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1      Introduction 

In concept of fuzzy sets was introduced initially by Zadeh [42] in 1965. Since 

then to use this concept in topology and analysis many authors have expansively 

developed the theory of fuzzy sets and applications. Especially, Deng [6], Erceg 

[7], Kaleva and Seikkala [22], Krarmosil and Michalek [24] have introduced the 

concept of fuzzy metric spaces indifferent way. Recently many authors have also 
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studied the fixed point theory in these fuzzy metric spaces ([1], [2], [8], [10],[11], 

[15], [16], [25], [37], [39]). 

Mishra et al. [25] proved a common fixed point theorem on complete fuzzy metric 

spaces, which generalized, extended, and fuzzified several known fixed point 

theorems for contractive type maps on metric and other spaces. They assumed 

continuity of one map in each of two pairs of compatible maps and also three 

commutativity of continuous maps.  

Cho et al. [4] extended, generalized  and fuzzified several fixed point theorems on 

metric spaces, Menger probabilistic metric spaces, uniform spaces and fuzzy 

metric spaces ([10], [13], [14], [17], [18], [20], [25], [27], [28], [29], [33], [35]). 

In their main result they proved common fixed point theorem on complete fuzzy 

metric spaces. They assumed continuity of one map in each of two pairs of 

compatible maps of type (B) and also the commutativity of continuous maps. The 

result of Cho. et. all [4] was extended by Sharma and Deshande [39]. Cho [3] also 

extended, generalized and fuzzified some known results in fuzzy metric spaces 

metric spaces probabilistic metric spaces and uniform spaces ([10], [17], [20], 

[25], [28], [32]). He proved a common fixed point theorem for mappings under 

the condition of continuity and compatibility of type (α) on complete fuzzy metric 

spaces. Sharma [38] extended the main result of Cho [3]. 

Sharma and Deshpande [33] improved the results of Mishra et al. [25], Cho et al. 

[4], Cho [3], Sharma [38], Sharma and Despande [39]. They proved some 

common fixed point theorems in FM spaces by removing the assumption of 

continuity relaxing the condition of on compatibility of type (α) or compatibility 

of type (β) to weak compatibility and replacing the completeness of the space with 

a set of alternative conditions.  

In this paper we prove common fixed point theorem under the condition of R-

weak commutativity without taking any function continuous. We extend results of 

Sharma and Deshpande [33]. 

 

2       Preliminary Notes  

Definition 2.1:[30] A binary operation *: [0, 1] × [0, 1] → [0, 1] is called a 

continuous t-norm if ([0, 1], *) is an abelian topological monoid with the unit-1 

such that a * b ≤ c * d whenever a ≤ c and b ≤ d for all a, b, c, d   [0, 1].  

Examples of t –norm are a * b = ab and a * b = min {a, b} 

Definition 2.2: [24] the 3-tuple (X, M, *) is called a fuzzy metric space (shortly 

FM- space) if X is an arbitrary set, * is a continuous t-norm and M is a fuzzy set 

in X
2
 × [0, ∞) satisfying the following conditions for all x, y, z   X and t, S > 0. 

(FM-1) M(x, y, 0) = 0 

(FM- 2) M(x, y, t) = 1 for all t > 0 if and only if x = y, 

(FM -3)  M(x, y, t) = M(y, x, t),  

(FM -4) M(x, y, t) * M(y, z, s) ≤ M(x, z, t+s), 

(FM-5) M(x, y, .): [0, ∞) → [0, 1] is left continuous.  
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(FM -6) limt→∞ M(x, y, t) = 1    x, y,   X. 

In what follows, (X, M, *) will denote a fuzzy metric space, note that M(x, y, t) 

can be thought as the degree of nearness between x and y with respect to t. We 

identify x = y with M(x, y, t) = 1 for all t > 0 and M(x, y, t) = 0 with ∞ and we can 

fine some topological properties and examples of fuzzy metric spaces in [9]. 

In the following example, we know that every metric induces a fuzzy metric. 

Example- 2.1: [9] Let (X, d) be a metric space. Define a * b = ab or a *b = min {a, 

b} and for all x, y  X and t > 0. 

M(x, y, t) =     
),( yxdt

t


                                                … (i) 

Then (X, M, *) is a fuzzy metric space. We call this fuzzy metric M induced by 

the metric d the standard fuzzy metric. On the other hand, note that there exists no 

metric on X satisfying (i). 

