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Abstract

In this paper, based on a block splitting of the coefficient matrix, we present a new generalized iterative method for
solving the linear system Ax = b. This method is well-defined even when some elements on the diagonal of A are
zero. Convergence analysis and comparison theorems of the proposed method are provided. Specially, the results
show that our new generalized AOR iterative method also, converges when A is an H-matrix. And for L-matrices,
our new generalized Jacobi iterative method is faster than the classical Jacobi. The Numerical examples are also
given to illustrate our results.

Keywords: AOR method; Generalized AOR method; M-matrix; H−matrix; L-matrix.

1 Introduction

consider the linear system

Ax = b, (1)

where A ∈ Rn×n is a known nonsingular matrix, b ∈ Rn is known, and x ∈ Rn is unknown. For the numerical
solution of (1) the generalized AOR (GAOR) method is defined by

x(k+1) = Lγ,ωx(k) + ω(D − γL)−1b, k = 0, 1, 2, . . . (2)

and

Lγ,ω = (D − γL)−1[(1− ω)D + (ω − γ)L + ωU ], (3)

where γ and ω 6= 0 are real parameters and D, L, and U which need not be diagonal and strictly lower triangular
and upper triangular, respectively, are required to satisfy A = D−L−U . It is also assumed that det(D− γL) 6= 0.
This method is well-defined even when some elements on the diagonal of A are zero. Some very interesting results
concerning the GAOR method were given in [2], [3], [5], [6], [7], [11], [15]. Authors showed that with spacial
conditions, the GAOR iterative method converges when A is an M -matrix or is a Hermitian positive definite
matrix. The new method satisfies in these conditions and also, we prove our new method, converges when A is
an H-matrix too. We note that the classical AOR [3] method is a special case of GAOR method, where D is the
diagonal, −L and −U are strictly lower and upper triangular parts of A, respectively. As the classical AOR method,
for certain values of γ and ω we have the generalized Jacobi (GJ), the generalized Gauss-seidel (GGS), and the
generalized SOR (GSOR) methods. This is one of the benefits of our new method that the new generalized Jacobi
iterative method is faster than the classical Jacobi method, for L-matrices. This new method is practical too.

In the following we are going to consider A as a block matrix in the form
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A =
(

A1 A2

A3 A4

)
if n = 2l, A =




A1 −c1 A2

−dT
1 al+1l+1 −dT

2

A3 −c2 A4


 if n = 2l + 1, (4)

where c1, c2, d1, d2 ∈ Rl and Ai ∈ Rl×l, i = 1, 2, 3, 4. By splitting Ai, into Ai = Di − Li − Ui where Di, is the
diagonal matrix, −Li and −Ui are strictly lower and upper triangular parts of Ai, respectively. We split A into

A = V − LV − UV , (5)

where V , LV , and UV are block matrices as follows:

for n = 2l

V =
(

D1 D2

D3 D4

)
, LV =

(
L1 L2

L3 L4

)
, UV =

(
U1 U2

U3 U4

)
(6)

for n = 2l + 1

V =




D1 0 D2

0 al+1 l+1 0
D3 0 D4


 , LV =




L1 0 L2

dT
1 0 dT

2

L3 0 L4


 , UV =




U1 c1 U2

0 0 0
U3 c2 U4


 (7)

In the following we consider the case n = 2l, the case n = 2l + 1 can be discussed in a similar way.
By assuming that D1D4 −D2D3 is a nonsingular matrix, it is easy to see that

V −1 =
(

(D1D4 −D2D3)−1 0
0 (D1D4 −D2D3)−1

)(
D4 −D2

−D3 D1

)
, (8)

and we have det(V − γLV ) 6= 0, where γ is a real parameter.
In this paper, based on the splitting (5), we define the GAOR method (called the AORV method) as follows:

x(k+1) = L̃γ,ωx(k) + ω(V − γLV )−1b, k = 0, 1, 2, . . . (9)

with the iteration matrix

L̃γ,ω = (V − γLV )−1[(1− ω)V + (ω − γ)LV + ωUV ], (10)

where ω and γ are real parameters with ω 6= 0.
As the AOR method for certain values of the parameter ω and γ, we can obtain the other iterative methods

which are as follows:

1. JV (JacobiV) method for γ = 0 and ω = 1.

2. JORV method for γ = 0.

3. GSV (Gauss− SeidelV) method for γ = ω = 1.

4. EGSV method for γ = 1.

5. SORV method for γ = ω.

By using (9) and (10), we have the following Algorithm:

Algorithm AORV

1. Given starting vector x(0)

2. For k = 0, 1, 2, . . ., until convergence Do:

3. z(k) = [(1− ω)V + (ω − γ)LV + ωUV ]x(k) + ωb
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4. For i = 1, 2, . . . , l Do:

5. y1 = −γΣi−1
j=1(ai,jx

(k+1)
j + ai,j+lx

(k+1)
j+l )

6. y2 = −γΣi−1
j=1(ai+l,jx

(k+1)
j + ai+l,j+lx

(k+1)
j+l )

7. Solve the system 2× 2,
[

ai,i ai,i+l

ai+l,i ai+l,i+l

] [
x

(k+1)
i

x
(k+1)
i+l

]
=

[
z
(k)
i + y1

z
(k)
i+l + y2

]
.

8. End Do

9. End Do.

We observe that the method does not break down if the diagonal matrix D1D4−D2D3 is a nonsingular matrix.
In the following, in Section 2, we present the convergence analysis when A is a diagonally dominant, M-matrix
or H-matrix, and Hermitian positive definite matrix. In section 3, comparison theorem is presented. In section 4,
numerical examples are given to illustrate our results. Section 5 is devoted to concluding remarks.

2 Convergence Analysis

2.1 Diagonally dominant Matrices

In the sequel, we need the following.

Notation 2.1. Let A ∈ Cn×n. Then |A| denotes the matrix whose elements are the modula of the elements of A.
The same notation applies to vectors x ∈ Cn.

Definition 2.2. A matrix A is a strictly diagonally dominant matrix if

|aii| >
n∑

j=1,j 6=i

|aij |, i = 1, . . . , n.

Definition 2.3. [16]. A matrix A is said to be irreducible if the directed graph associated with A is strongly
connected.

Definition 2.4. A matrix A is irreducibly diagonally dominant if A is irreducible and

|aii| ≥
n∑

j=1,j 6=i

|aij |, i = 1, . . . , n

with strict inequality for at least one i.

Here we will assume that A is an n× n matrix with unit diagonal elements.

Theorem 2.5. If A of (1) is a strictly diagonally dominant matrix and det(I −D2D3) 6= 0, then ρ(L̃γ,ω) satisfies
the following:

min
i

|1− ω| − |ω − γ|fi − |ω|gi

1 + |γ|fi
≤ ρ(L̃γ,ω) ≤ max

i

|1− ω|+ |ω − γ|fi + |ω|gi

1− |γ|fi
, (11)

for i = 1, 2, ..., n, where |γ| < 1
fi

, fi = eT
i |LV |e

di
, and gi = eT

i |UV |e
di

with e = (1, 1, . . . , 1)T ∈ Rn and di ={
1− |ai,i+l|, i ≤ l
1− |ai,i−l|, i > l

.

Proof. The proof is similar to that of Theorem 1 in [13]. Since the eigenvalues of L̃γ,ω are given from

det(L̃γ,ω − λI) = 0, (12)

after some manipulation, it is easy to verify that to solve (12) is equivalent to solving

det(Q) = 0, (13)
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where Q is

Q = V − γ(λ− 1) + ω

λ− 1 + ω
LV − ω

λ− 1 + ω
UV .

If we take the parameter γ, ω, λ, in order that Q be strictly diagonally dominant, we get

di >
|γ(λ− 1) + ω|
|λ− 1 + ω| eT

i |LV |e +
|ω|

|λ− 1 + ω|e
T
i |UV |e.

Since A is a strictly diagonally dominant matrix, we have di 6= 0, for i = 1, 2, . . . , n. So, we get

|λ− 1 + ω| > |γ(λ− 1) + ω|fi + |ω|gi, i = 1, 2, · · · , n.

The rest of proof is similar to that of theorem 1 in [13].

Theorem 2.6. If A of (1) is a strictly diagonally dominant matrix and det(I − D2D3) 6= 0, ω > 0, 0 ≤ γ ≤ ω,
then a sufficient condition for the convergence of the AORV method is

0 < ω <
2

1 + maxi(fi + gi)
.

