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Abstract 

 

Many real-world problems require the detection of abnormal instances of a physical process, and methods inspired by 

the Support Vector Machines have been developed that model reference or normal data well. These methods serve as a 

fundamental step to enable the classification of new data as normal or abnormal. They imply the solution of a quadratic 

programming problem, which can present difficulties in finding solutions with standard methods and program solvers 

when the number of points becomes large. In this paper, we present an approach that was developed in a different 

context and that leads to a linear programming problem to attain the computational advantages of a linear environment. 

 
Keywords: Data description, novelty classification, one-class classifier, outlier detection, supports vector data description (SVDD). 
 

 

1 Introduction 

The problem of one-class classification has received increasing attention in recent years, and several solutions have 

been proposed. The one-class classification describes the process of learning the normality of a system from a unique 

set of classified and labelled examples (the reference or target class A); once the optimised (in some sense) model has 

been built, new incoming data (novelties) are classified as normal or abnormal according to some defined score or 

criterion. Many approaches are available for novelty detection, such as the Gaussian mixture model and the Parzen 

density estimation model. These approaches were developed by first estimating the probability distribution of normal 

data patterns and thereafter distinguishing a new data pattern based on the distribution level. Other solutions propose 

distribution-free or domain description approaches, in which attempts to learn just the boundaries of the target set are 

made to try to exclude superfluous space. The availability of efficient solutions has stimulated interesting applications, 

such as in the field of medical diagnosis or statistical process control, where control charts are one of the most applied 

tools for quality control. The design of the control limits in many traditional charts (for example referring to T
2
-

Hotelling distribution) is based on the Gaussian assumption, which in many real-life applications is questionable. 

These findings have generated an interest in distribution-free methods based on different principles. Among these 

approaches, we remark the solutions presented in foundational papers like [1] and [2], where the classification process 

presents deep analogies with the concepts of support vector machines (SVM) found in [3] and leads to quadratic 

programming problems (QP). 

In a previous paper [4] we presented a solution method for two-class optimal classifiers that proceeds by means of 

linear programming (LP) techniques, which presents an alternative to the quadratic programming techniques of 

traditional SVM; in this paper we extend the LP techniques to a one-class classifier definition and show that linear 

techniques can address fundamental classification problems. 

Other methods based on LP techniques have been presented, from differing points of view and with different results, 

e.g. [13] [14], which show that LP is a viable approach to one-class classification. 

In section 2, we will present the basic theory pertaining to the one-dimensional case; in section 3, we will generalise this 

theory to higher dimensions; a refinement of the LP method is outlined in sections 4 and 5; in section 6, methods for 

outlier treatment will be discussed, and comparisons between the proposed LP approach and the QP approach as 

outlined in [1] will finally be presented in section 7. 
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2 The basic theory for the one-dimensional space 

We have a one-dimensional data set {xi}, i=1, 2, ...., n defined on the x-axis of R
2
 (i.e. the class A of interest), and we 

want to obtain a closed region that encloses the data, which is the segment between the leftmost and rightmost point on 

the x-axis in this simple case (see fig.1). 

The key idea is to consider an auxiliary function (support function), s(x), defined on x that can favour the selection of 

the boundary points; for example, the function s(x) = x
2
 comprises the ordinates y1 = s(x1) = x1

2
 and yn = s (xn) = xn

2
, 

which correspond to the boundary points x1 and xn, and distinguishes them from the ordinates of the remaining points. 

Moreover, let us consider a generic straight line (decision function), D(x): 

D(x) = a1 x + b, 

where b is the intercept of D(x) on the y-axis. 

To obtain the optimal line D*(x) = r* = a1
*
x + b

*
 that crosses s(x) as low as possible at the two boundary points P1 = (x1, 

x1
2
) and Pn = (xn, xn

2
) (see fig. 1), we must solve the LP problem: 

minimise b, subject to 

D(xi)   s (xi), that is,                                                                                                                                      (1) 

a1 xi + b   xi
2
, (i=1, 2, … n) 

The LP procedure (1) moves a generic line r towards the optimal line r* (see again fig. 1). The auxiliary function, s(x) = 

x
2
, acts as support to the optimal line r*: only points belonging to the closed interval [x1, xn] are compliant with the 

constraints (1). Moreover, the following is true at boundaries: 

r*(x1) = a1
*
x1 + b

*
 = s(x1)  = x1

2
; 

r*(xn) = a1
*
xn + b

*
 = s(xn)  = xn

2
; 

x1 and xn assume in our formulation the name of support vectors, in the sense that they define the sample limits of the 

reference class and are sufficient to describe its extent. 