Now we give an example of a fuzzy metric space.  

Example 2.2: Let X = Set of real numbers. Define a * b = ab or a * b = min {a, b} 

and for all x, y  X and t > 0,  

             M(x, y, t) =     

1













t

yx

e                         … (ii)  

          Then (X, M, *) is a fuzzy metric space.  

Proof: (1)   M(x, y, 0) =   

1

0
















 yx

e    

    = [e
∞
] 

-1
 = [∞]

-1
 = 1/∞ = 0 

Thus M(x, y, 0) = 0 

(2)   t > 0,  assume that x = y.  

 x - y = 0, 

 | x –y  = 0  

     
t

yx 
   = 0 

                    

1













t

yx

e   = [e 0 ] 1  

 M(x, y, t) = 1 using (ii) 

Therefore, if    t > 0, x = y then M(x, y, t) = 1. 

Conversely suppose that M(x, y, t) = 1. 

            

1













t

yx

e     =   1 

                                                            

            

d 
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        e t

yx

 = e 0     t > 0.           

   
t

yx 
 = 0 

  yx   = 0  t > 0   implies that x = y .Therefore M(x, y, t) = 1 if and only if x 

= y. 

(3) To prove M(x, y, t) = M (y, x, t) 

We know that  |x - y| = |y - x|      x, y   R. 

Now; M(x, y, t) =    

1













t

yx

e            using (ii)         

                       = 

1













t

xy

e  

                      = M(y, x, t) 

Therefore   M(x, y, t) = M(y, x, t)    x, y  X and     t > 0. 

(4) To prove M(x, y, t) * M(y, z, s) ≤ M(x, z, t+s). 

We know that    x, y, z   X, |x - z| ≤ |x - y| + |y - z| 

So we have;    x, y, z  X and   t, s > 0 

|x – z |   ≤  
t

st )( 
 yx   + 

s

st )( 
 zy      

   
st

zx




    

t

yx 
 + 

s

zy 
 

Thus e st

zx





  e t

yx

 e s

zy

 
1
















st

zx

e     

1













t

yx

e   *   

1













s

zy

e                        

 M(x, z, t+s) ≥ M(x, y, t) * M(y, z, s) 

(5) To prove M(x, y, .): [0, ∞) → [0, 1] is left continuous.  

Take a sequence {tn} [0, ∞) such that the sequence {tn} converges to t   [0, ∞) 

that is limn→∞ |tn - t| = 0. 

Since the function e
x
 is continuous on R we have e nt

yx

   converges to   e t

yx

    as 

tn converges to t .Therefore M(x, y, .): [0, ∞) → [0, 1] is continuous.  

(6) To prove limt→∞ M(x, y, t) = 1. 

Using (ii) M(x, y, t) =    

1













t

yx

e  

Taking the limit n→∞, we have, limt→∞ M(x, y, t) = limt→∞    

1













t

yx

e  
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                                                                        =     

1















 yx

e     

                                                                    = [e
0
]
-1

 = [1]
-1 

= 1                                                                           

      lim t→∞   M(x, y, t) = 1. 

Hence (X, M, *) is a fuzzy metric space. 

 

Lemma 2.1: [10] For all x, y  X, M(x, y, .) is non-decreasing. 

 

Definition 2.3: [10] Let (X, M, *) is a fuzzy metric space.  

(1) A sequence {xn} in X is said to be convergent to a point x X (denoted by 

limn→∞ xn = x), if limn→∞ M (xn, x, t) = 1 for all t > 0. 

(2) A sequence {xn} in X is called a Cauchy sequence if limn→∞ M (xn+p, xn, t) = 1, 

for all t > 0 and p > 0. 

(3) A fuzzy metric space in which every Cauchy sequence is convergent is said to 

be complete.  

 

Lemma 2.2 :( [3], [25]) Let {yn} be a sequence in a fuzzy metric space (X, M, *). 

If there exists a number k  (0, 1) such that M (yn+2, yn+1, kt) ≥ M (yn+1, yn, t) for 

all t > 0 and n = 1, 2 …. Then {yn} is a Cauchy sequence in X. 

