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Abstract 
 

It is known that given a system of simultaneous linear differential equations with constant coefficients you can apply the Laplace method 

to solve it. The Laplace transforms are found and the problem is reduced to the resolution of an algebraic system of equations of the de-

termining functions, and applying the inverse transformation the generating functions are determined, solutions of the given system. This 

implies the need to know the analytical form of the inverse transform of the function. In this case the initial conditions consist in knowing 

the value that the generating function and its derivatives takes at zero. A generalization of this method is proposed in this work, which is 

to define a more general integral operator than the Laplace transform, the initial conditions consist of Cauchy conditions in the contour. 

And finally, we find a numerical approximation of the inverse transformation of the generating functions, using the techniques of inverse 

moment problems, without being necessary to know the analytical form of the inverse transform of the function. 
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1. Introduction 

Given a system of ordinary linear differential equations with con-

stant coefficients of the form 

 

y1
(n)(x) = f1(x, y1, y2, … , yk, y1

(1)
, … , yk

(1)
, … , y1

(n−1)
, … , yk

(n−1)
)

⋮

yk
(n)(x) = fk(x, y1, y2, … , yk, y1

(1)
, … , yk

(1)
, … , y1

(n−1)
, … , yk

(n−1)
)

             (1) 

 

Where yi
(n)

(x) indicates the derivative of order n of yi(x) 

i = 1, … , k and  

 

fi (x, y1, y2, … , yk, y1
(1)

, … , yk
(1)

, … , y1
(n−1)

, … , yk
(n−1)

)  

 

i = 1, … , k are linear functions of x,  y1(x),  y2(x), … , yk(x), 

y1
(1)

(x), … , yk
(1)

(x), … , y1
(n−1)

(x), … , yk
(n−1)

(x) with constant coef-

ficients, we want to find the functions y1(x), y2(x), … , yk(x) 

which are solution of the given system. 

There are a variety of methods to solve this problem, exposed in 

detail in the literature [1 - 4]. Some consist of numerical approxi-

mations, others give the exact solution. 

If the domain of the unknowns functions is (0, ∞) and are known  

 

y1(0), y1
(1)(0), … … … , y1

(n−1)
(0)

⋮

yk(0), yk
(1)(0), … … … , yk

(n−1)
(0)

  

 

a known method [3] is to apply the Laplace transform to each 

system equation (1). Remember that the Laplace transform is de-

fined as 

 

 L(y) = ∫ y(x)e−αxdx
∞

0
                                                                (2) 

 

And integrating (2) in parts again and again, we come to the well 

known property 

 

L (y(n)(x)) =  

 

= αnL(y(x)) − (αn−1y(0) + ⋯ + αy(n−2)(0) + y(n−1)(0))  

 

In this way, applying the Laplace transform to (1) a system of 

algebraic equations is determined 

 
a11(α)L(y1) + a12(α)L(y2) + … +a1k(α)L(yk) = c1(α)

⋮ … ⋮
ak1(α)L(y1) + ak2(α)L(y2) + … +akk(α)L(yk) = ck(α)

  

 

Where the unknowns are L(y1), L(y2), … , L(yk). 
When solving this system, the Laplace transforms are expressed in 

terms α 

 

L(yi(x)) = ∫ yi
∞

0
(x)e−αxdx = μi(α) i = 1, … , k  

 

The problem lies in finding the anti-transformation of μi(α) i =
1, … , k 

In this work we propose to find a numerical approximation of the 

antitransformation of μi(α) i = 1, … , k  using the techniques of 
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inverse moments problem. Moreover, the Laplace transform is 

generalized into a more general operator defined over an interval 

(a, b), with Cauchy conditions in a and b. The objective of this 

work is to show that we can solve the problem using the tech-

niques of inverse moments problem. We focus the study on the 

numerical approximation. 

2. Inverse moments problem 

The problem of generalized moments [5], [6] is to find a function 

f(x) about a domain Ω ⊂ Rd that satisfies the sequence of equa-

tions 

 

 μi = ∫ gi(x)f(x)dx
Ω

 iϵN                                                             (3) 

 

Where N is the set of the natural numbers, (gi) is a given se-

quence of functions in L2(Ω) linearly independent known and the 

succession of real numbers {μi}iϵN are known data. 