New incoming data xc can now be classified according to the following rules: 

if D*(xc) = a1
*
 xc + b

* 
<  s(xc), xc   class A (e.g., the point xc1 of fig. 1); 

if D*(xc) = a1
*
 xc + b

* s(xc), xc   class A (e.g., the point xc2 of fig. 1).                                                             (2) 

 
Fig. 1: The basic idea behind the LP solution Fig. 2: Possible decision functions D(x) 

 

The appropriate interaction between the decision function, D(x), and the support function, s(x), defines the ability to 

trace a closed region around the data sample and to classify new data. 

A fundamental requirement of the method is that the function s(x) is convex and that its point of minimum is strictly 

internal to the data distribution, otherwise unbounded solutions in the LP problem (1) can be attained; this last 

requirement is easy to satisfy, e.g. by a preliminary mean detrending, which sets the sample data near the minimum of 

s(x). Other requirements involve the choice of s(x): the properties of continuity and regularity are assumed, along with a 

divergence to +  with x tending to  , to consider all possible data range.  

Conversely, the decision function, D(x), can assume multiple forms (see fig. 2).  

In fig. 2, D1(x) is a straight line, whereas D2(x) = a1 | x |
 0.8

 + b, and D3(x) is a linear combination of two appropriate 

Radial Basis Functions (RBF). D1(x) and D3(x) properly pass through the points P1 and Pn, which are the leftmost and 

the rightmost points of the sample.  

The following relationship between derivative values must be satisfied on the outside region of the class A to render the 

classification rules (2) possible:   

ds(x)/dx > dD*(x)/dx. 
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3 Generalizations 

Our strategy in R
m
, where m > 2, is to refer the class A at the origin O and create a boundary curve as the intersection 

between a hyperplane and the support function in the input space, R
m
. Thus, the generalisation to a linear decision 

function on the points of the space R
m
 is straightforward: D(x) is now expressed as a sum of the type 

       
 
 + b = a

T


 
x + b,  

where x = [x1, x2, .... xm]
T 

ϵ R
m

, and problem (1) can be consequently reformulated.  

The operator (  )
T
 denotes a matrix/vector transposition. 

To generalise to non-linear decision functions on points of the space R
m
, we resort to a function D(x), which is defined 

via N properly chosen non-linear functions, φi (x): 

D(x) =     
 
        + b = [a1 a2 ….. aN]   φ(x) + b = a

T
  φ(x) + b                                                                      (3) 

x ϵ R
m
, i (x): R

m  R, φ(x) = [φ1(x) φ2(x) …. φN(x)]
T
:  R

m  R
N
. 

Apart from the necessary adaptations, the basic theory remains unchanged: we must find the optimal D
*
(x) by following 

the LP formulation introduced in (1):  

minimise b, subject to  

D(xj) = D(xj1, xj2… xjm) = a
T
  φ(xj1, xj2, …, xjm) + b   s(xj1, xj2, …, xjm),                                                            (4) 

j = 1, 2… n  

In the above definitions, m represents the dimensionality of the original space (the input space), N indicates the 

dimension of the feature space (generally augmented to facilitate the classification task [6]), and n the sample size. 

A versatile choice of s(x) in R
m
 takes the following form (elliptic paraboloid, [5]):  

s(x1, x2, …, xm) = c1x1
2
 + c2x2

2
 +        + cmxm

2
                                                                                                         (5) 

ci R
+
,  i, i = 1, 2, …., m 

which satisfies the conditions of regularity, continuity and divergence to +  when xi tends to  . 

If we let ci = constant   R
+
,  i, we obtain a paraboloid of revolution. This paraboloid pertains to a parabola that 

revolves about its axis in R
3
, in which the cross sections perpendicular to this axis are circles. 