 

Lemma 2.3: [25] If for all x, y  X, t > 0 and for a number k   (0, 1), M(x, y, kt) 

≥ M(x, y, t), then x = y. 

 

Definition 2.4:[25] Let A and B be mappings from a fuzzy metric space (X, M, *) 

into itself. The mappings A and B are said to be compatible if limn→∞ M (ABxn, 

BAxn, t) = 1, for all t > 0, whenever {xn} is a sequence in X such that limn→∞ Axn 

= limn→∞ Bxn = z for some z   X.   

 

Definition 2.5: [21] Two maps A and B are said to be weakly compatible if they 

commute at their coincidence point.  

 

Definition 2.6: [26] Two mappings f and g of a fuzzy metric space, (X, M, *) into 

itself are said to be weakly commuting if M (fgx, gfx, t) ≥ M (fx, gx, t), for every 

x  X. 

 

Definition 2.7: [41] the mappings f and g of a fuzzy metric space (X, M, *) into 

itself are R-weakly commuting provided there exists some positive real number R 

such that-  M (fgx, gfx, t) ≥ M (fx, gx, t / R) for all x  X.  

(*) weak commutativity implies R-weak commutativity and the converse is true 

for   R ≤ 1.   
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3    Main Results  

Theorem 3.1: Let (X, M, *) be a FM- space with t * t ≥ t    t   [0, 1]. Let A, B, 

S and T be mappings from X into itself such that  

(1.31) A(X) T(X), B(X) S(X), 

(1.32) there exists a constant k  (0, 1) such that, 

M (Ax, By, kt) ≥ M (Ty, By, t) * M (Sx, Ax, t) * M (Sx, By, at) * M (Ty, Ax, (2-

a) t) * M (Ty, Sx, t) for all x, y   X, a   (0, 2) and t > 0. 

(1.33) One of A(X), B(X), S(X) or T(X) is a complete subspace of X, then  

(i) A and S have a coincidence point.  

(ii) B and T have a coincidence point.  

Further, if  

(1.34) the pairs {A, S} and {B, T} are R-weakly commuting or R-weakly 

commutative, then 

(iii) A, B, S and T have a unique fixed point in X. 

 

Proof: By (1.31), since A(X) T(X), for any point x0 X, there exists a point x 

 X such that Ax0 = Tx1. 

Since B(X)   S(X), for this point x 1  we can choose a point x2   X such that Bx1 

= Sx2 and so on. 

Inductively, we can define a sequence {yn} in X such that y2n = Ax2n = Tx2n+1 and 

y2n+1 = Bx2n+1 = Sx2n+2 by (1.32), for all t > 0 and a = 1- q with q   (0, 1), we 

have; 

M (y2n+1, y2n+2, kt) = M (Bx2n+1, Ax2n+2, kt) = M (Ax2n+1, Bx2n+2, kt) 

≥ M (Tx2n+1, Bx2n+1, t) * M (Sx2n+2, Ax2n+2, t) * M (Sx2n+2, Bx2n+1, at) *                                

M (Tx2n+1, Ax2n+2, (1+q) t) * M (Tx2n+1, Sx2n+2, t) 

≥ M (y2n, y2n+1, t) * M (y2n+1, y2n+2, t) * M (y2n+1, y2n+1, at) * M (y2n, y2n+2, (1+q) t) 

*            M (y2n, y2n+1, t) 

≥ M(y2n, y2n+1, t) * M(y2n+1, y2n+2, t) * 1 * M(y2n, y2n+1, t) * M(y2n+1, y2n+2,  qt) *       

M(y2n, y2n+1, t). 

≥ M (y2n, y2n+1, t) * M (y2n+1, y2n+2, t) * M (y2n+1, y2n+2, qt).  

Since the t-norm * is continuous and M(x, y, .) is left continuous letting   q → 1. 

We have;  

M (y2n+1, y2n+2, kt) ≥ M (y2n, y2n+1, t) * M (y2n+1, y2n+2, t)              … (1.35) 

Similarly, we have also  

M(y2n+2, y2n+3, kt) ≥ M(y2n+1, y2n+2, t) * M(y2n+2, y2n+3, t)               … (1.36) 

Thus by (1.35) and (1.66) it follows that;  

M (yn+1, yn+2, kt) ≥ M (yn, yn+1, t) * M (yn+1, yn+2, t) for n = 1, 2 …  and so for 

positive integer n, p   

M (yn+1, yn+2, kt) ≥ M (yn, yn+1, t) * M (yn+1, yn+2, t/k
p
). 