Proof. First, from the fact that 2
1+fi+gi

< 1
fi

, we have 0 ≤ γ < 1
fi

when 0 < γ < 2
1+maxi(fi+gi)

. Now from (11), we

see that ρ(L̃γ,ω) will be less than one if

|ω − γ|fi + |ω|gi + |1− ω|+ |γ|fi < 1, for i = 1, 2, · · · , n. (14)

For ω ≥ γ ≥ 0 and 0 < ω ≤ 1, these conditions will be satisfied. For ω > γ ≥ 0, and ω > 1, we observe that (14)
will be satisfied if 0 < ω < 2

1+maxi(fi+gi)
.

Now from Theorem 2.6 and Theorem of Extrapolation [4] we can state the following theorem for JV , JORV ,
GSV , EGSV , and SORV methods.

Theorem 2.7. If A of (1) is a strictly diagonally dominant matrix and det(I −D2D3) 6= 0 then

(i) ρ(L̃0,1) ≤ maxi(fi + gi) < 1.

(ii) ρ(L̃0,ω) ≤ |ω|maxi(fi + gi) + |1− ω| and ρ(L̃0,ω) < 1 for 0 < ω < 2

1+ρ(L̃0,1)
.

(iii) ρ(L̃1,1) ≤ maxi
gi

1−fi
< 1.

(iv) ρ(L̃1,ω) ≤ |ω−1|fi+|ω|gi+|1−ω|
1−fi

and ρ(L̃1,ω) < 1 for 0 < ω < 2
1+ρ(L̃1,1)

.

(v) ρ(L̃γ,γ) ≤ maxi
|γ|gi+|1−γ|

1−|γ|fi
and ρ(L̃γ,γ) < 1 for 0 < γ < 2

1+maxi(gi+fi)
.

Remark. In the case when A is only irreducibly diagonally dominant, Theorems 2.6 and 2.7 only show that
ρ(L̃0,1) ≤ 1, ρ(L̃1,1) ≤ 1, and ρ(L̃γ,γ) ≤ 1. As in [14], by contradiction, we can show that in fact the strict inequality
also holds.

Finally, from the fact that AORV method is the extrapolated SORV method, when γ 6= 0 and its extrapolation
parameter is ω

γ , we can state the following theorem by using Theorems 2.6, 2.7, and Theorem of Extrapolation [4].

Theorem 2.8. If A of (1) is a strictly diagonally dominant matrix, such that det(I − D2D3) 6= 0, then AORV

method is convergent, i.e., ρ(L̃γ,ω) < 1 for:

(i) 0 ≤ γ ≤ ω and 0 < ω < 2
1+maxi(fi+gi)

.

(ii) 0 < γ < 2
1+maxi(fi+gi)

and 0 < ω < 2γ

1+ρ(L̃γ,γ)
.
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2.2 H-matrix, M-matrix, and L-matrix

In the sequel, we need the following.

Notation 2.9. Let A,B ∈ Rn×n. If aij ≥ bij (aij > bij), i, j = 1, 2, . . . , n, we write A ≥ B (A > B). The same
notation applies to vectors x, y ∈ Rn.

Definition 2.10. [18]. A matrix A ∈ Rn×n is an L-matrix if aii > 0, i = 1, 2, . . . , n, and aij ≤ 0, for all
i, j = 1, 2, . . . , n; i 6= j.

Definition 2.11. [16]. A matrix A ∈ Rn×n is said to be an M -matrix if aij ≤ 0, i 6= j = 1, 2, . . . , n, A is
nonsingular and A−1 ≥ 0.

Theorem 2.12. [14]. Let A = (aij) and B = (bij) satisfy A ≤ B and bij ≤ 0, for i 6= j. If A is an M -matrix, then
B is an M -matrix

Definition 2.13. [16]. A matrix A ∈ Cn×n is said to be an H-matrix if its comparison matrix, that is, the matrix
〈A〉 with elements αii = |aii|, i = 1, 2, . . . , n, and αij = −|aij |, i 6= j = 1, 2, . . . , n, is an M -matrix.

Lemma 2.14. [8]. A is an H-matrix if and only if there exist a vector r > 0 such that 〈A〉r > 0.