Equation (5) offers the advantage that the choice of each coefficient, ci, can be usefully suggested by the variability 

along the i-th coordinate, e.g. in the space of principal components.  

The new data xc are classified as in (2), with the following obvious dimensional generalisation: 

if D
*
(xc) = a

*T
  φ(xc) + b

* 
 <  s(xc),  xc   class A; 

if D
*
(xc) = a

*T
  φ(xc) + b

*
   s(xc),  xc   class A.                                                                                               (6) 

These simple geometric concepts allow for a variety of nonlinear classifiers in the input space because of the available 

freedom to utilise different types of nonlinear functions. As a result, the specialisation of (3) leads to several possible 

forms of D(x) in the higher dimensional case, e.g.: 

a) D(x1, x2… xm) = [a1  a2 …..  am]   [x1  x2 .….  xm]
T
 + b    (linear, φi(x) = xi, N = m) 

b) D(x1, x2… xm) = [a1  a2 …... am]   [|x1|
h
  |x2|

h
 ..... |xm|

h
]

T
 + b  (powers, φi(x) = |xi|

h
, N = m) 

c) D(x) = a1 K(x1, x) + a2 K(x2, x) + .......... + an K(xn, x) + b,  (combination of dot products) 

where h is a real positive exponent, and K(xi, x) is any dot product of type  

K(xi, x) = φ(xi)
T
  φ(x) = [φ1(xi) φ2(xi) …. φN(xi)]   [φ1(x) φ2(x) …. φN(x)]

T
  

with possible infinite terms in φ(  ) (when N  ), provided the dot product is finite.  

In particular, this dot product can assume the following expression, which implies infinite terms in φ(  ) and a finite 

result associated with a closed form [7]: 

K(xi, x) = exp(- ||xi – x||
2
)           (RBF kernel)        (7) 

The above form c) originates from a form of D(x) of type (3) in the input space and can be justified with arguments 

similar to that developed in [4, §3]. It can be viewed as a tight approximation of the non-linear form (3) of D(x) when 

operating implicitly over the feature space.  

In fact, D(x) realizes a mapping from the input space, R
m
, to the real space, R, through the feature space, R

N
, in form c), 

i.e. D(x): R
m  R

N
   R. 

Interestingly, K(  ,  ) is not required to be a Mercer's kernel [6] in the LP context: it can consist of a generic dot product 

[4, §3]. 

 

4 A better formulation of the LP problem with a lasso-type term 

The LP problem as formulated in (4) is generally not restrictive enough to assure a unique classifier, except for the 

linear case in R
2
, as suggested by simple geometrical considerations.  
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In fact, the LP problem may present multiple solutions in practical applications of (4). The introduction of a 

regularisation term in (4) is appropriate to overcome this limitation, as done in statistical regression where this 

procedure is assumed to provide advantages, such as well-defined numerical solutions or avoiding over fitting. Different 

formulations are used in regression, all of which propose optimization criteria that controls the growth of coefficients, i. 

e. introducing in optimization regularisation terms like the following: 

i)      
      (Ridge regression [8]); 

ii)           (Lasso regression [9]). 

Criterion ii) suits our context very well if we impose the additional constraints of positivity to the coefficients a i; in this 

event criterion ii) simply reduces to the following: 

      

which ensures that problem (4) remains linear.  

Therefore, our availability to accept suboptimal conditions is rewarded by addressed solutions in real terms.  

In our experience, we have always found unique and well defined solutions to the LP problem (4) amended by a lasso-

type term. 

Therefore, problem (4) can be reformulated as follows: 

minimize (b +        ,   subject to  

D(xk1, xk2… xkm)   s(xk1, xk2, …, xkm),                                                                                                                 (8) 

ai   0, b   0 ,    k = 1, 2, …., n;  i = 1, 2, .... 

The solution to (8) is indexed by the free parameter ; it controls the size of the coefficients and the amount of 

regularisation, and tuned values based on experimental trials are to be selected. 