Thus, since M (yn+1, yn+2, t/k
p
) → 1 as p → ∞. 

We have M (yn+1, yn+2, kt) ≥ M (yn, yn+1, t). 

By lemma (2.2), {yn} is a Cauchy sequence in X.  

Now suppose S(X) is complete. 
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Note that the subsequences {y2n+1} is contained in S(X) and has a limit in S(X). 

Call it z. Let u =   S
-1

z    
Then Su = z. we shall use the fact that the subsequences (y2n} also converges to z.  

By (1.32), with q =1, we have; 

M (Au, y2n+1, kt) = M (Au, Bx2n+1, kt) 

≥ M (Tx2n+1, Bx2n+1, t) * M (Su, Au, t) * M (Su, Bx2n+1, t) * M (Tx2n+1, Au, t) * M 

(Tx2n+1, Su, t) 

= M (y2n, y2n+1, t) * M (Su, Au, t) * M (Su, y2n+1, t) * M (y2n, Au, t) * M (y2n, Su, 

t)  

This implies that as n →∞ 

M (Au, z, kt) ≥ 1 * M (z, Au, t) * 1 * M (z, Au, t) * 1 ≥ M (z, Au, t) 

Therefore by lemma 2.3, we have Au = z, since Su = z thus Au = z = Su, i.e. u is 

coincidence point of A and S. This proves (i).  

Since A(X)   T(X), Au = z implies that z T(X). Let v    T
-1

z then Tv = z. It 

can easily verified by using similar arguments of the previous part of the proof 

that Bv = z. 

If we assume that T(X) is complete, then argument analogous to the previous 

completeness argument establishes (i) and (ii).  The remaining two cases pertain 

essentially to the previous cases. Indeed, if B(X) is complete, then by (1.31), z 

B(X)   S(X). Similarly if A(X) is complete, then z   A(X)   T(X). Thus (i) 

and (ii) are completely established.  

Since the pair {A, S} is R-weakly commuting therefore by definition of R-weakly 

commuting we have; 

M (ASu, SAu, t) ≥ M (Au, Su, t/R) for all u  X.  

M (Az, Sz, t) ≥ M (z, z, t/R) 

M (Az, Sz, t) ≥ 1 

Which implies that Az = Sz.  

Since the pair {B, T} is R-weakly commuting therefore by definition of R-weakly 

commuting we have;  

M (BTv, TBv, t) ≥ M (Bv, Tv, t/R) for all v  X. 

M (Bz, Tz, t) ≥ M (z, z, t/R) 

M (Bz, Tz, t) ≥ 1 

Which implies that Bz = Tz.  

Now, we prove that Az = z. By (1.32) with (a = 1) we have, 

M (Az, y2n+1, kt) = M (Az, Bx2n+1, kt) 

≥ M (Tx2n+1, Bx2n+1, t) * M (Sz, Az, t)* M (Sz, Bx2n+1, t) * M (Tx2n+1, Az, t) *            

M (Tx2n+1, Sz, t) 

Taking the limit as n→∞, we have; 

M (Az, z, t) ≥ 1 * 1 * M (Az, z, t) * M (z, Az, t) * M (z, Az, t) ≥ M (Az, z, t) 

Therefore by lemma 2.3, we have Az = z, since Az = Sz therefore Az = Sz = z. 

Similarly, we have Bz = Tz = z.  

This means that z is a common fixed point of A, B, S and T.  

Uniqueness: Let w ≠ z be another common fixed point of A, B, S and T. 

Then by (1.32) with a = 1, we have 
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M (z, w, kt) = M (Az, Bw, kt) 

≥ M (Tw, Bw, t) * M (Sz, Az, t) * M (Sz, Bw, t) * M (Tw, Az, t) 

* M (Tw, Sz, t) 

               ≥ 1* 1 * M (z, w, t) * M (w, z, t) * M (w, z, t) * M (w, z, t) 

             ≥ M (z, w, t). 

Therefore by lemma 2.3, we have z = w.  

                                                          This completes the proof.  

If we take S = T. Then we have the following theorem.  

