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Abstract

In this paper, the reduced differential transform method (RDTM) is
applied to various nonlinear evolution equations, Korteweg—de Vries
Burgers' (KdVB) equation, Drinefel’d-Sokolov—Wilson equations,
coupled Burgers equations and modified Boussinesq equation.
Approximate solutions obtained by the RDTM are compared with the
exact solutions. The present results are in good agreement with the
exact solutions. Comparisons show that the RDTM is capable of
solving effectively a large number of nonlinear evolution equations
with high accuracy.
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1 Introduction

Nonlinear evolution equations (NLEES) are widely used to describe many
important phenomena and dynamic processes in physics, mechanics, chemistry,
biology, etc. The investigation of exact solutions of NLEEs plays an important
role in the study of nonlinear physical phenomena. There has been a great amount
of activity aiming to find methods for solutions of NLEEs. Recently many new
approaches to NLEEs have been proposed, for example, the variational iteration
method [1-3], the homotopy perturbation method [3-6], various tanh function
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methods [7-11], the F-expansion method [12-13], the sine—cosine method [14-
17], Hirota method [18,19], Jacobi elliptic function method [20-22], homogeneous
balance method [23-24], the (G'/G)-expansion method [25-27] and the exp-
function method [28-31].

Keskin in [32] introduced a reduced form of differential transform method (DTM)
as reduced differential transform method (RDTM) and applied to approximate
some PDEs and fractional PDEs [33-34]. Abazari and Ganji [35] extended RDTM
to study the partial differential equation with proportional delay in t and shrinking
in X, and shown that as a special advantage of RDTM rather than DTM. The
reduced differential transform recursive equations produce exactly all the Poisson
series coefficients of solutions, whereas the differential transform recursive
equations produce exactly all the Taylor series coefficients of solutions.

In this paper, we applied the RDTM to various nonlinear evolution equations and
compared the obtained results with the exact solution. The main advantage of the
RDTM is the fact that it provides its user with an analytical approximation, in
many cases an exact solution. The solution procedure of the RDTM is simpler
than traditional DTM, and the amount of computation required in RDTM is much
less than traditional DTM.

2 Reduced Differential Transform Method (RDTM)

Consider a function of two variables u(x,t) and suppose that it can be represented
as a product of two single-variable functions, i.e.,u(x,t) = f (x)g(t). Based on the
properties of one-dimensional differential transform, the function u(x,t) can be
represented as follows:

u(x,t)=(2F(i)xij(ie(j)ti]=iuk(x).tk 1)

where U, (x) is called t -dimensional spectrum function u(x,t) .

The basic definitions of reduced differential transform method [32-34] are
introduced as follows:

Definition 2.1. If a function u(x,t) is analytic and differentiated continuously
with respect to time t and space x in the domain of interest then let

Uk(x):%{;—iu(x,t)}  k>0keN )

where the t -dimensional spectrum function U, (x) is the transformed function
and u(x,t) is the original function.
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Definition 2.2. The differential inverse transform of U, (x) is defined as
follows:

u(x,t) = YU, (%)t 3)

From Eq.(2) and Eq.(3) , we get

u(x,t) i {—u(x t)} 4)

O

The following theorems that can be deduced from Eqgs.(2-4) are given below:
Theorem 2.1. If f(x,t) =ag(x,t) £bh(x,t), then

F (x) =aG, (x) £bH, (x) ,where a and b are constant.

1, j=0
Theorem 2.2. If f(x,t)=x"t", then F (x)=x"5(k—n) where 5“):{0 J 0
y J#

Theorem 2.3. If f(x,t)=x"t"g(x,t), then F, (x) =x"G,_, (x)

Theorem 2.4. If f(x,t)=g(xt)-h(x,t), then F, (x) = ZK:G,(X) ‘H_,(X)

Theorem 2.5. If f(x,t)=g,(x,t)-g,(x,t)L g,,(x,t)-g,(x,t), then
n 2 k3 kz
F(x)= ZZL Zzlel(X) sz K (X)L G, ~Lkyg—ky 2(X) Gnk K (X)
knl kn 2 k2 kl

" (k + n)