A known effect of the lasso regularisation in statistical regression is that it may estimate some coefficients to be exactly 

zero, more often than other methods (coefficient shrinkage). This effect also seems to operate in our method: many 

optimal coefficients ai
*
, that define D

*
(x), generally approach zero.  

In fig. 3 we present the optimal RBF classifier pertaining to a sample, S, of 100 random points lying on the x-y plane of 

R
3
 (the blue and green circled points visible in the right panel, which represents a top view).  

The LP procedure (8) with  = 0.9,  = 0.1 and s(x) = x1
2
 + x2

2
 furnishes the optimal classifier: 

D
*
(x) =   

   ai
*
 exp(- ||xi – x||

2
) + b

*
  

In our case, this classifier is composed of the combination of only 14 RBF functions that correspond to the 14 optimal 

coefficients, ai
*
, which are different from zero in the optimisation, and whose composition in R

3
 is visible in the left 

panel of fig. 3. The green circled points in the right panel of fig. 3 represent the support vectors, i.e. the boundary 

points, xS ϵ S, where the optimal classifier equals the support function, D
*
(xS) = s(xS).  

An independent random sample I of 4000 points at the origin O was also considered and is presented in fig. 3; rule (6) 

classifies its points as depicted in its right panel: as black crosses (the case D
*
(xI_black) < s(xI_black): xI_black does not 

belong to the class S), and as red stars (the case D
*
(xI_red)   s(xI_red): xI_red does belong to the class S) 

 

  
Fig. 3: A solution to (8) with RBF kernels ( = 0.9 and  = 0.1. Left, the representation of D*(x) in R3; right, a top view) 

 
Fig. 4 presents a second example of the classification that pertains to the same sample S of fig. 3, with a classifier that 

consists of power functions (see form b) of previous section). Here h = 0.5 and  = 0.1. Procedure (8) identifies the 

optimal D
*
(x1, x2) = a1

*
 |x1|

0.5
 + a2

*
 |x2|

0.5
 + b

*
 of fig. 4, with meanings similar to fig. 3.  

In particular, only two support vectors derive from the condition D
*
(xS) = s(xS) = xS1

2
 + xS2

2
 (i.e. the two green circled 

points of the right panel of fig. 4). 
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A wider membership region (i.e., attributable to class A and denoted as before by red stars) can be noted in this second 

example, which could result in a larger generalization capability if contained into the appropriate limits. But the 

definition of the appropriate limits is the fundamental task of classification. 

 

5 Negative examples 

Negative examples (i.e. instances known to be external to the sample and furnished for better modelling purposes) can 

be incorporated in the optimisation model with relative ease. In this case, we restate the classifier definition by referring 

to the RBF functions, for example: 

D(x) = a1 K(x1, x) +...... + an K (xn, x) – an+1 K (xn+1, x) –..... – an+p K(xn+p, x) + b. 

In other words, we associate the negative examples, arranged from the (n+1)-th to the (n+p)-th instance, with negative 

signs to facilitate their discrimination. 

The LP problem now assumes the following form: 

Minimize (b +        ,   subject to  

D(xk)   s(xk),    for k = 1, 2, ..., n 

D(xk) <   s(xk),    for k = (n+1), (n+2), ..., (n+p)                                                                                                    (9) 

ai  0, b  0,     for i = 1, 2, ...., (n+p) 

We always obtained good results as long as p << n. When p is comparable to n, a solution with procedures of optimal 

binary classification is clearly preferred. 

   
Fig. 4: A solution to (8) with power functions (left, the representation of D*(x) in R3; right, a top view) 

 

6 Outlier detection 

The detection of outliers, i.e. of observations with a combination of characteristics not attributable to the population, 

constitutes an important task in statistical analysis. In fact, the results of this analysis can be misleading at best when 

applied to data containing outliers. 

We now discuss two different methods that can detect outliers; the second method is specific to the LP approach 

presented in this paper. 

 

6.1   A first method: introducing slack variables into the LP problem 
 

When the identification of possible outliers in the sample is desired, the use of slack variables and modified constraints 

is an available resource [1].  