 

Theorem 3.2: Let (X, M, *) be a FM- space with t * t ≥ t    t   [0, 1]. Let A, B, 

S and T be mappings from X into itself such that  

(2.31) A(X) ⋃ B(X) T(X). 

(2.32) there exists a constant k  (0, 1) such that  

M(Ax, By, kt) ≥ M(Ty, By, t) * M(Tx, Ax, t) * M(Tx, By, at) *M(Ty, Ax, (2-a)t) 

* M(Ty, Tx, t) for all x, y  X, a  (0, 2) and t > 0. 

(2.33) one of A(X), B(X) or T(X) is a complete subspace of X,  

then A, B and T have a coincidence point.  

Further, if 

(2.34) the pairs {A, T} and {B, T} are R-weakly commuting then A, B, and T 

have a unique common fixed point in X.  

 

Proof: The proof is similar to the proof of theorem 3.1. 

We improve Theorem 3.1 for sequence of mappings in the following manner.  

 

Theorem 3.3: Let (X, M, *) be a FM- Space with t * t ≥ t for all t   [0, 1]. Let S, 

T, A i  : X → X, i = 0, 1, 2 … such that 

(3.31) A0(X) T(X), Ai(X)   S(X), i  N 

(3.32) there exists a constant k  (0, 1) such that  

    M (A0x, Aiy, kt) ≥ M (Ty, Aiy, t) * M (Sx, A0x, t) * M (Sx, Aiy, at) * M (Ty, 

A0x, (2-a) t) * M (Ty, Sx, t) for all x, y   X, a   (0, 2) and t > 0. 

(3.33) the pairs {A0, S}, and {Ai, T} (i N) are R-weakly commuting.  

If one of S(X), T(X) or A 0 (X) is a complete subspace of X. or alternatively, Ai, i 

N are complete subspaces of X, then S, T and Ai, i = 0, 1, 2 … have a unique 

common fixed point.  

Now, we extend Theorem 3.1 in the following way.  

 

Theorem 3.4: Let (X, M *) be a FM- Space with t * t ≥ t for all t   [0, 1]. Let A, 

B, S, T and P be mappings from X into itself such that  

(4.31) P(X)   AB(X), P(X) ST(X) 

(4.32) there exists a constant k  (0, 1) such that  

M(Px, Py, kt) ≥ M(ABy, Py, t) * M(STx, Px, t) * M(STx, Py, at) * M(ABy, Px, 

(2-a)t) * M(ABy, STx, t)  for all x, y  X, a  (0, 2) and   t > 0.  

(4.33) if one of P(X), AB(X) or ST(X) is a complete subspace of X, then  
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(i) P and AB have a coincidence point.  

(ii) P and ST have a coincidence point. 

Further if,  

(4.34) PB = BP, AB = BA, PT = TP and ST = TS 

(4.35) the pairs {P, AB} and {P, ST} are R-weakly commuting, then 

(iii) A, B, S, T and P have a unique common fixed point in X. 

 

Proof: By (1.31), since P(X)   AB(X), for any point x0 X, there exists a point 

x 1 X such that Px0 = ABx1. 

Since P(X) ST(X), for this point x 1  we can choose a point x2 X such that Px1 

= Sx2 and so on. Inductively we can define a sequence {yn} in X such that 

y2n = Px2n = ABx2n+1 and y2n+1 = Px2n+1 = STx2n+2 for n = 0, 1, 2 … 

Then as proved in Theorem 3.1, we can prove that {yn} is a Cauchy sequence in X. 

Now suppose that ST(X) is complete. Note that the subsequence {y2n+1} is 

contained in ST(X) and has a limit in ST(X). Call it z. Let u = ST
-1

z 

Then STu = z. We shall use the fact that the subsequence {y2n} also converges to 

z.  

By (4.32) with a = 1, we have,  

M (Pu, y2n+1, kt) = M (Pu, Px2n+1, kt) 

≥ M (ABx2n+1, Px2n+1, t) * M (STu, Pu, t) * M (STu, Px2n+1, t) *  

M (ABx2n+1, Pu, t) * M (ABx2n+1, STu, t) 

= M (y2n, y2n+1, t) * M (STu, Pu, t) * M (STu, y2n+1, t) * M (y2n, Pu, t) 

Taking the limit n→∞, we have; 

M (Pu, z, kt) ≥ 1 * M (z, Pu, t) * 1 * M (z, u, t) * 1     

≥ M (Pu, z, t),  

Therefore by lemma 2.3, we have Pu = z. Since STu = z. 