Theorem 2.6. If f(x,t)= e g(xt), then F (x) =

Gk+n ( )

n n

Theorem 2.7. If f(x,t)=§x g(x,t), then F, (x)_ 0 -G, (x)

Theorem 2.8. If £ (x,t) = — 0 ~= 90x), then F, () = n((k;“) km(x)j
OX 4

3 Solution of The Nonlinear Evolution Equations By
The RDTM

In this section, the RDTM is used to find approximate solutions of some nonlinear
evolution equations, namely, Korteweg—de Vries Burgers' (KdVB) equations,
Drinefel’d-Sokolov—-Wilson equations, coupled Burgers equations and modified
Boussinesq equation.
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3.1 RDTM for Korteweg-de Vries (KdV) and Korteweg-de
Vries-Burgers (KdVB) Equations

Let us first consider the KdVB equation has the form
u, +e&uu, —vu,, + U, =0, (5)

where ¢,v and u are constants. We will investigate the two cases, the first one is

the KdV equation (in case of v=0) and the second one is the KdVB (in case of
e=1).
Case 1. We consider the KdV equation in Eq.(5) for e=6,v=0and uz=1

u, +6uu, +u,, =0, (6)

subject to the initial condition ;
1 X
u(x,0)==sech?| = |, 7
(x,0) 5 (2) (7)
The exact solution of this problem is
1 1
u(x,t) ==sech?| =(x—-t) |, 8
() =7 (2( )j ®)

Applying the above theorems we obtain following recurrence relation for the KdV
equation.

k a 63
(k+DU,,,(x) = _6’IZ:0:U| (X)&Uk—l (X) _yuk(x) 9)
Using Eq.(2), the initial condition given in Eq. (7) can be transformed as,
1 X
U,(x) ==sech?| = |, 10
(0= [Zj (10)

Substituting Eq.(10) into Eq.(9) and by straightforward iterative steps, we get the
following U, (x) (for k=0,1,2,...,n) values.

Uo(x)zésechz(x/Z),
U, (x) =%tanh(x/2)sech (x/2),

Uz(x)=%{23ech2(x/2)—35ech4(x/2)} (11)

U,(x) =é{tanh(x/2)[sech2 (x/2)—3sech* (x/2)]}
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and so on, in the same manner, the rest of components can be obtained using
MAPLE.
Using the inverse transformation Eq.(3), we get the approximate solution as,

lI(X,t)=%Sechz(X/2)+(§tanh(x/2)sech(x/2)jt
+(§{Zsech2(x/2)—33ech"(x/2)}jt2 (12)
1 2 4 s
+(E{tanh(x/2)[sech (x/2)-3sech (X/Z):I})t o

The behavior of the approximate solution obtained by RDTM with the exact
solution (Eq.(8)) for different values of times is shown in Fig.1. The comparison
shows that the two solutions obtained are in excellent agreement.

(a) (b)
Fig. 1.(a) The approximate solution u(x,t) obtained by RDTM with different values of

time.(b) The exact solution u(x,t) with different values of time.

Case 2. Now, we consider the KdVB equation in Eq.(5) for e =1
u, +uu, —vu, +u, =0, (13)

subject to the initial condition ;

2

6v 1
u(x,0)=— 1+tanhy —=sech? 14
(x,0) 25#{ 73 7} (14)

VX
where y =—.
10u
The exact solution of this problem is
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2

6V
u(x,t)=-— 25

2
where .§=L X+ ov t].
104 254

According to the above theorems, we have the following recurrence relation for
the KdVB equation:

[1+tan h(g)—%sec h? (5)} (15)

(DU, () =V U, (0= 2 U, 00Uy (9 - s

v 7 U0 (16)

From Eq.(2), the initial condition given in Eq. (14) can be transformed at t =0 as

2

Uo(x) =- ov

1
1+tanhy —=sech?®y |, 17
25#[ i 7} (17)

Substituting Egs.(17) into Eq.(16), we get the following U, (x) (for k=0,1,2,...,n)
values.