The Hausdorff moments problem [6], [7]) is a classic example of a 

moments problem, we must find a function f(x) in (a, b) such that 

 

μi = ∫ xib

a
f(x)dx i ϵ N. 

 

In this case gi(x) = xi with i in N.  

If the integration interval is (0, ∞) we have the moments problem 

of Stieltjes; if the integration interval is (−∞, ∞) we have the 

moments problem of Hamburger [6, 7]. 

The moments problem is a badly conditioned problem in the sense 

that there may be no solution and if there is solution, there are not 

continuous dependence on the given data [5, 6, 7]. There are sev-

eral methods to build regularized solutions. One of them is the 

truncated expansion method [5].  

This method involves solving (3) considering the finite moments 

problem 

 

 μi = ∫ gi(x)f(x)dx i = 1, 2, … , n,
Ω

                                             (4) 

 

Where the approximate solution of f(x) is pn(x) = ∑ λi
n
i=1 φi(x) 

and the functions φi(x) result of orthonormalize g1, g2, … , gn and 

λi are coefficients that depend on the data μi. In the subspace gen-

erated by g1, g2 , … , gn the solution is stable. If n ∈ N is chosen in 

an appropriate way then the solution of (4) is close to solving the 

original problem (3). 

In the case where the data μ1, μ2, … , μn are inaccurate, conver-

gence theorems and error estimates must be applied for the regu-

larized solution (pág. 19 a 30 de [5]).  

Another method is the Tikhonov method (pág. 18 de [5]). In this 

method you write (3) in the way Af = μ with 

 

Af = (∫ g1f, ∫ g2f, … 
ΩΩ

), μ = (μ1, μ2, … ) 

 

And we must find f ϵ L2(Ω) that satisfies the variational equation 

 

β(f, v)L2(Ω) + (Af, Av)l2 = (f, Av)l2  , ∀v ∈  L2(Ω),   

 

where (. , . )L2(Ω) and (. , . )l2  are the usual internal products of 

L2(Ω) and l2 respectively and β > 0. 

3. Systems of lineal ordinary differential  

equations 

Given a system of ordinary linear differential equations with con-

stant coefficients of the form 

 

y1
(n)(x) = f1(x, y1, y2, … , yk, y1

(1)
, … , yk

(1)
, … , y1

(n−1)
, … , yk

(n−1)
)

⋮

yk
(n)(x) = fk(x, y1, y2, … , yk, y1

(1)
, … , yk

(1)
, … , y1

(n−1)
, … , yk

(n−1)
)

             (5) 

 

Where yi
(n)

(x)  indicates the derivative of order n of yi(x) i =
1, … , k and 

 

fi (x, y1, y2, … , yk, y1
(1)

, … , yk
(1)

, … , y1
(n−1)

, … , yk
(n−1)

)   

 

i = 1, … , k  

 

Are linear functions of  
 

 x,  y1(x),  y2(x), … , yk(x),  
 

y1
(1)

(x), … , yk
(1)

(x), … , y1
(n−1)

(x), … , yk
(n−1)

(x)  

 

With constant coefficients, we want to find numerical approxima-

tions for functions y1(x), y2(x), … , yk(x) which are solution of the 

given system. We assume Cauchy conditions in an interval (a , b) 

 

y1(a), y1
(1)(a), … … … , y1

(n−1)
(a)

⋮

yk(a), yk
(1)(a), … … … , yk

(n−1)
(a)

  

 

y1(b), y1
(1)(b), … … … , y1

(n−1)
(b)

⋮

yk(b), yk
(1)(b), … … … , yk

(n−1)
(b)

                                                 (6) 

 

We also assume that each yi(x) ∈ L2(a , b). 