The problem is now restated in a way to determine the optimal classifier identified by the following modified LP 

problem: 

minimize (b +        + C  i ) subject to 

D(xk1, xk2… xkm) + k   s (xk1, xk2… xkm),                                                                                                        (10) 
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ai  0, b   0,  i   0,   k = 1, 2, …., n;  i = 1, 2, .... 

where C is a free parameter that controls the degree of exclusion. 

The constraints in relations (10) state that one or more points, xk, of the sample are permitted to produce classification 

values, D
*
(xk), that are below the support function, s(xk), by a positive quantity, ,k to remain external to the boundary 

curve identified by the optimal classifier (see point xn of fig. 5, the left panel, for example). 

Based on the choice of C, all points xj that ensure that the relative 
j

  are strictly greater than zero will constitute the 

set of the points excluded from the membership region; on the contrary, the included points meet the conditions j = 0.  

The right panel of fig. 5 presents the optimal classifier solution to (10) relative to the same random sample S of fig. 3 

(now with values  = 0.9,  = 0.1 and C = 0.05); five points of S, represented by black diamonds noted by blue arrows, 

are excluded from the membership region, which is denoted by red stars. This exclusion reduces the extension when 

compared to the analogous region of fig. 3. 

The problem with this procedure resides in our incapacity to control the parameter C: we are not able to know in 

advance the number of excluded points that corresponds to an assigned value of C. Therefore, a post analysis is 

necessary to determine the retention or exclusion of each of them once the candidate outliers have been identified. 

To demonstrate the effects of the outliers, we report the results of the analysis conducted on a dataset of 10 classes with 

16 attributes (i.e., defined in R
16

) engaging 10992 instances (see table 1), which were obtained from a benchmark 

repository [10], named “Pen-Based Recognition of Handwritten Digits Data Set” and available at the following link: 

http://archive.ics.uci.edu/ml/datasets/Pen-Based+Recognition+of+Handwritten+Digits.  

The 2 innermost classes, labelled with codes 4 and 6, were joined together to form the reference class A, for a subtotal 

of 2200 instances. The remaining 8 classes, for a subtotal of 8792 instances, formed a class of “external conditions” 

(EC) resulting quite uniformly distributed around A, and assimilated in our analysis to abnormal values/outliers. In this 

analysis, we considered 7 situations composed of different samples obtained by lining up random subsamples extracted 

from the class EC of 0, 5, 10, 20, 50, 70 and 100 instances behind the class A, to create 7 optimal RBF classifiers on 

these situations of increasing contamination of the reference class A with spurious values from the class EC. 

 

 
Fig. 5: The concept of variable boundaries with slack variables (left) and the results of the modified LP problem (10) applied to the random sample S     

of fig. 3 (right). 

 

The aim of this analysis, whose results are presented in table 1, was to evaluate the amount of “false positiveness” for 

each classifier (FP; i.e. the number of instances of EC, among the remaining 8692, classified as belonging to A) and of 

“false negativeness” (FN; i.e. the number of instances of A classified as external) with varying values of C. The analysis 

is presented for classifiers operating in the space R
16

 built for the following values of C: C = 0, C = 0.03, C = 0.05.  

Table 1 shows interesting results. First, we note that optimal classifiers D
*
(x) correspond to samples with increasing 

degree of contamination (from 0 to 4.55%) with a growing degree of FP error: in the worst cases (last row), this error 

exceeded 60%. This fact demonstrates the influence of outliers on the analysis. The worst result in term of the FP error, 

which corresponds to a value of 81.90%, was obtained with a classifier built for the value C = 0 (see the last row of 

table 1). This situation is equivalent to saying that approximately 7118 instances of EC (out of 8692) are improperly 

classified by rule (6) as belonging to A, while all values of A are properly classified (FN = 0%). 
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Table 1: Outlier effects on FP and FN for classifiers with increasing contamination 

Classification errors (samples: class A + 

random instances extracted from EC; 

bracketed the percent degree of 

contamination) 

