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Abstract 

 

Suppose a customer takes out a fixed rate mortgage for p  Naira at an interest rate of %R  per year, and wants to pay 

off the loan in Z  years. The immediate task is to find out what the annual payment should be so that the loan is indeed 

cleared in Z  years. In this work, we model this mortgage problem using difference equation and approximate the 

solution of the problem using a fractional differential equation. We thus make comparison between the solutions 

obtained from the conventional approach for calculating such debt and the fractional differential equation approach 

using a graph. We thereby make the conclusion that the use of fractional differential equation method enables a 

customer to pay off loans more quicker. 

 
Keywords: Difference equation, fractional differential equation, mortgage problem, laplace transform, mittag-laffler function, gamma function. 
 

 

1 Introduction 

As old as normal, conventional, integer-order calculus. Born in 1695, In a letter correspondence, Marquis de L’Hospital 

asked Leibniz "What if the order of the derivative is 1/ 2 ?" To this end, Leibniz replied in a prophetical way, "Thus it 

follows that will be equal to 2 2 2 : )x dx x , an apparent paradox, from which one day useful consequences will be 

drawn." This letter of Leibniz was dated far back 30th September, 1695.[1]. 

In spite of its long history, fractional calculus was not considered eligible for any applications. This was due to 

its high complexity and lack of physical and geometric interpretation. Application of fractional calculus to real-world 

problems is only four decades old. Applications can be broadly categorized into: Modeling of Systems and Fractional-

order Control,[2]. 

Rigorous mathematical theory has been developed. Integer-order calculus is the special case. Geometrical interpretation 

or physical meaning exists. But not as straight forward as for the integer-order derivatives,[7]. 

A typical example of differential equations involving fractional derivatives. is the Bagley-Torvik equation of oscillatory 

processes with fractional damping[4]:  
32

2
2

( ) ( ) ( ) = ( )t

d
f x D f x f x g x

dx
    

There are likewise both ODEs and PDEs. which has fractional derivatives that are Linear and non-linear. (Give 

reference) Existence and uniqueness of solutions have been established, analytical solutions are difficult to evaluate. 

Dedicated, elegant numerical methods exist as well,[6]. 

Some of the merit of fractional derivatives are [2]: 

(1) Calculating time-fractional derivative of a function ( )f t  at some 1=t t  requires all the past history, i.e. all ( )f t   

      from = 0t  to 1=t t .  

(2) Fractional derivatives can be used for modeling systems with memory.  

(3) Calculating space-fractional derivative of a function ( )f x  at 1=x x  requires all non-local ( )f x  values.  

(4) Fractional derivatives can be used for modeling distributed parameter systems.  

 

In this paper we shall see that one of such models formulated using difference equation can be accurately approximated 

using fractional differential equation. This fractional differential equation shall be solved using the approach of Laplace 

transform. 
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2 Preliminary notes 

2.1   Gamma Function 
 

This is otherwise refered to at the generalization of the factorial for all real numbers, defined by 

1

0
( ) = t xx e t dt x R


    

with the property that  

( 1) = ( )x x x  
 

( ) = ( 1)!x x 
 

 

2.2   The Error Function 
 

This function is defined thus [10]  

2

0

2
( ) =

x
tErf x e dt






 

the complementary error function ( )Efrc  is a closely related function that can be written in terms of the Erf  function 

as  

( ) =1 ( )Erfc x Erf x  

Notice closely that (0) = 0Erf  and ( ) =1Erf   

 

2.3   Mittag-Leffler function 
 

This function is a direct generalization of the conventional exponential function xe , and it play a very important role in 

fractional calculus. The Mittag-Leffler function is defined in terms of power series as follows [10]  

=0

( ) = , > 0 ( )
( 1)

k

k

x
E x one parameter M L function

k
 






 


 

,

=0

( ) = , > 0 ( )
( )

k

k

x
E x two parameter M L function

k
  

 




 


 

It can be easily shown that  

, , 1 ,

1
( ) = [ ( ) ( 1) ( )]

d
E x E x E x

dx x
     


  