ov° 1
U (x)=-— 1+tanhy —=sech’y |,
o(X) 25#( =3 yj
18v°
U (x)=-— 1+ tanh y)-sech?
(%) 3125/f(( 7) 7)
U (x):LB((2+2tanhy—3sech2y)-sech2y) (18)
? 390625° ’
54y ™
U.(x)=——— (2 + 2tanh y —6 tanh ysech?y —3sech?y) -sech®
5(X) 48828125;17(( y 4 4 7) 7)
where }/zﬂ.
10u

Using the inverse transformation Eq.(3), we get the approximate solution as,

ov’ 1 18v°
u(x,t)=— 1+tanh y —=sech?y |- 1+ tanh y)-sech’y )t
(x,t) 25#( r=3 7) 3125/13(( 7) 7)

2w °
3906254°
54
48828125,

+

((2+2tanh;/—3sech2;/)-sechzy)t2 (19)

((2+2tanh;/—6tanh ysechzy—3sech2y)-sechzy)ts+---

The behavior of the approximate solution with the exact solution (Eq.(15)) for
different values of times is shown in Fig.2.
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(@) (b)
Fig. 2. (2) The approximate solution LT(X ,t) obtained by RDTM with different values of
time with fixed values v = 1, u = 1. (b) The exact solution U(X,t) with different values of
time with fixed valuesv=1, u = 1.

3.2 RDTM for Drinefel’d—Sokolov-Wilson Equations

In this section, we consider the Drinefel’d—Sokolov—Wilson equations
u, + pw, =0 (20)
V, +QV,, +ruv, +svu, =0 (21)

where p, g, r, and s are arbitrary constants. For p =q=r =1the initial conditions
of u(x,t)and v(x,t) are given by

u(x,0) = 2sech®x, v(x,0) =2sechx (22)
and the exact solutions are
u(x,t) =2sech®(x—t), v(x,t)=2sech(x—t) (23)

Using above theorems we get following recurrence relations;

(43U, 00 ==PY Vi (9 =V, , (9 9

(4D 00 =025 U, (0= U (02, (0053 V(02U () (29)

From Eq.(2), the initial condition given in Eq. (22) can be transformed as
U, (X) =2sech®x, V,(x)=2sechx (26)
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Substituting Eqgs.(26) into Egs.(24-25), we get the following U, (x) and V, (X)
(for k=0,1,2,...,n) values.

U,(x)=2sech’x, V,(x)=2sechx,
U,(x)=4sech’x -tanh x, V. (x)=2sechx -tanh x
U,(x)=4sech’x —6sech’x, V,(x) =sech’x —2sech’x

U3(x)=gsech4x -tanh x - (cosh® x —3), V,(x) =§sech3x -tanh x - (cosh? x —6)

(27)
Then, using the inverse transformation Eq.(3), we obtain approximate solution as,

U(x,t) =2sech?x +(4sech2x -tanhx)t +(4sech2x —6sech’x )t2

8_ .. : : (28)
+ ésech X -tanh x -(cosh®x —3) [t +---

V(x,t) =2sechx +(2sechx -tanhx )t +(sech’x —2sech® )t’

1 s ) , (29)
+ gsech X -tanh x -(cosh®x —6) |t* +---

The graphical behavior of the approximate solutions obtained by RDTM with the
exact solutions (Eqs.(26)) for different values of times is shown in Fig.3.
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(@) (b)
Fig. 3. (a) The approximate solutions U (X ,t) and V(X ,t) obtained by RDTM with

different values of time. (b) The exact solutions U(X,t) and V(X,t) with different values of
time. (For p=q=r=1)

3.3 RDTM for coupled Burgers Equations

Now, we will consider the system of Burgers’ equations in the operator form
u, —u, —2uu, +(uv), =0, (30)
Vv, =V, —2w, +(uv), =0, (31)

subject to the initial conditions
u(x,0) =sin(x), Vv(x,0)=sin(x), (32)

The exact solutions of this system are
u(x,t) =e"'sin(x), v(xt)=e"sin(x), (33)

According to the above theorems, we have the following recurrence relation for
the system of Burgers’ equations:

(k40,00 = 250,00 230,00 20, 090~ 2 30,00, (9 | (30

(KHIV 00 = S0+ 2300 2 00~ 2S00V | 39

From Eq.(2), the initial condition given in Eq. (32) can be transformed as;
U,(X) =sinXx, V,(x)=sinx (36)



Approximate solutions some nonlinear.... 297

Substituting Eqs.(36) into Eqs.(34-35) and by straightforward iterative steps, we
get the following U, (x) and V, (x) (for k=0,1,2,...,n) values.