C = 0.00,  = 0.0005, 

 = 0.1 

C = 0.03,  = 0.0005, 

 = 0.1 

C = 0.05,  = 0.0005, 

 = 0.1 

 FP FN FP FN FP FN 

2200 instances from A+0 from EC   (0%) 3.13% 0% 1.55% 1.45% 2.47% 0.95% 

2200 instances from A+5 from EC   (0.23%) 13.79% 0% 2.06% 1.55% 3.37% 0.95% 

2200 instances from A+10 from EC (0.46%) 31.55% 0% 2.50% 1.41% 4.95% 0.86% 

2200 instances from A+20 from EC (0.91%) 43.15% 0% 4.45% 1.45% 16.52% 0.91% 

2200 instances from A+50 from EC (2.27%) 74.82% 0% 39.08% 1.55% 58.84% 1.00% 

2200 instances from A+70 from EC (3.18%) 79.30% 0% 54.72% 1.50% 70.14% 1.00% 

2200 instances from A+100from EC(4.55%) 81.90% 0% 61.25% 1.45% 73.30% 0.82% 

 

Values of C that are greater than zero alleviate the FP error, increasing in contrast the FN error; in other words, the 

situations with C greater than zero reduce the membership region of A, filtering out both instances of EC (FP 

diminishes) and instances of A (FN increases).  

Table 1 indicates that the value C = 0.03 provided the best trade-off between FP and FN. 

 

6.2   A second method: the LP sensitivity analysis 
 

Sensitivity or post-optimal analysis provides additional information in the LP context about the current optimal solution; 

it aims to determine the effects on the optimal solution if the problem values (e.g. the objective function coefficients 

(OFC) or the right hand sides (RHS) values of the constraints) change. Some LP solvers furnish solutions to this 

analysis, which are generally in terms of admissible variation ranges for each OFC or for each RHS (sensitivity report). 

Our interest focuses on the RHS sensitivity analysis (see a conceptual schema in the left panel of fig. 6), which consists 

of calculating the admissible variation range on RHS, assuring that the current basis remains optimal while the RHS 

remains within this range [12].  

The report in the right panel of fig. 6 shows an example of a RHS sensitivity analysis produced by the LPSolve IDE [11] 

solver; this (partial) report states that the RHS of the 38-th constraint (the row R38; in the proposed example it is 

actually 17,535.77) is allowed to range from 17,002.329 to 1,901,892.561 while maintaining the same optimal basis, 

whereas to the 51-th constraint (the row R51) pertains a reduced range between 17,238.941 and 62,521.290 (the related 

RHS amounts actually to 17,322.98). 

 
          Sensitivity Report  

 
 

Fig. 6: A change of one RHS in R2 (left; from 480 to 605) with its consequences and a piece of the sensitivity report by the LPSolve IDE [11] solver 
(right). 

 

In real terms, maintaining the same optimal basis indicates that the same set of constraints will remain active [12, chap. 

6, page 3] and the optimum will remain at the intersection of these constraints. Thus, a wide admissible range on an 

 From Till 

R38 17,002.329 1,901,892.561 

R39 -inf +inf 

R40 -inf +inf 

R41 -inf +inf 

R42 -inf +inf 

R43 -inf +inf 

R44 -inf +inf 

R45 -inf +inf 

R46 -inf +inf 

R47 -inf +inf 

R48 -inf +inf 

R49 -inf +inf 

R50 -inf +inf 

R51 17,238.941 62,521.290 

R52 -inf +inf 
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RHS implies that the related constraint has “enough room” to permit large parallel translations to the hyperplane that 

represents it (e.g. see the highlighted region in the left panel of fig. 6), while remaining active.  

Moreover, recall that the generic k-th constraint is expressed as follows when employing RBF, for example: 

D(xk) = a1 K(x1, xk) + a2 K(x2, xk) + .......... + an K(xn, xk) + b   RHSk = s(xk), 

which involves the instance xk of the sample. It follows then that a wide admissible range on RHSk should be associated 

with a meaning of marginality of the instance xk with respect to the pattern distribution because large translations are 

allowed to the hyperplane expressed by means of xk in the kernel space K(  ,  ), while holding the same optimal basis 

and the constraint active.  

The criterion of considering an instance xk marginal or of identifying it as outlier when the related constraint is active 

and its admissible range on RHS is large has been tested on the sample already presented in section 6.1; this method 

was simultaneously compared with the competing method of the slack variables.  