Definition 2.15. [17]. Let A ∈ Rn×n. The splitting A = M −N is called:

1. M-splitting if M is a nonsingular M-matrix and N ≥ 0.

2. H-compatible splitting if < A >=< M > −|N |.
Lemma 2.16. [16]. Let A = M −N be an M-splitting of A, then ρ(M−1N) < 1 iff A is a nonsingular M-matrix.

Lemma 2.17. [1]. Let A be an H-matrix. If A = M −N is an H-compatible splitting, then ρ(M−1N) < 1 , i.e.,
the splitting is convergent.

For generalized AOR method (2) the two following theorems are given in [15] and [11].

Theorem 2.18. If L ≥ 0 and U ≥ 0, (I − L − U)−1 ≥ 0 and ρ(γL) < 1, then ρ(Lγ,ω) < 1 for 0 ≤ γ < 2
1+ρ(L0,1)

and 0 < ω < max( 2γ
1+ρ(Lγ,γ) ,

2
1+ρ(L0,1)

).

Theorem 2.19. If L ≥ 0 and U ≥ 0, 0 ≤ γ, ω ≤ 1 , ω > 0 and ρ(γL) < 1, then

(a) ρ(L0,1) = 0 iff ρ(Lγ,ω) = 1− ω.

(b) ρ(L0,1) = 1 iff ρ(Lγ,ω) = 1.

(c) 0 < ρ(L0,1) < 1 iff 1− ω < ρ(Lγ,ω) < 1.

(d) ρ(L0,1) > 1 iff ρ(Lγ,ω) > 1.

Lemma 2.20. Let A = V − LV − UV be a nonsingular H-matrix with unit diagonal entries that partitioned as in
(4). If I −D2D3 has positive diagonal entries, then V −1A is an H-matrix.

Proof. Since A is an H-matrix, we have from Definition 2.13 that 〈A〉−1 ≥ 0. Denote r = 〈A〉−1e, where e =
(1, 1, . . . , 1)T ∈ R2l. Then r > 0. Let r = (rT

1 , rT
2 )T , where r1, r2 ∈ Rl. By using the definition of comparison

matrix (Definition 2.13), we have

〈A〉r =
(

I − |A1 − I| −|A2|
−|A3| I − |A4 − I|

)
r

=
(

(I − |A1 − I|)r1 − |A2|r2

(I − |A4 − I|)r2 − |A3|r1

)

=
(

e1

e1

)
(15)

where e1 = (1, 1, . . . , 1)T ∈ Rl. We now show that 〈V −1A〉r > 0 which will be useful to show that V −1A is an
H-matrix (Lemma 2.14). From (8), we have

V −1A = D

(
A1 −D2A3 A2 −D2A4

A3 −D3A1 A4 −D3A2

)
,



444 International Journal of Applied Mathematical Research

where

D =
(

(I −D2D3)−1 0
0 (I −D2D3)−1

)
.

From the assumption I−D2D3 has positive diagonal entries, we have D ≥ 0. So, from the definition of comparison
matrix, we have

〈V −1A〉

= D

( |I −D2D3| − |(A1 −D2A3)− (I −D2D3)| −|A2 −D2A4|
−|A3 −D3A1| |I −D2D3| − |(A4 −D3A2)− (I −D2D3)|

)

= D

( |I −D2D3| − |(A1 − I)−D2(A3 −D3)| −|(A2 −D2)−D2(A4 − I)|
−|(A3 −D3)−D3(A1 − I)| |I −D2D3| − |(A4 − I)−D3(A2 −D2)|

)

≥ D

(
I − |D2D3| − |A1 − I| − |D2(A3 −D3)| −|A2 −D2| − |D2(A4 − I)|

−|A3 −D3| − |D3(A1 − I)| I − |D2D3| − |A4 − I| − |D3(A2 −D2)|
)

≥ D

(
I − |A1 − I| − |D2|(|D3|+ |A3 −D3|) |D2|(I − |A4 − I|)− (|D2|+ |A2 −D2|)
|D3|(I − |A1 − I|)− (|D3|+ |A3 −D3|) I − |A4 − I| − |D3|(|D2|+ |A2 −D2|)

)

= D

(
I − |A1 − I| − |D2||A3| |D2|(I − |A4 − I|)− |A2|
|D3|(I − |A1 − I|)− |A3| I − |A4 − I| − |D3||A2|

)

By using the vector r = (rT
1 , rT

2 )T > 0 and the equation (8), we have

〈V −1A〉r ≥ D

(
(I − |A1 − I|)r1 − |A2|r2 + |D2|((I − |A4 − I|)r2 − |A3|r1)
(I − |A4 − I|)r2 − |A3|r1 + |D3|((I − |A1 − I|)r1 − |A2|r2)

)

= D

(
e1 + |D2|e1

e1 + |D3|e1

)
> 0.