We define the operator 

 

 L∗(y(x)) = ∫ y(x)e−αxdx
b

a
                                                          (7) 

 

Integrating (7) by parts you get to the relationship 

 

L∗ (y(1)(x)) = y(b)e−αb −  y(a)e−αa + αL∗(y(x))  

 

Integrating by parts (7) repeatedly we come to 

 

L∗ (y(n)(x)) =  

 

= e−αb[y(n−1)(b) + αy(n−2)(b) + ⋯ + αn−1y(b)] −  

 

−e−αa[y(n−1)(a) + αy(n−2)(a) + ⋯ + αn−1y(a)] + +αnL∗(y(x))         (8) 

 

Note that if in (7) b → ∞, and a = 0 then it becomes the property 

of the Laplace transform named above. 

We apply L∗ to each system equation (5) and taking into account 

(8) we arrive at a system of algebraic equations  

 
a11(α)L∗(y1) + a12(α)L∗(y2) + … +a1k(α)L∗(yk) = c1(α)

⋮ … ⋮
ak1(α)L∗(y1) + ak2(α)L∗(y2) + … +akk(α)L∗(yk) = ck(α)

            (9) 

 

Where the unknowns are L∗(y1), L∗(y2), … , L∗(yk). 
When solving the system (9), the unknowns L∗(yi) i = 1, … , k are 

expressed in terms of α , that is to say L∗(yi) = μi(α) i = 1, … , k. 

We write A to the matrix of the coefficients 

 

A = (
a11(α) a12(α) … a1k(α)

⋮ ⋮ ⋮
ak1(α) ak2(α) … +akk(α)

)  

 

If Det(A) ≠ 0  then the system (9) have unique solution. 

We change the variable z = e−x and we get 
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L∗(yi) =  

 

= ∫ yi(x)e−αxdx
b

a
= ∫ yi(−ln (z)

e−a

e−b )zα−1dz = ∫ yi
∗(z

b1

a1
)zα−1dz  

 

Where 𝑎1 = 𝑒−𝑏  ; 𝑏1 = 𝑒−𝑎 and 𝑦𝑖
∗(𝑧) = 𝑦𝑖(− 𝑙𝑛(𝑧)). 

Then we can interpret 

 

 ∫ 𝑦𝑖
∗(𝑧

𝑏1

𝑎1
)𝑧𝛼−1𝑑𝑧 = 𝜇𝑖(𝛼)                                                         (10) 

 

As a inverse moments problem giving 𝛼  values such that 

𝐷𝑒𝑡(𝐴) ≠ 0. 

The moments problem is solved considering the corresponding 

moments problem finite, that is, assigning to 𝛼 a finite number of 

values, 𝛼 = 𝑎𝑙𝑓𝑎, … , 𝑛 , with alfa chosen conveniently so that 

𝐷𝑒𝑡(𝐴) ≠ 0. 

This is repeated in each 𝐿∗(𝑦𝑖) = 𝜇𝑖(𝛼) 𝑖 = 1, … , 𝑘. To apply the 

truncated expansion method, write (10) as  

 

∫ 𝑦𝑖
∗(𝑧

𝑏1

𝑎1
)𝑧𝛼𝑙𝑓𝑎−1 𝑧𝛼−𝑎𝑙𝑓𝑎𝑑𝑧 = 𝜇𝑖(𝛼)   

 

We get an approximate solution  𝑝𝑛𝑖(𝑧)  for each 𝑦𝑖
∗(𝑧)𝑧𝛼𝑙𝑓𝑎−1 . 

Then the approximate solution for 𝑦𝑖(𝑥)  be 𝑦𝑖(𝑥) ≈
 (𝑒𝑥)𝑎𝑙𝑓𝑎−1𝑝𝑛𝑖(𝑒−𝑥). 

In the case of being (𝑎, 𝑏) an unbounded interval, for example 
(𝑎, ∞), it is convenient to proceed in another way, without chang-

ing the variable because in certain cases the norm 𝐿2 of the differ-

ence 𝑦𝑖(𝑥) − (𝑒𝑥)𝑎𝑙𝑓𝑎−1𝑝𝑛𝑖(𝑒−𝑥) it would be divergent. 