Thus Pu = z = STu. 

I.e. u is coincidence point of P and ST. This proves (i)  

Since P(X)   AB(X), Pu = z implies that z   AB(X), Let v   (AB)
-1

z then ABv 

= z. It can easily verified by using similar arguments of the previous part of the 

proof that Pv = z. If we assume that AB(X) is complete, then argument analogous 

to the previous completeness argument establishes (i) and (ii).   

 The remaining one case pertains essentially to the previous cases. Indeed if, 

P(X) is complete then by (4.31), z P(X)   ST(X) or z   P(X)   AB(X). Thus 

(i) and (ii) are completely established.  

Since the pair {P, ST} is R-weakly commuting, therefore by definition of R-

weakly commuting, we have 

M (PSTu, STPu, t) ≥ M (Pu, STu, t/R) for all u  X. 

M (Pz, Stz, t) ≥ M (z, z, t/R) i.e.  M (Pz, STz, t) = 1. 

Which implies that Pz = STz.  

Similarly, the pair {P, AB} is R-weakly commuting, therefore by definition of R-

weakly commuting, we have, 

M (PABv, ABPv, t) ≥ M (Pv, ABv, t/R) for all v   X. 

M (Pz, ABz, t) ≥ M (z, z, t/R)   i.e M (Pz, ABz, t) = 1 
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Which implies that Pz = ABz. 

Now, we prove that Pz = z. By (4.32) with a = 1 we have,  

M (Pz, y2n+1, kt) = M (Pz, Px2n+1, kt) 

≥ M (ABx2n+1, Px2n+1, t) * M (STz, Pz, t) * M (STz, Px2n+1, t) *  

M (Bx2n+1, Pz, t) * M (ABx2n+1, STz, t) 

≥ M (y2n, y2n+1, t) * M (Pz, Pz, t) * M (STz, y2n+1, t) * M (y2n, Pz, t) *   M (y2n, 

STz, t). 

Taking the limit n→∞, we have, 

 M (Pz, z, kt) ≥ 1 * 1 * M (Pz, z, t) * M (z, Pz, t) * M (z, Pz, t)  ≥ M (Pz, z, t) 

Which implies that Pz = z. 

Now, we show that Bz = z. Infact, by (4.32) with a = 1 and (4.34), we have; 

M (z, Bz, kt) = M (Pz, BPz, kt) = M (Pz, PBz, kt)   

≥ M (AB (Bz), PBz, t) * M (STz, Pz, t) * M (STz, PBz, t) *   

M (AB (Bz), Pz, t) * M (AB (Bz), STz, t)  

= 1 * 1 * M (z, Bz, t) * M (Bz, z, t) * M (Bz, z, t)  

≥ M (z, Bz, t) 

Which implies that Bz = z. since ABz = z therefore Az = z.  

Finally we show that Tz = z. indeed, by (4.32) with a = 1 and (4.34),  

M (Tz, z, kt) = M (TPz, Pz, kt) = M (PTz, Pz, kt) 

≥ M (ABz, Pz, t) * M (ST (Tz), PTz, t) * M (ST (Tz), Pz, t) *   

M (ABz, P (Tz), t) * M (ABz, ST (Tz), t) 

= 1 * 1 * M (Tz, z, t) * M (z, Tz, t) * M (z, Tz, t)  

≥ M (Tz, z, t). 

Which implies that Tz = z. Since STz = z, we have z = STz = Sz. Therefore, by 

combining the above, results, we have Az = Bz = Sz = Tz = Pz = z, that is z is the 

common fixed point of A, B, S, T and P.  

The uniqueness of the common fixed point of A, B, S, T and P follows easily 

from (4.32).  

This completes the proof.  

If we put B = T = I (the identity mapping on X) in theorem 3.4, we have the 

following result.  

 

Corollary 3.1: Let (X, M, *) be a FM- Space with t * t ≥ t for all t   [0, 1] .Let A, 

S and P be mappings from X into itself such that.  