 
Note that , (0) = 1E  . Also, for some particular values of   and  , the Mittage-Leffler function reduces to some 

farmiliar functions. For example  

1,1( ) = xE x e
 

2

1/2,1( ) = ( )xE x e Erfc x
 

1,2

1
( ) =

xe
E x

x



 
 

2.4   Riemann-Liouville Fractional Integral 
 

Definition 2.1:Let v  be a non negative number, f  be piecewise continuous on )(0,= I  and integrable on any 

finite subinterval of = [0, ]J  . Then for > 0t  we define the Riemann-Liouville fractional integral of f  of order v  as  

11
( ) = ( ) ( ) , > 0

( )

x
v v

c x
c

D f x x t f t dt v
v

 
                                                                                                         (1) 

This definition can be obtained in several ways but we shall consider the linear differential equation.We first state a 

lemma.  

Lemma 2.2 (Replacement Lemma)  Suppose that :[ , ]f a b R  is continuous, then  

( ) = ( ) ( ) , [ , ]
x x x

a a a
f t dtdx x t f t dt x a b


      
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Now consider the nth  order linear differential equation with the initial conditions  
( )

( 1)

= ( );

( ) = ( ) = ( ) = = ( ) = 0

n

n

y f x

y c y c y c y c




  L
 

Integrating n  times from c  to x  and from the second integration to the nth  integration, we apply Lemma 2.2, we 

obtain  
1 1

( 2)( ) ( )
( ) = ( ) ( ) ( ) ( ) ( )

( 1)! ( 1)!

n n
x

n

c

x t x c
y x f t dt y c x c y c y c

n n

 
 

    
  L

 
since  ( 1)( ) = ( ) = ( ) = = ( ) = 0ny c y c y c y c  L  we get  

1( )
( ) = ( )

( 1)!

n
x

c

x t
y x f t dt

n




 

We may rightly say that ( )y t  is the nth  integral of ( )f x , thus;  

11
( ) = ( ) ( ) ,

( 1)!

x
v n

c x
c

D f x x t f t dt
n

 
 

 
Replacing n  with > 0v  and recalling that ( ) = ( 1)!n n  , we therefore have  

11
( ) = ( ) ( ) , > 0

( )

x
v v

c x
c

D f x x t f t dt v
v

 
 

 
 

2.5   Riemann-Liouville fractional derivative 
 

The Riemann-Liouville fractional derivative can be defined using the definition of the fractional integral. 

 

Definition 2 3: let =v n u  where 0 < <1v  and n  is the smallest integer greater then u . The fractional derivative 

of ( )f x  of order u  is  

( ) = [ ( )]u n vD f x D D f x                                                                                                                                       (2) 

If we wish to find the fractional derivative of ( ) =f x x   of order v , where 0  , in order to use the definition above, 

we interchange u  and v  and let =u n v  where 0 < <1u . Then we have that =1n  and =1u v , so that  
1 (1 )( ) = [ ( )]v vD f x D D f x 

 

              
1 (1 )= [ ]vD D x  

 

              

1 1( 1)
=

(( 1) 1)

vD x
v





   
 
      

              

( 1) ( 1)
=

( 1) ( 1)

vv
x

v v

 

 

   

    
 

( 1)
( ) =

( 1)

v vD f x x
v





 

  
 

3 Fractional differential equation and Laplace transform 

Here we shall apply Laplace transform to solve some fractional differential equation. This procedure ia analogous to 

solving the conventional differential equation with integer order using Laplace transform. 

 

Definition 3.1 (Laplace Transform.): Let ( )f x  be given for 0t   and suppose that ( )f x  is defined on some interval 

I . The Laplace transform of ( )f t  denoted by )}({ tfL  or equivalently ( )F s  is defined by the equation  

dttfesFtf st )(=)(=)}({
0




L
                                                                                                                       (3) 

 

Theorem 3.2: Suppose that 

(1) f  is piecewise continuous on the interval 0 t A   for any positive A ; 

(ii) | ( ) | stf t ke  where t M , where k , a , M  are real constants and , > 0k M . 
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Then, )(=)}({ sFtfL defined in (3) above exist for >s a .  

Such functions are described as piecewise continuous, and of exponential order as t  . 