This second procedure [8] consists of taking a base {𝜓𝑟(𝛼)}𝑟  to 

𝐿2(𝑎, ∞) and then  

 

∫ 𝑦𝑖(𝑥)𝑒−𝛼𝑥𝑑𝑥
∞

𝑎
= µ𝑖(𝛼)  

 

Can be transformed into a generalized problem of moments by 

multiplying both members of equality by 𝜓𝑟(𝛼) and integrate with 

respect to α. In this way we come to 

 

∫ 𝑦𝑖
∞

𝑎
(𝑥)𝑔𝑟(𝑥)𝑑𝑥 = 𝜇𝑖𝑟  𝑟 = 1,2, …   

 

Where 

 

𝑔𝑟(𝑥) = ∫ 𝑒−𝛼𝑥𝜓𝑟(𝛼)𝑑𝛼
∞

𝑎
  

 

And the moments 𝜇𝑖𝑟 are  

 

𝜇𝑖𝑟 = ∫ 𝜇𝑖
∞

𝑎
(𝛼)𝜓𝑟(𝛼)𝑑𝛼 . 

 

This procedure can also be applied if (a, b) is a finite interval. 

4. Solution of inverse moments problem 

To solve (10) numerically as a moments problem, we apply the 

truncated expansion method detailed in [7], and generalized in [8], 

in order to find an approximation 𝑝𝑛𝑖(𝑧)
 
from 𝑦𝑖

∗(𝑧)𝑧𝛼𝑙𝑓𝑎−1for the 

corresponding finite problem with 𝛼 = 𝑎𝑙𝑓𝑎, … , 𝑛; where n is the 

number of moments 𝜇𝑖(𝛼) that are considered. 

Let 𝜙𝛼(𝑧) 𝛼 = 𝑎𝑙𝑓𝑎, … , 𝑛 the base obtained by orthonormalizing 

𝑧𝛼−𝑎𝑙𝑓𝑎;  𝛼 = 𝑎𝑙𝑓𝑎, … , 𝑛 and adding to the resulting set the neces-

sary functions until reaching an orthonormal basis. 

Or, written in another way, 𝑧𝑟;  𝑟 = 0, … , 𝑛∗ 𝑛∗ = 𝑛 − 𝑎𝑙𝑓𝑎 + 1 If 

the interval is unbounded, the functions 𝑔𝑟(𝑥) previously defined 

are orthonormalized. 

The function 𝑦𝑖
∗(𝑧) is approximated by the truncated expansion 

method: 

 

*, ,....,1,0         ;          )()(
*

0
0

nr
n

r

r

j

jrjrrrni
Czzp  





 

And 𝐶𝑟𝑗 are the coefficients of a matrix 𝐶 that verify 

 

,1    ;   1          )(

1

.
1

)(

2

)(|
)1( rjnrz

r

r

jk
Ckj

zk

zk
r

z

Crj 





























  

 

The terms of the diagonal are  

 

*. ,...,1 ,0  )(
1
        nrzrCrr 


   

 

The following theorem gives a measure of the accuracy of the 

approximation. 

Theorem: Let {𝜇𝑟}𝑟=0
𝑛∗

 be set of real numbers and suppose that 

𝑦(𝑧) in 𝐿2(𝑎1, 𝑏1) verify for some 𝑛∗, 𝜀 𝑦 𝑀  (two positive num-

bers): 

 

∑ |∫ 𝑧𝑟𝑏1

𝑎1
𝑦(𝑧)𝑑𝑧 − 𝜇𝑟|

2
≤ 𝜀2 𝑛∗

𝑟=0   

 

And 

 

∫ |𝑦(1)(𝑧)|
2

𝑑𝑧
𝑏1

𝑎1
≤ 𝑀2                                                               (11) 

 

Then 

 

 ∫ |𝑦(𝑧) − 𝑝𝑛∗(𝑧)|2𝑏1

𝑎1
𝑑𝑧 ≤ ‖𝐶𝑇𝐶‖𝜀2 +

(𝑏1−𝑎1)2

4(𝑛∗+1)2 𝑀2                 (12) 