(1.31) P(X)   A(X), P(X)   S(X),  

(1.32) there exists a constant k (0, 1) such that  

M (Px, Py, kt) ≥ M (Ay, Py, t) * M (Sx, Py, at) * M (Ay, Px , (2-a)t )* M(Ay, Sx, 

t) 

for all x, y  X, a  (0, 2) and t > 0. 

(1.33) if one of P(X), A(X) or S(X) is a complete subspace of X, then.  

(i) P and A have a coincidence point.  

(ii) P and S have a coincidence point.  

Further, if  

(1.34) the pairs {P, A} and {P, S} are R-weakly commuting then,  
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(iii) A, S and P have a unique common fixed point in X.  

 

If we put A = B = S = T = I (the identity mapping on X) in theorem 3.4, we have 

the following. 

 

Corollary 3.2: Let (X, M, *) be a FM- Space with t * t   t, for all t   [0, 1]. Let 

P be mappings from X into itself such that.  

(2.31) there exists a constant k  (0, 1) such that, 

M (Px, Py, kt) ≥ M(y, Py, t) * M(x, Px, t) * M(x, Py, at) * M(y, Px, (2-a)t) * M(y, 

x, t) 

for all x, y  X, a  (0, 2) and t > 0. 

If P(X) is a complete subspace of X then P has q unique common fixed point in X.  

By using theorem 3.4, we have the following  

 

Theorem 3.5: Let (X, M, *) be a FM- Space with t * t ≥ t for all t   [0, 1]. Let A, 

B, S, and T and {Pi} i is be mappings from X into itself.  

(5.31)  i Pi(x)   AB(X),   i  Pi (X)   ST(X), where   is an index set,  

(5.32) there exists a constant k  (0, 1) such that  

M (P i x, P i y, kt) ≥ M (ABy, P i y, t) * M (STx, P i x, t) * M (STx, P i y, at) * M 

(ABy, P i x, (2-a)t) * M(By, STx, t) for all x, y  X, a (0, 2), i   and  t > 0. 

(5.33) if one of AB(X) or ST(X) or P i (X) (i  ) is a complete subspace of X 

then,  

(i) For all i  , P i  and AB have a coincidence point,  

(ii) For all i   , P i  and ST have a coincidence point. Further, if  

(5.34) for all i  , P i B = BP i , AB = BA, P i T = TP i  and ST = TS. 

(5.35) for all i   the pairs {P i , AB} and {P i , ST} are R- weakly commuting, 

then  

(iii) A, B, S, T and {Pi} i  have a unique common fixed point in X. 

 

Following is an extension of Theorem 3.4. 

 

Theorem 3.6: Let (X, M, *) be a FM- Space with t * t   t for all t   [0, 1]. Let A, 

B, S, T, P and Q be mappings from X into itself such that  

(6.31) P(X)   AB(X), Q(X)   ST(X),  

(6.32) there exists a constant k (0, 1) such that  

M (Px, Qy, kt) ≥ M (By, Qy, t) * M (STx, Px, t) * M (STx, Qy, at) * M (ABy, Px, 

(2-a) t) * M (ABy, STx, t) for all x, y  X, a (0, 2) and t > 0. 

(6.33) if one of P(X), Q(X), AB(X) or ST(X) is a complete subspace of X, then  

(i) P and ST have a coincidence point, 

(ii) Q and AB have a coincidence point,  

Further, if 
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(6.34) AB = BA, QB = BQ, PT = TB and ST = TS,  

(6.35) the pairs {Q, AB} and {P, ST} are R-weakly commuting, then 

(iii) A, B, S, T, P and Q have a unique common fixed point in X. 

Proof: By (6.31) Since P(X)   AB(X), for a point x 0    X, there exists a point x1 

 X such that Px0 = ABx1. 

Since Q(X ) ST(X), for this point x1 we can choose a point x2   X such that 

Qx1 = STx2 and So on. Inductively we can define a sequence {yn} is X such that  

 Y2n = Px2n = ABx2n+1 = Qx2n+1 = STx2n+2 for n = 0, 1, 2… As proved in 

theorem 1, we can prove that {yn} is a Cauchy sequence in X. 

Now, Suppose ST(X) is complete. Note that the subsequences {y2n+1} is contained 

in ST(X) and has a limit in ST(X). Call it z. Let u  ST
-1

z then STu = z we shall 

use the fact that the subsequence {y2n} also converges to z.  