Theorem 2.21. Let A = V − LV − UV be a nonsingular H-matrix with unit diagonal entries that partitioned as
in (4). If I −D2D3 has positive diagonal entries and 0 ≤ γ ≤ ω ≤ 1 and ω 6= 0 then ρ(L̃γ,ω) < 1 .

Proof. From Lemma 2.26, V −1A is an H-matrix. Let V −1A = M1−N1 be a splitting of the H-matrix V −1A, where

M1 =
1
ω

(I − γV −1LV ) and N1 =
1
ω

[(1− ω)I + (ω − γ)V −1LV + ωV −1UV ].

Then it is easy to see that
< V −1A >=< M1 > −|N1|.

So, from Definition 2.15, the splitting V −1A = M1 − N1 is an H-compatible splitting and from Lemma 2.17, we
have ρ(M−1

1 N1) < 1. On the other hand, we observe that

L̃γ,ω = M−1
1 N1

so, we have ρ(L̃γ,ω) < 1 and the AORV method converges.

In the following, we give the theoretical results of AORV method for L-matrix and M-matrix.

Lemma 2.22. Let A be an L-matrix with unit diagonal elements that partitioned as in (4) and assume that I−D2D3

has positive diagonal entries. Then we have the following results:

(a) V −1 ≥ 0.

(b) LV ≥ 0, UV ≥ 0, V −1LV ≥ 0, and V −1UV ≥ 0.

(c) (I − γV −1LV )−1 ≥ 0 and (V − γLV )−1 ≥ 0.

(d) ρ(LV ) = 0.

Proof. (a) From (8) and the assumption I −D2D3 has positive diagonal entries, we have V −1 ≥ 0.

(b) Since A is an L-matrix, we have LV ≥ 0, UV ≥ 0. So, from part (a), it follows V −1LV ≥ 0 and V −1UV ≥ 0.



International Journal of Applied Mathematical Research 445

(c) It is easy to see that (V −1LV )l = 0. So, ρ(V −1LV ) = 0. From parts (a) and (b), we have

(I − γV −1LV )−1 = (I + γV −1LV + γ2(V −1LV )2 + · · ·+ γl−1(V −1LV )l−1) ≥ 0

and
(V − γLV )−1 = (I − γV −1LV )−1V −1 ≥ 0.

(d) Part (d) follows from the fact that (LV )l = 0, which completes the proof.

Theorem 2.23. Let A = V − LV − UV be a nonsingular M-matrix with unit diagonal elements. Assume that
I −D2D3 has positive diagonal entries, then

(i) ρ(L̃0,1) < 1

(ii) ρ(L̃γ,γ) < 1 for 0 < γ ≤ 1

(iii) 0 < ρ(L̃γ,ω) < 1 for 0 ≤ γ ≤ 2

1+ρ(L̃0,1)
and 0 < ω < max( 2γ

1+ρ(L̃γ,γ)
, 2

1+ρ(L̃0,1)
)

Proof. (i) By Lemma 2.22, the splitting A = M − N with M = V and N = LV + UV is an M-splitting. So by
Lemma 2.16, we have ρ(L̃0,1) < 1.

(ii) By Lemma 2.22, the splitting A = M−N with M = 1
γ (V −γLV ) and N = 1

γ [(1−γ)V +γUV ] is an M-splitting

for 0 < γ ≤ 1. So by Lemma 2.16, we have ρ(L̃γ,γ) < 1 for 0 < γ ≤ 1

(iii) Let A = V − LV − UV and B = I − LV − UV . Then we have A ≤ B and bij ≤ 0, for i 6= j. So, by Theorem
2.12, B is an M-matrix and we have (I − LV − UV )−1 ≥ 0. Now by using parts (b), (d) of Lemma 2.22 and
Theorem 2.18, we obtain the result given in (iii).