 

If the interval is (𝑎, ∞) , then the condition (11) change by 

 

∫ 𝑧𝑒𝑧∞

𝑎
(𝑦(1)(𝑧))

2
𝑑𝑧 ≤ 𝑀2  

 

And the conclusion (12) change by 

 

∫ |𝑦(𝑧) − 𝑝𝑛∗(𝑧)|2∞

𝑎
𝑑𝑧 ≤ ‖𝐶𝑇𝐶‖𝜀2 +

𝑀2

(𝑛∗+1)2
   

 

In addition, it must be fulfilled that 

 

  𝑧𝑟𝑦(𝑧) → 0 𝑖𝑓 𝑧 → ∞ 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑟 ∈ 𝑁 .▪ 

 

The proof of this Theorem is detailed in [8] for the case of bound-

ed interval, and in [9] for the interval case (𝑎1, ∞). 

5. Numerical examples 

We illustrate the above with simple examples. 

5.1. Example 1 

We considered the system of equations 

 

{
𝑦(2)(𝑥) + 2𝑦(𝑥) + 4𝑧(𝑥) = 𝑒𝑥

𝑧(2)(𝑥) − 𝑦(𝑠) − 3𝑧(𝑥) = −𝑥
  

 

In the interval (1,3) under the conditions 

 

{
𝑦(1) = −2 + 𝑒 + 𝑒−√2 + 𝑒√2 + 𝑐𝑜𝑠(1) + 𝑠𝑒𝑛(1)

𝑦(3) = −6 + 𝑒3 + 𝑒−3√2 + 𝑒3√2 + 𝑐𝑜𝑠(3) + 𝑠𝑒𝑛(3)
           (13) 

 

{
𝑧(1) = 1 −

𝑒

2
− 𝑒−√2 − 𝑒√2 −

𝑐𝑜𝑠(1)

4
−

𝑠𝑒𝑛(1)

4

𝑧(3) = 3 +
𝑒3

2
− 𝑒−3√2 − 𝑒3√2 −

𝑐𝑜𝑠(3)

4
−

𝑠𝑒𝑛(3)

4

                     (14) 

 

{
𝑦(1)(1) = −2 + 𝑒 − √2𝑒−√2 + √2𝑒√2 + 𝑐𝑜𝑠(1) − 𝑠𝑒𝑛(1)

𝑦(1)(3) = −2 + 𝑒−3 − √2𝑒−3√2 + √2𝑒3√2 + 𝑐𝑜𝑠(3) − 𝑠𝑒𝑛(3)
        (15) 
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{
𝑧(1)(1) = 1 −

𝑒

2
+ √2𝑒−√2 − √2𝑒√2 −

𝑐𝑜𝑠(1)

4
+

𝑠𝑒𝑛(1)

4

𝑧(1)(3) = 1 −
𝑒3

2
+ √2𝑒−3√2 − √2𝑒3√2 −

𝑐𝑜𝑠(3)

4
+

𝑠𝑒𝑛(3)

4

       (16) 

 

The exact solution of the system is 

 

{
𝑦(𝑥) = 𝑒𝑥√2 + 𝑒−𝑥√2 + 𝑠𝑒𝑛(𝑥) + 𝑐𝑜𝑠(𝑥) + 𝑒𝑥 − 2𝑥

𝑧(𝑥) = −𝑒𝑥√2 − 𝑒−𝑥√2 −
1

4
𝑠𝑒𝑛(𝑥) −

1

4
𝑐𝑜𝑠(𝑥) −

𝑒𝑥

2
+ 𝑥

  

 

We apply the operator 𝐿∗ to both system equations and you get to 

 

 {
(𝛼2 + 2)𝐿∗(𝑦) + 4𝐿∗(𝑧) = 𝐿∗(𝑒𝑥) − 𝑐𝑦(𝛼)

−𝐿∗(𝑦) + (𝛼2 − 3)𝐿∗(𝑧) = 𝐿∗(−𝑥) − 𝑐𝑧(𝛼)
                          (17) 

 

Where 𝑐𝑦(𝛼) and 𝑐𝑧(𝛼) are expressions depending on the condi-

tions (13), (14), (15) y (16) 

The determinant of the matrix of system coefficients (17) is 

 

|𝛼
2 + 2 4
−1 𝛼2 − 3

| = 𝛼4 − 𝛼2 − 2  

 

And it is null for = −𝑖 , 𝛼 = 𝑖 , 𝛼 = √2 , 𝛼 = −√2 . 

