Hyers and Ulam and lim (z(z) —w(x)) = 0.

The author in his work [17] has proved the following Lemma and Theorem.

Lemma 2.1: (see [17]) A substitution z(z) = y(z) exp(—3 [ p(z)dz) reduces
the equations (3) and (5) to the equations (10) and (11), respectively

y'+y = alz)y (10)
V' +y= b’ Be (1L 1\{0) (1)

where
o) — 1)~ o) =1 (12)

Theorem 2.1(see [17]) Suppose that h(z) is a continuously differentiable

function, bounded for all sufficiently large = € R, and that the integral
f;: |W/(x)| dz is convergent then any solution of the equation (11) is bounded
as xr — 00.
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Proof. Multiplying both sides of the equation (11) by ¢’ and integrate the
result we get

2R (xx0)y ! (o)
6+1

y* (@) +y"*(x) = y*(z0) + y*(0) —

2h(2)y™(x) 2
B+1 g+1

Q/xwuyyﬂwwﬁ

Hence

2 |h(x)| Jy(x)|”
B+1

41
/ 2 ’ / B+1
y*(x) <y*(x) + v () < Agpt + / B ()] y(t)] dt
B+1 )4

where A,, > 0is an expression dependent only on x.

Let M = max ly(t)], and without loss of generality we may assume that
TOSTST

M > ag > 0, otherwise the theorem is proved. Since h(z) is bounded we get

A 2B 2 (7 A 2B
M'YP < oy 20 /‘Htcﬁ< o 4 =70
—MﬁJrl ﬁ+1 ﬁ+1 x0| ()| — a() /6+1

2 o
— B'(t)| dt
e Wl

Since the integral f;: |W/(z)|dxz converges , we obtain

y(x)] < M <C™ |, e (-1,1)\{0}

Therefore y(z) is bounded for r — oo.

In the following theorem the author has established sufficient conditions for
boundedness of the solutions of the equation (10) which are similar to those
obtained in [18].

Theorem 2.2 Suppose that |a(z)] < L for all z > xy. If L < 1 then
any solution of the equation (10) is bounded as z — oc.

Proof. Multiplying both sides of the equation (10) by 3" and integrating
the result, we obtain

/ () (1)t + / Yy tdi= 2 / " at) by (Dt

zo zo o
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Since a(z) is bounded we get

PAe) <0+ ) < A2 [ " at) (0 (1)t

o

< Aw0+Ly2(x)

It follows that
y2 < Awo
- (1-1)

Therefore y(z) is bounded for z — co.

3 Main Results on Hyers-Ulam stability

Theorem 3.1 Suppose |a(z)| < L < 1 for all x > zy, and that y € C?(I) ,
such that satisfies the inequality

" +y— al@)yl <e (13)

with the initial condition
y(zo) = 0 = y'(x0) (14)
Then the equation (10) has the Hyers-Ulam stability with initial condition (14).

Proof. suppose that € > 0 and y € C?*(I) satisfies the inequation (13) with
the initial conditions (14) and M = max ly(x)].
r>x0

We will show that there exists a function w(z) € ¢*(I) satisfying the equation
(10) and the initial condition (7) such that |z(x) — w(z)| < ke .
From the inequality (13) we have

—e<y'+y—alx)y<e (15)

Multiply the inequality (15) by ¢’ and then integrate we obtain
—2ey < y*(z) + y*(z) — 2 /a(t) yy'dt < 2ey
xo

From which we get that
y* (1) < 2ey + 2 /a(t) yy'dt = 2ey + a(z*) y* < 2ey + a(z*) y°

o

<2eM + L M?*
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Therefore

2¢e
M <
—1—-L

Hence |y(x)| < ke, for all x > xy. Obviously , wo(x) = 0 satisfies
the equation (10) and the zero initial condition (14) such that

ly(z) —wolw)] < ke

Hence the equation (10) has the Hyers-Ulam stability with initial condition
(14).

Corollary 3.1: Suppose |a(z)| < L <1 for all z > zy, z € C*(I) and
satisfies the inequality (6) with the initial condition (4) . If the integral
f;: p(z)dx  converges then the equation (3) has the Hyers-Ulam stability with
initial condition (4).

Proof. Suppose that z € C?(I) satisfies the inequality

12"+ p(2)2' + (q9(z) — () 2| <e

From the Theorem 3.1 it follows that the equation (10) has the Hyers-Ulam
stability with initial condition (14) and according to the substitution in Lemma
2.1 it follows that the equation (3) has the Hyers-Ulam stability with initial
condition (4).

Corollary 3.2 Suppose |a(z)] < L <1 for all z > zg, 2 € C*(I) and
satisfies the inequality (6) with the initial condition (4) and f;: p(r)dr = oo
, then the equation (3) has the Hyers-Ulam asymptotic stability with initial
condition (4).

Proof. From the Corollary 3.1 it follows that the equation (3) has the
Hyers-Ulam stability with initial condition (4). Since fwoj p(x)dr = oo then
according to the substitution in Lemma 2.1 it follows that the equation (3)
has the Hyers-Ulam asymptotic stability with initial condition (4).

