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Abstract

Estimating option sensitivities is another quite important task in

financial mathematics. In this paper, we improve the estimate of ∆ value

for a vanilla European option by a robust stochastic algorithm based

on quasi Monte Carlo methods and the antithetic variance reduction

technique. In comparison to existing the naive Monte Carlo methods,

we can improve accurate significantly by implementing our proposed

algorithm.
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1 Introduction

One of the important things that a quant must do besides valuing options and
knowing how to hedge them is to calculate the sensitivities of the values with
respect to inputs. The main question is to judge and hedge the risks that one
has incurred by entering the option. Note that we can compute the derivative
of the price of a portfolio with respect to any of underlying parameters, and
as with the match the derivative. The derivatives with respect to the various
quantities are denoted by Greek letters. The derivatives are collectivity known
as the Greeks. The Delta (∆) is the most fundamental Greek which is increased
from zero to one as a function of spot. In fact, at expiry time, a call option has
payoff (S−K)+. For S < K the payoff has Delta equal to zero and for S > K,
it has delta equal to one [1, 2, 4]. If V (0, S0) denotes the fair price at time 0 of
a European call option with strike price K, the risk-neutral interest rate r, the
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stock’s volatility σ and expiry date T , then the Black-Scholes option valuation
formula is:
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The standard option price sensitivities are the partial derivatives of V =
V (0, S0) with respect to these variables. Some of these partial derivatives are
given special names and referred to:

∆ =
∂V

∂S0

(delta), Γ =
∂2V

∂2S0

(gamma)

Θ =
∂V

∂T
(theta), ρ =

∂V

∂r
(rho)

υ =
∂V

∂σ
(vega).

We note that ∆ and Γ measures the impact of price changes, Θ that of
the decreasing time to maturity. υ and ρ are measures for consequence of
possible errors in the input parameters volatility and interest rate. In local or
stochastic volatility models or even more advanced models, there is only the
chance for obtaining the Greeks numerically. The most popular Greeks are
course those are that are derived from Black-Scholes formula. In this paper,
we will only focus on the computation of ∆ for European call option and we
propose a robust stochastic (RS) algorithm for estimating of ∆.

2 The Computation of ∆

We have a function V (0, S0), which in our case is the price of an option de-
pending on the initial underlying asset price S0, and the sensitivity we want
to estimate is:

∆ =
∂V

∂S0

= lim
δS0→0

V (S0 + δS0) − V (S0)

δS0

. (2)

Since we are estimating the option price by quasi Monte Carlo simulation, the
first approach coming to mind is to take sample paths and estimate ∆ by the
sample mean of finite differences between discounted payoffs. However, this
approach is too naive and we will propose an efficient algorithm in the next
section.
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3 A Robust Stochastic Algorithm

The slow probabilistic convergence of Monte Carlo estimators motivates for
spending more effort in variance reduction techniques. Antithetic variates,
control variates and importance sampling are approaches for increasing effi-
ciency. Another way to accelerate convergence is to work with quasi random
numbers (low discrepancy) rather than with pseudo random numbers. The
key of robust stochastic (RS) algorithm is to use of Halton sequence [3] and
Box-Muller method [5, 6] in antithetic variance reduction technique. Halton
sequences use the representation of integers in another base to produce num-
bers between 0 and 1. For each dimension another base is used.

Theorem:

Consider the stochastic ordinary differential equation, dSt = rStdt+σtStdWt

with a change of sign in the term containing the Brownian motion. Then the
following stochastic process, Υt yields a variance reduction.

Υt =
e−rt

2
[(St − K)+ + (S−

t
− K)+] (3)

Proof. We have
dSt = rStdt + σtStdWt, (4)

dS−
t

= rS−
t
dt − σtS

−
t
dWt, (5)

Then

E[Υt] = E[e−rt(St − K)+], C0 = E[ΥT ]. (6)

Because St and S−
t have the same law, we can write

var[Υt] =
e−2rt

4
{var[(St − K)+] + var[(S−

t − K)+]}+ (7)

+
e−2rt

2
E[((St − k)+ − E(St − K)+)((S−

t − K)+ − E(S−
t − K))] ≤ 1

2
var[e−rt(St − K)+].

Since the function f(x) = (S −K)+ is monotone and two variables St and S−
t

are negatively correlated. Therefore, we have obtained a new process with the
same expectation and with a smaller variance.
Now, based on the above theorem, we employ the Halton sequences and Box-
Muller method for construction the following algorithm.

The RS algorithm

(1) H1 = GetHalton(ceil(NPoints/2),Base 1)
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(2) H2 = GetHalton(ceil(NPoints/2),Base 2)
(3) VLog = sqrt(-2*log(H1))
(4) Norml = VLog * cos(2*pi*H2);
(5) Norm2 = VLog * sin(2*pi*H2)
(6) Norm = [Norm l ; Norm 2]
(7) Payoff l = max(0, S0*exp(nuT+siT*Norm)-K)
(8) Payoff 2 = max(0, (S0+dS)*exp(nuT+siT*Norm)-K)
(9) Payoff 3 = max(0, S0*exp(nuT+siT*-Norm)-K)
(10) Pay 1=(Payoff l+Payoff 3)/2
(11) Payoff 4 = max(0,(S0+dS)*exp(nuT+siT*-Norm)-K)
(12) Pay 2=(Payoff 2+Payoff 4)/2
(13) AVMCP= exp(-r*T)*(Pay1-Pay2)
(14) SampleDiff = exp(-r*T)*(Pay2-Pay1)/dS

4 Numerical Experiments

In order to illustrate the performance of our proposed algorithm, we compute ∆
under European call option with S0 = 80, K = 100, r = 0.1, T = 1, σ = 0.3 and
dS = 0.001. Table 1 and Figures 1 and 2 show test results of a comprehensive
study on European call option. As we can see in Figure 1 and 2, we are able
to obtain a significant improvement by using RS algorithm in comparison to
naive stochastic method (NS).
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Figure 1: Comparison of standard deviation between RS and NS algorithms

Figure 2: Comparison of the volatility between RS and NS algorithms

Figure 3: Simulation of normal random numbers with Box-Muller method
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Table 1: The values of ∆ and σ with the RS and NS algorithms

Number of Replications NS-∆ NS-σ RS-∆ RS-σ

100 0.5495 0.2521 0.5597 0.0862

1000 0.5730 0.0778 0.5344 0.0288

10000 0.5314 0.0245 0.5312 0.0092

100000 0.5309 0.0077 0.5308 0.0029

1000000 0.5308 0.0024 0.5308 0.1448× 10−4

5 Conclusion

A new algorithm for improving the estimate of ∆ was derived and tested. The
method was based on antithetic variance reduction procedure, Halton points
and the Box-Muller methods.
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