We solve the system with Mathematica software and get expres-

sions for 𝐿∗(𝑦) 𝑦 𝐿∗(𝑧) as a function of α. 

We evaluate these expressions giving values to α since 𝑎𝑙𝑓𝑎 = 2 

until 𝑛 = 8, that is, we take 7 "moments" 𝜇(𝛼). 

The value for alfa it is set equal to 2 in order to avoid discontinui-

ties. 

Applying the truncated expansion method we obtain an approxi-

mation for 𝑦(𝑥) given by  

 

𝑦(𝑥) ≈  (𝑒𝑥)𝑎𝑙𝑓𝑎−1𝑝𝑦𝑛(𝑒−𝑥)  
 

Whose accuracy is 

 

∫ |𝑦(𝑥) −  (𝑒𝑥)𝑎𝑙𝑓𝑎−1𝑝𝑦𝑛(𝑒−𝑥)|
23

1
𝑑𝑥 = 0.0557505  

 

Analogously, for 𝑧(𝑥) we obtain an accuracy of 

 

∫ |𝑧(𝑥) − (𝑒𝑥)𝑎𝑙𝑓𝑎−1𝑝𝑧𝑛(𝑒−𝑥)|
23

1
𝑑𝑥 = 0.0543516  

 

In the Fig. 1 and in the Fig. 2 we observe the graphs of 𝑦(𝑥) and 

𝑧(𝑥) with their respective overlapping approximations. 

 

 
Fig. 1: Y(X) And Its Approach. 

 

 
Fig. 2: Z(X) and Its Approach. 

5.2. Example 2 

We considered the system of equations 

 

{

𝑦(1)(𝑥) = 3𝑧(𝑥) − 4𝑢(𝑥)

𝑧(1)(𝑥) = −𝑢(𝑥)

𝑢(1)(𝑥) = 𝑧(𝑥) − 2𝑦(𝑥)

  

 

In the interval (0,1) under the conditions 

 

{

𝑦(0) = 3 ;  𝑦(1) = 𝑒3 +
1

𝑒2 +
1

𝑒

𝑧(0) = 1.6 ;  𝑧(1) = 4.43912

𝑢(0) = 1.2 ;  𝑢(1) = −11.5752

                                              (18) 

 

The exact solution of the system is 

 

{

𝑦(𝑥) = 𝑒−𝑥 + 𝑒−2𝑥 + 𝑒3𝑥

𝑧(𝑥) = 𝑒−𝑥 + 0.4𝑒−2𝑥 + 0.2𝑒3𝑥

𝑢(𝑥) = 𝑒−𝑥 + 0.8𝑒−2𝑥 − 0.6𝑒3𝑥

  

 

We apply the operator 𝐿∗ to both system equations and you get to 

 

{

𝛼𝐿∗(𝑦) − 3𝐿∗(𝑧) + 4𝐿∗(𝑢) = −𝑐𝑦(𝛼)

 𝛼𝐿∗(𝑧) +  𝐿∗(𝑢) − 𝑐𝑧(𝛼)

2𝐿∗(𝑦) − 𝐿∗(𝑧) + 𝛼𝐿∗(𝑢) = −𝑐𝑢(𝛼)

                                    (19) 

 

Where 𝑐𝑦(𝛼), 𝑐𝑧(𝛼) and 𝑐𝑢(𝛼) are expressions depending on the 

conditions (18). 

The determinant of the matrix of system coefficients (19) is  

 

|
𝛼 −3 4
0 𝛼 1
2 −1 𝛼

| = 𝛼3 − 7𝛼 − 6  

 

And it is null for 𝛼 = −2 ;  𝛼 = −1 ;  𝛼 = 3. 