Theorem 3.2 Suppose |h(z)] < A for all = > =z, and that y € C*(I) ,
such that satisfies the inequality

" +y— h(z) y’| <e ,B€(0,1) (16)

with the initial condition
y(z0) = 0 =y'(20) (17)

-8
If A< @ (Iriax |y(m)\) Jfor x > xg,then the equation
r>x0

y'+y=nhx)y’ 5e€(0,1) (18)
has the Hyers-Ulam stability with initial condition (17).
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Proof. suppose that € > 0, y € C?(I) satisfies the inequation (16) with the
initial conditions (17) and that M = max ly(z)|.
T>x0

We will show that there exists a function w(z) € ¢*(I) satisfying the equation
(18) and the initial condition (17) such that |z(z) — w(z)| < ke .
From the inequality (16) we have

—e<y'+y—h(z)y’ <e (19)

Multiply the inequality (19) by ¢’ and then integrate we obtain

xT

~2ey £ y%a) 4 40) -2 [ ho) Py < 22y

o

From which we get that

T

2h(z*) 3P+t 2A MPHL
2(r) < 2¢ —|—2/ht Pyfdt = 2ey+ ———2 2 <M 4T
yo(z) < 2ey (t) ¥y y i1 T
x0
Therefore 5
€
MS]__ZAM"}
B+1

Hence |y(z)| < ke, for all x > 4. Obviously , wo(z) = 0 satisfies the equation
(18) and the zero initial condition (17) such that

ly(x) — wo(x)| < ke

Thus the equation (18) has the Hyers-Ulam stability with initial condition
(17).
Corollary 3.3 Assume that h(x) and z(z) satisfy the conditions of Theo-

rem 3.2, and the inequality (8) with the initial condition (2).
-8
If A< 2D ga%)ﬁy(x)\ for x > xq and the integral [ p(z)dz

converges then the equation (5) has the Hyers-Ulam stability with initial con-
dition (2). Moreover, if the integral f;: p(z)dx = oo then the equation (5) has
the Hyers-Ulam asymptotic stability with initial condition (2).

Proof. Suppose that z € C?(I) satisfies the inequality (8) with the initial
condition (2).

Then from the Theorem 3.2 it follows that the equation (18) has the Hyers-
Ulam stability with initial condition (17), and according to the substitution
used in Lemma 2.1 it follows that the equation (5) has the Hyers-Ulam stability
with initial condition (2). Now if fwoj p(z)dr = oo , then the equation (5) has
the Hyers-Ulam asymptotic stability with initial condition (2).
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Now we illustrate the Theorem by the following example.

Example 3.1 Consider the equation

2
== ——— (20)
x
with the initial condition
2(xg) = 0 = 2'(x) (21)
If we set z(z) = @ in the the equation (20) we obtain
y'(x) +y(a) = e 2yt (22)
We let y(x) = ( — x9)> e* and estimate the difference

2 —5(z —x0) + 2 (x — m)°
61:

<e (23)

|y (x) + y(x) — e Py'?| =

Now we may choose the number xq sufficiently large such that the inequality
(23) will satisfy for any = > xy and for any € > 0.

Hence y(z) = (x — 20)* e is an approximate solution of the equation (20)
satisfying the zero initial condition

y(xo) = 0=y (o) (24)

Now we have

0

3¢ 3 T3 3elt
hiz) =e ™2 <1< g <3 <max\y(x)|> S

r>x0

Therefore
6e(+3)
M < ke , where ——+—— >0
3el+2) — 8
It is clear that zy = 0 satisfies the zero initial condition and the inequality
ly(z) — zo(x)| < ke. Thus the equation (20) has the Hyers-Ulam stability.

Moreover, since lim |y(z) — zo(z)| = 0,then it also is asymptotically stable in

the sense of Hyers and Ulam as x— oo. Now since the integral floo p(x)de =
ffo %dx = oo, then by Lemma it follows that the equation (20) has the Hyers-
Ulam stability with zero initial condition (21). Moreover the equation (20) is
asymptotically stable in the sense of Hyers and Ulam as x — oo.
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4 Special Case of the equation (5)

Now consider a special case of the equation (5)

222" 4 222 + [22 + M\ — 1)]z = h(z)z> B0 (25)
where A > 0, (€ (0,1), and it satisfies the initial condition
Z(IL’(]) =0= Z/(.Z’()) (26)

It should be note that the equation (25) is a special case of the equation
(5) with p(z) = 2 and ¢(z) = AL g if we let z(x) = % , A >0,

2

then the equation (25) is reduced to the equation (18) with y(x¢) = 0 = /(o).

Theorem 4.1 Suppose that the conditions of the Theorem 3.2 hold, the inte-
gral fxooo p(x)dz converges and that z € C%(I) and satisfies the inequality
222" + 2222’ + [2® + MA — 1)]z — h(z)2z>PFD0 | <
then the equation (25) has the Hyers-Ulam stability with initial condition
(26). Moreover, if the integral f;; p(z)dr = oo then the equation (25) has the
Hyers-Ulam asymptotic stability with the initial condition (26).
Proof. It follows from the Theorem 3.2 and Corollary 3.3

Example 4.1 Consider the equation

2?2+ xd + (x2 — i) 2= g tem®/2,1/2 (27)
with the initial condition
2(z) = 0 = 2'(x0) (28)
Setting z(x) = L\/? in the equation (27) we get
y'(2) +y(z) = ey (29)

If we apply the same argument used in Example 3.1 for the function y(z) =
(x —x0)?e™® we can show that it satisfies the inequality

/() + y(z) — e Py'P) < e
with initial condition y(z¢) = 0 = y'(x), and the inequality

6e(1+3)
M <ke , where k = ——+—— >0
3el+2) — 8
Therefore, we get the Hyers-Ulam stability and asymptotic stability for the
equation (27).
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5 Conclusion

In this paper we obtained sufficient criteria for Hyers-Ulam stability of linear
and nonlinear differential equations of second Order with zero initial condi-
tions.
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