The analysis was organised to build 10 subsamples, SSi, each of which consisted of 220 instances randomly extracted 

from class A, followed by 10 instances randomly extracted from class EC, as represented below: 

 SSi = {220 instances from A + 10 instances from EC}, i = 1, 2, 10. 

Moreover, the 10 subsamples SSi resulted without superposition (SSi    SSk = the empty set,  i, k = 1, 2, ..., 10). For 

each SSi two optimal RBF classifiers were built: the first turned only to LP sensitivity analysis (C = 0.0,  = 0.0005,  = 

0.1),  the  second  containing  slack variables  (C = 0.08,  = 0.0005,  = 0.1). Both cases aimed to evaluate the number 

of True Outlier Attributions (#TOA; i.e. how many instances of EC, out of the 10 really present in the subsample, are 

properly identified as outliers), and the number of False Outlier Attributions (#FOA; i.e. how many instances of A, out 

of the 220 really present in the subsample, are interpreted as outliers). 

Table 2 presents the results of the comparisons between the two methods. Moreover the last column expresses the 

percent averages of #TOA and #FOA. In each cell, the first number refers to #TOA and the second to #FOA; for 

example, the cell at the intersection of column (subsample) “SS2” and of row “Sensitivity Analysis”, which reports the 

values (3, 2), states that 3 instances of EC (out of 10) and 2 of A (out of 220) were properly and improperly recognised, 

respectively, as outliers by the optimal classifier D
*
(x) built with parameters C = 0.0,  = 0.0005,  = 0.1 on SS2. 

 
Table 2: Comparison between the two methods of outlier detection (#TOA, #FOA) 

( = 0.0005,  = 

0.1) 

SS1 SS2 SS3 SS4 SS5 SS6 SS7 SS8 SS9 SS10 Average 

(%) 

Sensitivity Analysis 

(C = 0) 

7, 0 3, 2 4, 3 7, 0 5, 1 10, 1 5, 0 7, 2 9, 1 7, 0 64%, 0.45% 

Slack variables 

(C = 0.08) 

5, 3 4, 2 6, 3 9, 0 6, 3 9, 3 6, 0 8, 2 8, 4 8, 1 69%, 0.95% 

 

Based on the last column, the two methods seem to compete at similar levels of quality; the method with slack variables 

shows a slight advantage on #TOA (69% vs. 64%) at the cost of a lower performance on #FOA (0.95% vs. 0.45%).  

From a computational point of view, the sensitivity analysis method gains an advantage over the other method in terms 

of computational efficiency: the LP matrix is reduced in size, because fewer variables are involved in optimization 

(absence of slack variables). 

 

7 Comparing the LP model with other models of data description 

In the present section we focus on the classification errors, aiming to evaluate the error of the first kind or of false 

negativeness (FN; i.e. the amount of rejected target patterns) and the error of the second kind or of false positiveness 

(FP; i.e. the amount of accepted outlying patterns) for competing models of data description.  

Two categories of procedures are generally used to evaluate the error of a model.  Procedures from the first category 

estimate the error by testing the model on an independent dataset (i.e. not used for training), while those from the 

second category estimate the error by theoretical bounds.  

At present, the cross-validation procedure, which falls into the first category, is one of most popular methods in the 

statistical literature and in this section we show results obtained via this method. 

The dataset of section 6.1, originally subdivided into the target class A with 2200 instances and the outlying class EC 

with 8792 instances, was now rearranged into 5 different aggregations of subsamples (AoSi, i = 1, 2,…, 5), each of 

which was structured as follows: 

AoSi = {440 instances from A + 1760 remaining instances from A + EC},   i = 1, 2… 5. 