We solve the system with Mathematica software and get expres-

sions for 𝐿∗(𝑦) , 𝐿∗(𝑧) 𝑦 𝐿∗(𝑢) as a function of α. 

We apply the first procedure to solve the system by changing the 

variable, since when trying to apply the second procedure we find 

a discontinuity when orthonormalizing the base. 

We evaluate these expressions giving values to α since 𝑎𝑙𝑓𝑎 = 4 

until 𝑛 = 8, that is, we take 5 "moments" 𝜇(𝛼). 

The value for alfa it is set equal to 4 in order to avoid discontinui-

ties and for the solution to be unique. 

Applying the truncated expansion method we obtain an approxi-

mation for 𝑦(𝑥) given by  

 

 (𝑒𝑥)𝑎𝑙𝑓𝑎−1𝑝𝑦𝑛(𝑒−𝑥)  
 

Whose accuracy is 

 

∫ |𝑦(𝑥) −  (𝑒𝑥)𝑎𝑙𝑓𝑎−1𝑝𝑦𝑛(𝑒−𝑥)|
21

0
𝑑𝑥 =  0.00135636  
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In the Fig. 3 we observe the graphs of y(x) with their overlapping 

approximation. 

 

 
Fig. 3: Y(X) and its Approach. 

 

Analogously, for 𝑧(𝑥) we obtain an accuracy of 

 

∫ |𝑧(𝑥) − (𝑒𝑥)𝑎𝑙𝑓𝑎−1𝑝𝑧𝑛(𝑒−𝑥)|
21

0
𝑑𝑥 =  0.000542543  

 

In the Fig. 4 we observe the graphs of 𝑧(𝑥) with their overlapping 

approximation. 

Finally we get the approximation for 𝑢(𝑥). In this case we have an 

accuracy of 

 

∫ |𝑢(𝑥) − (𝑒𝑥)𝑎𝑙𝑓𝑎−1𝑝𝑢𝑛(𝑒−𝑥)|
21

0
𝑑𝑥 =  0.00108509  

 

In the Fig. 5 we observe the graphs of 𝑢(𝑥) with their overlapping 

approximation. 

 

 
Fig. 4: Z(X) and its Approach. 

 

 
Fig. 5: U(X) and its Approach. 

5.3. Example 3 

We considered the system of equations 

 

{
𝑦(1)(𝑥) + 3𝑦(𝑥) + 𝑧(𝑥) = 0

𝑧(1)(𝑥) − 𝑦(𝑥) + 𝑧(𝑥) = 0
                                                   (20) 

 

In the interval (0, ∞) under the conditions 

𝑦(0) = 1 ;  𝑧(0) = −2  

 

The exact solution of the system is 

 

{
𝑦(𝑥) = (1 + 𝑥)𝑒−2𝑥

𝑧(𝑥) = −(2 + 𝑥)𝑒−2𝑥  

 

We apply the Laplace transform to both system equations (20) and 

we come to 

 

 {
(𝛼 + 3)𝐿(𝑦) + 𝐿(𝑧) = 1

−𝐿(𝑦) + (𝛼 + 1)𝐿(𝑧) = −2
                                                   (21) 

 

The determinant of the matrix of system coefficients (21) is  

 

|
3 + 𝛼 1

−1 1 + 𝑡
| =  𝛼2 + 4𝛼 + 4  

 

In addition, it is null for 𝛼 = −2 

We solve the system with Mathematica software and get expres-

sions for 𝐿(𝑦) 𝑦 𝐿(𝑧) as a function of α: 

 

 {
𝐿(𝑦) =

3+𝛼

(2+𝛼)2

𝐿(𝑧) =
−5−2𝛼

(2+𝛼)2

                                                                          (22) 

 

We consider the basis {𝜓𝑟(𝛼)}𝑟 = {𝛼𝑟𝑒−𝛼}𝛼  of 𝐿2(0, ∞) . We 

apply the second procedure for 𝑛 = 4 moments. 