By (6.32) with a = 1, we have; 

M (Pu, y2n+1, kt) = M (Pu, Qx2n+1, kt) 

≥ M (y2n, y2n+1, t) * M (Tu, Pu, t) * M (STu, y2n+1, t) * M (y2n+1, Pu, t) *   

M (y2n+1, STu, t) 

Which implies that as n→∞, M (Pu, z, kt) ≥ M (Pu, z, t). 

Therefore by lemma 2.3, we have Pu = z.  

Since STu = z thus Pu = z = STu 

 I.e. u is a coincidence point of P and ST. This proves (i). 

Since P(X)   AB(X), Pu = z implies that z  AB (X).  

Let v (AB)
-1

z. Then Bv = z 

By (6.32), with a = 1 we have, 

M (y2n+1, Qv, kt) = M (Px2n+1, Qv, kt) 

≥ M (ABv, Qv, t) * M (y2n+1, y2n+2, t) * M (y2n+1, Qv, t) * M (ABv, y2n+2, t) *  

              M (ABv, y2n+1, t) 

Which implies that as n→∞, M (z, Qv, kt) ≥ M (z, Qv, t). 

Therefore by lemma 2.3, we have Qv = z.  

Since ABv = z thus Qv = z = ABv  

I.e. v is coincidence point of Q and AB. This proves (ii).  

The remaining two cases pertain essentially to the previous. Indeed if P(X) or 

Q(X) is complete, then by (6.31)  z   P(X)   AB(X) or z   Q(X)   ST(X).  

 Thus (i) and (ii) are completely established.  

Since the pair {P, ST} is R-weakly commuting, therefore by definition of R-

weakly commuting, we have,  

M (PSTu, STPu, t) ≥ M (Pu, STu, t/R) for all u  X,  

 I.e. M (Pz, STz, t) ≥ M (z, z, t/R) 

M (Pz, STz, t) ≥ 1 

Which implies that Pz = STz.  

Since, the pair {Q, AB} is R-weakly commuting therefore by definition of R-

weakly commuting, we have,  

M (QABv, ABQv, t) ≥ M (Qv, ABv, t/R) for all v  X. 

M (Qz, ABz, t) ≥ M (z, z, t/R) 

 i.e M (Qz, ABz, t) ≥ 1 
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Which implies that Qz = ABz.  

Now we prove that Pz = z, by (6.32) with a = 1, we have, 

M (Pz, y2n+1, kt) = M (Pz, Qx2n+1, kt)  

≥ M (y2n, y2n+1, t) *M (STz, Pz, t) * M (STz, y2n+1, t) * M (y2n, Pz, t) * 

M (y2n, STz, t). 

Taking the limit as n→∞, we have, M(Pz, z, kt) ≥ M(Pz, z, t) 

Therefore by lemma 2.3, we have Pz = z = STz.  

Now, we show that Q z = z. In fact by (6.32) with a = 1 and (6.34), we have,  

M (Px2n, Qz, kt) ≥ M (Bz, Qz, t) * M (STx2n, Px2n, t) * M (STx2n, Qz, t) *  

M (ABz, Px2n, t) * M (ABz, STx2n, t) 

Taking the limit as n→∞, we have,     

M (z, Qz, kt) ≥ M (z, Qz, t) 

Therefore, by lemma 2.3, we have, Qz = z = ABz.  

Thus Pz = Qz = ABz = STz = z.  

By putting x = z and y = Bz with a = 1 in (6.32) using (6.34) and lemma 2.3, it is 

easy to see that Bz = z. Since ABz = z therefore Az = z. By putting x = Tz and y = 

z with a = 1 in (6.32) using (6.34) and lemma 2.3, it is easy to prove that 

Tz = z. Since STz = z we have z = STz = Sz. 

Therefore by combining the above results, we have,   

Az = Bz = Sz = Tz = Qz = z. 

That is z is the common fixed point of A, B, S, T, P and Q. Uniqueness follows 

easily from (6.32).  

This completes the proof. 

4    Conclusion  

Hence we produce very first result for common fixed point under the condition of 

R-weak commutativity without taking any function continuous on non complete 

fuzzy metric spaces which has not been proved earlier. 
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