More precisely, 440 instances were randomly extracted from A to form the first component of each AoSi, without 

overlapping this component among the various AoSi, acting as independent target data. The component with 1760 

instances from A was used as training data to build the classification model each time.  A 5-fold cross-validation 



 

 

 
International Journal of Applied Mathematical Research 503 

 

 

 

procedure was then followed to estimate FNtd (FN on training data, intending the improperly rejected instances among 

the 1760 instances used in training), FNitd (FN on the 440 independent instances) and FP (the improperly accepted 

outliers from EC). Table 3 shows the results of the comparison between our procedure, denoted LP model, and the 

model presented in [1], denoted QP model. Each cell of table 3 reports the values averaged over the 5 analyses, in terms 

of the number (absolute and percent) of instances recognised as support vectors (SV), and instances related to FN td, 

FNitd, and FP.  The cross-validation analysis was performed in the Matlab environment, using its linprog and quadprog 

routines (for the LP and QP model respectively); the resultant computing times distinctly favoured the LP model.  

A grid search was preliminarily conducted to determine the appropriate values of the free parameters C and . 

 
Table 3: Comparison between models (averaged results from a 5-fold cross-validation) 

 SV (out of 1760 

instances) 

FNtd (out of 1760 

instances) 

FNitd (out of 

440 instances) 

FP (out of 8792 

instances) 

LP model (C = 0.01,  = 0.08,  = 0.1) 8 (0.45%) 100 (5.68%) 26.6 (6.05%) 14.6 (0.17%) 

QP model (C = 0.01,  = 0.114) 131 (7.44%) 45.6 (2.59%) 43.4 (9.86%) 0 (0%) 

 

Several important conclusions can be drawn from table 3: 

1) The number of support vectors between the LP and QP model is undoubtedly different; other analyses conducted 

that varied the parameters C and  around the values of table 3 did not reduce this marked difference;  

2) Notably, the mathematical modeling implemented by the two methods is different, and the definition of the support 

vector refers to different geometrical objects: support vectors are generally model-dependent. Thus, the two methods 

reported a superposition of the respective support vector sets to a low degree. For example, the fifth analysis of the 

cross-validation procedure reported a sharing of 2 out of 8 support vectors in the LP model and 139 support vectors 

in the QP model; 

3) Moreover, we found that the numbers of optimal coefficients different from zero in the LP and the QP solutions are 

definitely unequal in the same direction and extent. Thus, the data description operated by the LP model is more 

parsimonious and simpler; 

4) If contained within the appropriate limits, this simplified model structure could improve the generalisation 

capability, because LP modeling seems to concentrate more on the general properties of data distribution; 

5) Table 3 shows a small percent increment in the LP model when passing from FNtd to FNitd (from 5.68% to 6.05%), 

whereas the analogous increment in the QP model is more pronounced (from 2.59% to 9.86%). This difference 

indicates that the LP model is more stable when classifying independent target data at the cost of a worse level of 

target data classification (FNtd passes from 2.59% in the QP model to 5.68% in the LP model); 

6) The FP does not seem to report significant differences (0.17% versus 0%). 

This result, which was based on a single analysis, clearly requires deeper investigations to completely confirm the 

relative characteristics of the two models.  

Nevertheless, we found a systematic trend of the LP procedure to produce models with a marked reduction of support 

vectors and optimal coefficients different from zero in our experience with both procedures.  

 

8 Conclusion 

This paper presented a new method that aimed to build a one-class classifier. The method is based on the effects of a 

support function, s(x), that acts as a selector for support vectors and a classification curve, when it results crossed by the 

optimal classifier in the input or feature space. The data modelling is performed in the context of an LP optimization 

process to ensure the advantages of linearity. 

A versatile support function was proposed, as a general formulation to address regular dataset distributions, whereas 

particular distributions can be usefully handled by tightly fitting specialized functions to the reference data. For 

example, in the case of data grouped into two separated regions, the Cassini oval [5], which consists of two 

disconnected loops when proper values of its characteristic parameter are assumed, can be considered a support 

function. 

The data description model presented in this paper relies on a sparse and defined set of support vectors, whose 

cardinality resulted undoubtedly smaller than the cardinality of the competing QP model. Thus, the data description 

operated by the LP model is more parsimonious and simpler.  

A new method of outlier detection, based on LP sensitivity analysis, was also proposed. This method demonstrated its 

validity when compared to the classic method with slack variables, thus enriching the availability of useful techniques 

when addressing this delicate but fundamental task of statistical analysis. 

A Matlab code is freely available on request. 
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