Theorem 2.24. Let A = V − LV − UV be a nonsingular L-matrix with unit diagonal elements. Assume that
I −D2D3 has positive diagonal entries and 0 ≤ γ , ω ≤ 1, ω > 0, then

(a) ρ(L̃0,1) = 0 iff ρ(L̃γ,ω) = 1− ω

(b) ρ(L̃0,1) = 1 iff ρ(L̃γ,ω) = 1

(c) 0 < ρ(L̃0,1) < 1 iff 1− ω < ρ(L̃γ,ω) < 1

(d) ρ(L̃0,1) > 1 iff ρ(L̃γ,ω) > 1

Proof. The proof follows immediately from Lemma 2.22 and Theorem 2.19.

2.3 Hermitian Positive Definite Matrix

For Hermitian positive definite coefficient matrix A, in [2] the author considered the splitting A = D −E − EH in
which D is any Hermitian positive definite matrix and the generalized AOR method

x(k+1) = Lγ,ωx(k) + ω(D − γE)−1b, k = 0, 1, 2, . . . , (16)

where the iterative matrix of (16) is

Lγ,ω = (D − γE)−1[(1− ω)D + (ω − γ)E + ωEH ].

And they also proved the following Theorem.

Theorem 2.25. [2]. Let A = D−E−EH be an n×n Hermitian positive definite matrix where D is Hermitian and
positive definite. Then the eigenvalues µi, i = 1, . . . , n of generalized Jacobi matrix B = D−1(E +EH) = I−D−1A
are real and less than 1. Moreover, if µm = mini µi and µM = maxi µi and µm ≤ 0 ≤ µM , then for the values

ω ∈ (0, 2) and ω +
2− ω

µm
< γ ≤ ω +

2− ω

µM

provided that det(D − γE) 6= 0, then AOR method converges.
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For Hermitian positive definite matrix A = V − LV − LH
V we can state the following results.

Lemma 2.26. Let A be an Hermitian matrix with unit diagonal elements. Then V is an Hermitian positive definite
matrix iff 1− |ai,l+i| > 0 for i = 1, . . . , l.

Proof. The proof follows from the fact that D3 = DH
2 and the eigenpairs of V are λi = 1 ± |ai,l+i| and ui =[

ei

± āi,l+i

|ai,l+i
|ei

]
, i = 1, . . . , l, where ei ∈ Rl is the ith column of identity matrix

Theorem 2.27. Let A be an Hermitian positive definite matrix with unit diagonal elements. If 1− |ai,l+i| > 0 for
i = 1, . . . , l then

(i) The eigenvalues µi, i = 1, 2, . . . , n of L̃0,1 are real and less than 1. Moreover µm ≤ 0 ≤ µM , where µm =
mini µi and µM = maxi µi.

(ii) For the values ω ∈ (0, 2) and ω + 2−ω
µm

< γ ≤ ω + 2−ω
µM

the AORV method converges.

Proof. (i) By Lemma 2.26, V is an Hermitian positive definite matrix. So from Theorem 2.25, the JV method
converges and the eigenvalues µi, i = 1, · · ·n, are real and less than one. From the definition of LV and (8),
it is easy to verify that trace(L̃0,1)=trace(V −1(LV + LH

V )) = 0. So we have µm ≤ 0 ≤ µM .

(ii) The proof of part (ii) follows immediately from Theorem 2.25, part (i), and the fact that det(V − γLV ) 6= 0.

3 Comparison Theorem

In this Section we need the following.

Theorem 3.1. [16]. Let A ∈ Cn×n and B ∈ Rn×n satisfy 0 ≤ |A| ≤ B, then 0 ≤ ρ(A) ≤ ρ(|A|) ≤ ρ(B).

Lemma 3.2. [16]. Let A ≥ 0 then

1. A has nonnegative real eigenvalue equal to its spectral radius ρ(A).

2. ρ(A) does not decrease when any entry of A is increased.

Here for comparing the asymptotic rate of convergence or equivalently the spectral radii of the iteration matrices
of the Jacobi and the JV methods, we suppose that A has unit diagonal elements and define

B = L̃0,1 = LV + UV

and

S = I − V. (17)

So, from the definition of the Jacobi matrix J , we have

J = B + S. (18)

We now state the following theorem.

