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Abstract

This paper studies the exact solution of the Biswas-Milovic equation with Kerr law nonlinearity by the aid of ado-
mian decomposition method. Biswas-Milovic equation is a generalized version of the familiar nonlinear Schrodinger’s
equation describing the propagation of solitons through optical fibers for trans-continental and trans-oceanic dis-
tances.
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1 Introduction

Recent years have witnessed an explosion of research activities in the field of soliton propagation in nonlinear
optical media. These activities are motivated by the fact that optical solitons, both temporal and spatial variety,
do have practical relevance in the latest communication technology based on generation and transportation of
localized optical pulses or solitons. The dynamics of the propagation of solitons is studied by the aid of nonlinear
Schrodinger’s equation. An improved model to describe this dynamics is Biswas-Milovic model first appeared in
2010 [1] with generalization parameter, which dictate the factor of departure from perfection. Thus Biswas-Milovic
equation is of special interest in the fiber optics community.

The study of the integrability aspects of nonlinear evolution equations has a lot of advances in the past couple of
decades. There are various mathematical techniques that have been developed during this time frame to carry out
the integration of these equations. Some of these commonly studied techniques are Inverse Scattering Transform [5],
bilinear transformation[4], the tanh-sech method[6, 7], adomian decomposition method [3], the tanh-coth method[8],
homogeneous balance method[9], Exp-function method [10], and many others.

The Adomian decomposition method was introduced and developed by George Adomian in [11, 12] and is well
addressed in the literature. A reliable modification of the Adomian decomposition method developed by Wazwaz
and presented in [3]. A considerable amount of research work has been invested recently in applying this method
to a wide class of linear and nonlinear equations for detail see [13, 14, 15, 16, 17, 18] and the references therein.

In this paper the Adomian decomposition method will determine exact solutions to a Biswas-Milovic equation
(BME) with Kerr law nonlinearity. In Section 2, we described this method for finding exact solution for nonlinear
PDEs. In Section 3, we illustrated this method in detail with the Biswas-Milovic equation. In Section 4, we gave
some conclusions.

2 Adomian decomposition method for nonlinear PDEs

We first consider the nonlinear partial differential equation given in an operator form

Lxu(x, y) + Lyu(x, y) + R(u(x, y)) + F (u(x, y)) = g(x, y), (1)

where Lx is the highest order differential in x, Ly is the highest order differential in y, R contains the remaining
linear terms of lower derivatives, F (u(x, y)) is an analytic nonlinear term, and g(x, y) is an inhomogeneous or forcing
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term. the decision as to which operator Lx or Ly should be used to solve the problem depends mainly on two bases:
(i) The operator of lowest order should be selected to minimize the size of computational work. (ii) The selected
operator of lowest order should be of best known conditions to accelerate the evaluation of the components of the
solution.For more detail see[3]. Assume that Ly meet these two conditions, therefore we set

Lyu(x, y) = g(x, y)− Lxu(x, y)−R(u(x, y))− F (u(x, y)). (2)

Applying L−1
y to both sides of (2.2) gives

u(x, y) = Φ0 − L−1
y g(x, y)− L−1

y Lxu(x, y)− L−1
y R(u(x, y))− L−1

y F (u(x, y)), (3)

where
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Take the solution u(x, y) in a series form

u(x, y) =
∞∑

n=0

un(x, y), (4)

and the nonlinear term F (u(x, y)) by

F (u(x, y)) =
∞∑

n=0

An, (5)

where An are Adomian polynomials that can be generated for all forms of nonlinearity and can be evaluated by
using the following expression

An =
1
n!

dn

dλn

[
F

(
n∑

i=0

λiui

)]

λ=0

, n = 0, 1, 2 (6)

Based on these assumptions, Eq. (3) become

∞∑
n=0

un(x, y) = Φ0 − L−1
y g(x, y)− L−1

y Lx

( ∞∑
n=0

un(x, y)
)

−L−1
y R

( ∞∑
n=0

un(x, y)
)
− L−1

y

( ∞∑
n=0

An

)
.

(7)

The components un(x, y), n ≥ 0 of the solution u(x, y) can be recursively determined by using the relation

u0(x, y) = Φ0 − L−1
y g(x, y),

uk+1(x, y) = −L−1
y Lxuk − L−1

y R(uk)− L−1
y (Ak), k ≥ 0.

(8)

Next find the components of
∞∑

n=0
un(x, y) by

u0(x, y) = Φ0 − L−1
y g(x, y),

u1(x, y) = −L−1
y Lxu0(x, y)− L−1

y R (u0(x, y))− L−1
y A0,

u2(x, y) = −L−1
y Lxu1(x, y)− L−1

y R (u1(x, y))− L−1
y A1,

u3(x, y) = −L−1
y Lxu2(x, y)− L−1

y R (u2(x, y))− L−1
y A2,

u4(x, y) = −L−1
y Lxu3(x, y)− L−1

y R (u3(x, y))− L−1
y A3,

.