U, (x) =V, (x) =sinx, U,(x) =V,(X) =-sinx
Uz(x):Vz(x):%sin X, U5(x) :Vs(x):—%sinx (37)
1 .
U,(x) =V, (x) =—siInx,...
{00 =Va(x)=—

Then, using the inverse transformation Eq.(3), we get approximate solution as,
U(x,t)=sinx —tsinx +%tzsinx —%t?’sinx
+it4sinx—itssinx e (38)

120

24

=(1—t+%t2 —%t3+it4—$t5+---)sinx

V(x,t)=sinx —t sinx+%tzsinx —%tssinx

+it4sinx—itssinx+~- (39)
24 120
=(1—t+1t2—1t3+it“—it5+---)sinx

2 6 24 120

which are Taylor series of Egs.(34).
3.4 RDTM for Modified Boussinesq Equation

Finally, we consider the following general equation
U, +au,, + pu,.. +ru"), =0 (40)

where a, 4,y and n are constants.
This equation is called the high-order modified Boussinesq equation with the
damping term u_.. It appears in several domains of mathematics and physics.

xxt *

Now, we will consider the cubic modified Boussinesq equation (a=1, f=2/9, y=-1
and n=3)

Uy + U +§uxxxx _(us)xx =0 (41)

with initial conditions
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u(x,0) =1+ tanh (g xj, u, (x,0) = —3sech? (g x) (42)
The exact solution of this problem is
u(x,t) =1+tanh (gx—&j (43)
Using above theorems we obtain following recurrence relation;
0° 2 o0
(k+D(k+2)U,,,(x) ==(k+1) ——ZU,,,(X) == — U, (X)
OX 9 ox
) (44)
a kK 1
| 22U, 00U, (00U, (0
ox” 1% =
From Eq.(2), the initial conditions given in Eq. (42) can be transformed as
U, (x) =1+tanh G x), U, (x) =—3sech’ [g x) (45)

Substituting Egs.(45) into Eq.(44) and by straightforward iterative steps, we get
the following U, (x) (for k=0,1,2,...,n) values.

U,(x) =1+tanh (g xj, U,(x) = -3sech? (g xj,

U,(x) =-9tanh (§ xjsech2 (§ x),
2 2

(46)
U,(x) =sech? (g x](—18+ 27sech? (g XD

U, (x) = tanh (g x]sec h? @ xj[—Z? +81sech? (g XD

Then, using the inverse transformation Eq.(3), we get the approximate solution as,

u(x,t) =1+tanh(gx ]—SSEChZ(gX j-t —9tanh@x jsechz(%x j-tz

+sech2(§xj —18+27sech2(§xj 18

2 2

+tanh(§xjsech2(§xj(—27+81sech2(§xjj-t4 N
2 2 2

(47)
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The behavior of the approximate solution with the exact solutions (Eq.(43)) for
different values of times is shown in Fig.4.

(@) (b)
Fig. 4. (a) The approximate solution U'(X ,t) obtained by RDTM with different values of

time. (b) The exact solution U(X,t) with different values of time.

4 Conclusion

In this paper, the reduced transform method (RDTM) has been successfully
applied to nonlinear evolution equations. The approximate solutions of Korteweg—
de Vries Burgers' (KdVB) equation, Drinefel’d—Sokolov—-Wilson equations,
coupled Burgers equations and modified Boussinesq equation are obtained. The
approximate solutions obtained are in good agreement with the known exact
solutions. The results show that the RDTM is an efficient approach for the
solution of such type of nonlinear equations.The main advantage of the RDTM is
to provide the user an analytical approximation to the solution, in many cases, an
exact solution, in a rapidly convergent sequence with elegantly computed terms.
The solution procedure of the RDTM is simple than other existing techniques.
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