)}({1 tfL is the inverse Laplace transform of ( )f t  and is unique. 

The Laplace transform is a Linear operator. that is closed under addition and scalar multiplication. The laplace 

transform of pt  where > 1p   is given by  

1010

1)(
=

1
==}{









 

 p

px

p

pstp

s

p
dxxe

s
dttetL

 
and  










 s
dtee tst 1

==}{ )(

0
L

 
3.1   Laplace transform of fractional integral 
 

The Laplace transform of ( )f t  of order v  is given as  

)(=)}({}{
)(

1
=)}({ 1 sFstft

v
tfD vvv 


LLL

                                                                                            (4) 

 Which is the Laplace transform of (1) above. 

 

3.2   Laplace transform of fractional derivative 
 

The Laplace transform of integer order operator of ( )nf  is given as  

(0)(0)(0))(=)}({ 1)(21)(   nnnnn ffsfssFstf L
 

                    
1

1 ( )

=0

= ( ) (0)
n

n n k k

k

s F s s f


   

we thus recall from (2) and noting that =u n v , then  
( )( ) = [ ( )]v n n vD f t D D f t   

Assume that )}({ tfL  exist, then  

)]}([{=)}({ )( tfDDtfD vnnv LL
 

        
0=

)(1
1

0=

)( |)]([)]}([{= t

vnkkn
n

k

vnnn tfDDstfDDs 


 L
 

          
1

( ) 1 ( )

=0

= [ ( )] (0)
n

n n v n k k n v

k

s s F s s D f


       

         
1

1 ( )

=0

= ( ) (0)
n

v n k k n v

k

s F s s D f


     

 More precisely. if we take = 2n  we obtain  

2<0(0),(0))(=)}({ )(1)(2   vfDfsDsFstfD vvvvL
 

To illustrate this we thus solve the fractional differential equation 1/2 ( ) = ( )D f t f t . 

Finding the Laplace transform of both sides we obtain  
1/2 1/2( ) (0) = ( )s F s D f F s  

It is quite easy to see that 1/2 (0)D f  is a constant say  , so that we have  

1/2 ( ) = ( )s F s F s   

1/2
( ) =F s

s




 

Finding the inverse Laplace transform we finally obtain  

)(==)( 1/2

1/2,1/2

1/2

1/2

1 tEt
s

tf 


 










L

 
 



 

 

 
International Journal of Applied Mathematical Research 509 

 

 

 

4 Main results 

Suppose a customer decides to obtain a fixed rate mortgage for p  Naira at an interest rate of %R  per year ( %r  per 

month), and wants to pay off the loan in Z  years (in %z  months). In this work we shall find out what the yearly 

payment should be so that the loan is cleared in Z  years, [8, 9]. Suppose now that the yearly payment is A  Naira and 

the balance of debt at the end of period t  years is ( )f t  where t Z . At the instance when t  and Z  coincides we 

seek the balance of debt ( )f Z  to be identically zero, i.e all debt paid off. So when P  and R  are given, we have that 

the yearly payment will be  

(1 )
:=

(1 ) 1

Z

Z

PR R
A

R



 
                                                                                                                                                   (5)

 

we shall consider monthly payments in lieu of yearly payments. Thus, the balance of debt ( )f t  is thus calculated from 

the ivp given as; 

( ) = ( )f t rf t A                                                                                          (6) 

with  

(0) = .f p  

Solving (6), we get 

( ) := [ 1],rt ZA
f t pe e

r
                                                                                    (7) 

Intuitively, (1 )rt ze r  , where we now assume that t z  for a total debt pay off so that we may write (7) as 

( ) := (1 ) [(1 ) 1]z ZA
f t p r r

r
                                                                             (8) 

If the change happens incrementally rather than continuously then differential equations have their shortcomings. 

Instead we will use difference equations which are recursively defined sequences. 

Here, we shall consider the discrete case for this model given by the governing difference equation 

1 =n nf rf A 
                                                                                        

(9) 

where 
0 =f p . Solving (9), by setting = 0,1,2, ,n nK , where =n z  in this case, we obtain the solution,  

(1 )
=

1

n
n

n

r
f r p A

r





                                                                                   (10) 

 I can be easily shown that for > 0n  the result obtained is not in any way realistic, hence the solution (10) is not a good 

approximation of (9). 