.

.

where each component can be determined by using the preceding component. Having the calculated the components
un(x, y), n ≥ 0, the solution in a series form is readily obtained.
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3 Exact solutions for the Biswas-Milovic equation

In this section we obtain exact solution of the Biswas-Milovic equations, which are nonlinear PDEs by using the
decomposition method described in Section 2. The BM equation is given by[1].

i(qm)t + a(qm)xx + bF (|q|2)qm = 0 (9)

where q is a complex valued function, while x and t are the two independent variables. The coefficients a and b are
constants where ab > 0, and parameter m ≥ 1.
In this paper we will study the case m = 1 of Biswas-Milovic equation

i(q)t + a(q)xx + bF (|q|2)q = 0 (10)

Eq. (10) is a nonlinear PDE that is not integrable, in general. The non-integrability is not necessarily related to
the nonlinear term in it. Also, in (9), F is a real-valued algebraic function and it is necessary to have smoothness
of the complex function

F (|q|2)q : C 7→ C.

Considering the complex plane C as a two-dimensional linear space R2, the function F (|q|2)q is k times continuously
differentiable, so [1]

F (|q|2)q ∈ ∪∞m,n=1C
k
(
(−n, n)× (−m,m); R2

)
.

In order to seek exact solutions of Eq. (10), we assume that q(x, 0) = eix and in this case the Kerr law of
nonlinearity appears in nonlinear optics [2] is

F (s) = s

so Eq. (10) becomes

iqt + aqxx + b|q|2q = 0, q(x, 0) = eix (11)

Multiplying Eq.(11) by i, we may express this equation in an operator form as follows

Ltq(x, t) = iaqxx + ib|q|2q. (12)

where Lt is defined by Lt = ∂
∂t and the inverse operator L−1

t is identified by

L−1
t (·) =

t∫

0

(·)dt

Applying L−1
t to both sides of (12) and using the initial condition we obtain

q(x, t) = eix + iaL−1
t qxx + ibL−1

t |q|2q, (13)

where F (q(x, t)) = |q|2q is nonlinear term.
Substituting

q(x, t) =
∞∑

n=0

qn(x, t) (14)

and nonlinear term

|q|2q =
∞∑

n=0

An (15)

into (13) gives

∞∑
n=0

qn(x, t) = eix + iaL−1
t

(( ∞∑
n=0

qn(x, t)

)

xx

)
+ ibL−1

t

( ∞∑
n=0

An

)
(16)

Adomian’s analysis introduces the recursive relation

q0(x, t) = eix,
qk+1(x, t) = iaL−1

t (qk)xx + ibL−1
t (Ak) , k ≥ 0.

(17)
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since q is a complex function so we can write

|q|2 = qq̄ (18)

where q̄ is the conjugate of q. this means that (15) can be written as

q2q̄ =
∞∑

n=0

An (19)

By using formal technique to find adomian polynomial used in [3] we find that F (q) has the following polynomial
representation

A0 = q2
0 q̄0,

A1 = 2q0q1q̄0 + q2
0 q̄1,

A2 = 2q0q2q̄0 + q2
1 q̄0 + 2q0q1q̄1 + q2

0 q̄2,
A3 = 2q0q3q̄0 + 2q1q2q̄0 + 2q0q2q̄1 + q2

1 q̄1 + 2q0q1q̄2 + q2
0 q̄3

(20)

that in turn gives the first few components by

q0(x, t) = eix,
q1(x, t) = iaL−1

t (q0xx
) + ibL−1

t (A0),
q2(x, t) = iaL−1

t (q1xx
) + ibL−1

t (A1),
q3(x, t) = iaL−1

t (q2xx) + ibL−1
t (A2),

(21)

we obtain

q0(x, t) = eix, A0 = eix,
q1(x, t) = iaL−1

t

(−eix
)

+ ibL−1
t (eix) = it(b− a)eix,

q2(x, t) = iaL−1
t

(
it(a− b)eix

)
+ ibL−1

t (it(b− a)eix) = (it)2

2! (b− a)2eix

q3(x, t) = iaL−1
t

(
− (it)2
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)
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t

(
(it)2

2! (b− a)2eix
)

= (it)3

3! (b− a)3eix

(22)

Accordingly, the series solution is given by

q(x, t) =
∞∑

n=0

qn(x, t) = q1 + q2 + q3 + ...

q(x, t) = eix + it(b− a)eix +
(it)2

2!
(b− a)2eix +

(it)3

3!
(b− a)3eix + ... (23)

q(x, t) = eix

(
1 + it(b− a) +

(it)2

2!
(b− a)2 +

(it)3

3!
(b− a)3 + ...

)
, (24)

that gives exact solution of (11) in closed form

q(x, t) = ei(x+(b−a)t). (25)

4 Conclusion

The Adomian decomposition method is successfully used to establish new exact solution. The performance of this
method is found to be reliable and effective and can give more solutions, which may be important for the explanation
of some new practical physical problems.
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