With the truncated expansion method, we obtain an approximation 

for 𝑦(𝑥) whose accuracy is  

 

∫ |𝑦(𝑥) − 𝑝𝑦𝑛(𝑥)|2∞

0
𝑑𝑥 =  0.0203557  

 

Analogously, for 𝑧(𝑥) we obtain an accuracy of 

 

∫ |𝑧(𝑥) − 𝑝𝑧𝑛(𝑥)|2∞

0
𝑑𝑥 = 0.02963743. 

 

In the Fig. 6 we observe the graphs of 𝑦(𝑥) with their overlapping 

approximation. 

Analogously in the Fig. 7 for 𝑧(𝑥)  and its approach. 

 

 
Fig. 6: Y(X) and its Approach. 

 

 
Fig. 7: Z(X) and its Approach. 
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6. Conclusion 

Given a system of ordinary linear differential equations with con-

stant coefficients of the form  

 

𝑦1
(𝑛)(𝑥) = 𝑓1 (𝑥, 𝑦1, 𝑦2, … , 𝑦𝑘 , 𝑦1

(1)
, … , 𝑦𝑘

(1)
, … , 𝑦1

(𝑛−1)
, … , 𝑦𝑘

(𝑛−1)
)

⋮

𝑦𝑘
(𝑛)(𝑥) = 𝑓𝑘 (𝑥, 𝑦1, 𝑦2, … , 𝑦𝑘 , 𝑦1

(1)
, … , 𝑦𝑘

(1)
, … , 𝑦1

(𝑛−1)
, … , 𝑦𝑘

(𝑛−1)
)

  

 

Where 

𝑦𝑖
(𝑛)(𝑥)  indicates the derivative of order n of 𝑦𝑖(𝑥) with 𝑖 =

1, … , 𝑘, and 

 

 𝑓𝑖 (𝑥, 𝑦1, 𝑦2, … , 𝑦𝑘 , 𝑦1
(1)

, … , 𝑦𝑘
(1)

, … , 𝑦1
(𝑛−1)

, … , 𝑦𝑘
(𝑛−1)

)   

 

𝑖 = 1, … , 𝑘 Are linear functions of? 

 

  𝑥,  y1(x),  y2(x), … , yk(x) y1
(1)

(x), … , yk
(1)

(x), … , y1
(n−1)

(x), … , yk
(n−1)

(x)  

 

With constant coefficients, can be found in approximate form, the 

functions y1(x), y2(x), … , yk(x), which are solution of the given 

system, under Cauchy conditions in an interval (𝑎, 𝑏), considering 

the operator 

 

 L∗(y(x)) = ∫ y(x)e−αxdx
b

a

 

 

Which coincides with the Laplace Transform if a = 0 andb = ∞. 

We also assume that eachyi(x) ∈ L2(a , b). 

When applying said operator on each equation of the system, a 

system of algebraic equations is obtained where the unknowns are 

L∗(y1), L∗(y2), … , L∗(yk) and the coefficients are given by expres-

sions depending onα. 

Therefore, when solving the system of algebraic equations the 

unknowns are equated to expressions in function of α 

 

∫ yi(x)e−αxdx
b

a

= μi(α) 

 

Making change of variable and discretizing the problem, giving to 

α appropriate value, it can be interpreted as a inverse moments 

problem and solved using the techniques of truncated expansion. 

In that, way we obtain a numerical approximation for eachyi(x). 

In the case of having an interval of the form(a , ∞), we multiply 

both members of the previous equality by a base of L2(a , ∞) and 

we integrate. In this way, we obtain equality 

 

 ∫ yi
∞

a
(x)gr(x)dx = μir r = 1,2, …   

 

Where 

 

gr(x) = ∫ e−αxψr(α)dα
∞

a

 

 

In addition, the moments μr are  

 

μir = ∫ μi
∞

a
(α)ψr(α)dα . 

 

This procedure can also be applied if (a, b) is a finite interval. 

Again applying the truncated expansion method to the correspond-

ing moments problem, we find a numerical approximation for 

each yi(x). 
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