Now, for a better approximation of the discrete case as in (9) we can model the problem (6) in fractional differential 

equation as 

( ) = ( ) , 0 < <1vD f t rf t A v                                                                       (11) 

 thereby approximating (8). 

We are thus faced with solving (11) using Laplace transform. Taking the Laplace transform of both sides of (11) that is  

}{)}({=)}({ AtfrtfDv LLL   

we then have  

(1 )( ) (0) = ( )v v A
s F s D f rF s

s

    

We thus take (1 ) (0) =vD f   , where   is a constant. Then  

( ) = ( )v A
s F s rF s

s
   

( ) =
( )v

s A
F s

s s r

 


 

        

=
( )v v

A

s r s s r




 
 

Finding the inverse Laplace transform yields  
1

, , 1( ) = ( ) ( )v v v v

v v v v vf t t E rt At E rt 

                                                                 (12) 

It is easy to see that  
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1

,
0

( ) = 1lim
v v

v v
t

t E rt



 

and  

, 1
0

( ) = 0lim
v v

v v
t

t E rt


 

so that we may conclude that   to be the amount loaned, that is, the initial debt whose value is p . Then (12) becomes  

1

, , 1( ) = ( ) ( )v v v v

v v v v vf t pt E rt At E rt

                                                       (13) 

 

4.1   Numerical example 
 

Mr Mark needs to buy a new house. he takes a 5-years loan of N2.5 million at a fixed interest rate of 8% , compounded 

monthly. We are now faced with calculating Mr Mark’s remaining debt after t months and comparing the result using 

(8) and (13). 

Note that:  

= 5(12) = 60;z  

= 2500000;P  

= 0.08 /12 = 0.0067r  
60

60

2500000(0.0067)(1 0.0067)
= = 50738.9

(1 0.0067) 1
A



 
 

Now plugging all these values into (8) and (13) we have 

50738.9
( ) := 2500000(1 0.0067) [(1 0.0067) 1]

0.0067

t tf t                                                 (14) 

and  
1

, , 1( ) = 2500000 (0.0067 ) 50738.9 (0.0067 )v v v v

v v v v vf t t E t t E t

                                          (15) 

 

Table 1 (Here the ve  indicates surplus payment after the debt has been paid off completely.) 

t (months) ( )f t  
0.99 ( )f t  

0.98 ( )f t  
0.96 ( )f t  

0.94 ( )f t  
0.92 ( )f t  

0 62.500 10  Indeterminate Indeterminate Indeterminate Indeterminate Indeterminate 

48 55.832 10  55.091 10  54.472 10  53.363 10  52.408 10  51.589 10  

50 54.892 10  54.168 10  53.57 10  52.505 10  51.595 10  48.221 10  

52 53.939 10  53.233 10  52.658 10  51.639 10  47.774 10  35.208 10  

54 52.974 10  52.287 10  51.735 10  47.66 10  34.592 10   47.213 10   

56 51.996 10  51.329 10  48.028 10  41.15 10   48.748 10   51.498 10   

58 51.005 10  43.589 10  41.403 10   51.004 10   51.709 10   52.279 10   

60 3.113  46.229 10   51.094 10   51.901 10   52.55 10   53.064 10   

 

 

 
Fig. 1: Comparison graph 
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In Fig. 1, the upper-most curve is ( )f t  in (14), the next curves after it are ( )vf t  in (15), for 

= 0.99, 0.98, 0.96,0.94,0.92v  respectively. We thus deduce that as 0v   the customer would off-set the loan much 

quicker if any of the approximating (fractional) models was used. In fact, it appears that the smaller the value of v , the 

sooner Mr Mark pays off the loan.  

 

5 Conclusion 

Apparently, fractional differential equation approximates the model formulated by difference equation more efficiently 

and accurately. In the study of fractional differential equation we can observe that a lot of concepts must be known. this 

is what makes this type of differential equation more complex than the conventional integer-order differential equation 

(ordinary and partial). Researches are still on going in this direction. 
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