Theorem 3.3. Let A = V − B be a nonsingular L-matrix and partitioned as in (4). If I − D2D3 has positive
diagonal entries, then

(a) ρ(V −1B) < 1 if and only if ρ(J) < 1 and ρ(V −1B) ≤ ρ(J) < 1.

(b) ρ(V −1B) ≥ 1 if and only if ρ(J) ≥ 1 and ρ(V −1B) ≥ ρ(J) ≥ 1.

Proof. By using the assumptions, we have V −1B ≥ 0 and J = B + S ≥ 0. Let λ̄ = ρ(V −1B) and µ̄ = ρ(J). By
Lemma 3.2, λ̄ is an eigenvalue of V −1B and for some x 6= 0, we have V −1Bx = λ̄x, which implies that

(λ̄S + B)x = λ̄x.

Since λ̄ is an eigenvalue of λ̄S + B, we have
λ̄ ≤ ρ(λ̄S + B).

If λ̄ ≤ 1, then by Theorem 3.1, ρ(λ̄S + B) ≤ ρ(S + B) = µ̄, which implies that λ̄ ≤ µ̄. So, we have
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(i) If λ̄ ≤ 1, then λ̄ ≤ µ̄.

On the other hand, if λ̄ ≥ 1, then by Theorem 3.1, we have

λ̄ ≤ ρ(λ̄S + B) ≤ ρ(λ̄S + λ̄B) = λ̄µ̄,

which implies that µ̄ ≥ 1. So, we have

(ii) if λ̄ ≥ 1, then µ̄ ≥ 1.

Assume that µ̄ ≥ 1. By the definition of S, (I − 1
µ̄S) is nonsingular for µ̄ ≥ 1. Since J = B + S ≥ 0, it follows, by

Lemma 3.2, µ̄ is an eigenvalue of J . Therefore for some y 6= 0, we have (B + S)y = µ̄y and

(I − 1
µ̄

S)−1By = µ̄y. (19)

In addition for µ̄ ≥ 1, we have

0 ≤ (I − 1
µ̄

S)−1 ≤ (I − S)−1 = V −1

and
0 ≤ (I − 1

µ̄
S)−1B ≤ V −1B.

This together with Theorem 3.1 and equation (19) implies that

µ̄ ≤ ρ((I − 1
µ̄

S)−1B) ≤ ρ(V −1B) = λ̄.

Therefore,

(iii) if µ̄ ≥ 1 then λ̄ ≥ µ̄ ≥ 1.

Now, by (i) and (iii), we have (a); and by (ii) and (iii), we have (b).

4 Numerical results

In this section we give the numerical examples to illustrate the results obtained in Sections 2 and 3. All numerical
experiments are carried out using MATLAB 7.9. In all Tables, we report the spectral radii of the corresponding
iteration matrices for the classical AOR and the AORV methods associated with the given matrices. The parameters
γ and ω , ω 6= 0 are chosen in the convergence intervals. In the examples below n represents the dimension of
matrices. For the classical AOR and the AORV methods, the experimentally computed optimal value of γ and
ω were also used and the corresponding spectral radii of the iteration matrices are represented by ρ∗(Lγ, ω) and
ρ∗(L̃γ, ω) in the Tables, respectively.

Example 4.1. The coefficient matrix A of (1) is given by

A1 =




1 0.1 0.2 0.0 0.2 − 0.5
0.2 1 0.3 0.0 −0.4 0.1
0.0 0.2 1 −0.6 0.2 0.0
0.2 −0.3 0.1 1 0.1 0.3
0.0 0.3 0.2 0.1 1 0.2
0.2 −0.3 0.0 −0.3 0.1 1




where A1 is an irreducibly diagonally dominant matrix. The numerical results of this example are given in Table 1.

Example 4.2. (See [9].) The coefficient matrix A of (1) is given by

A2 =




1 q r s q ...

s 1 q r
. . . q

q s
. . . . . . . . . s

r
. . . . . . . . . q r

s
. . . q s 1 q

... s r q s 1




,
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where q = −1
n , r = −1

n+1 , s = −1
n+2 and n = 10. A2 is an M-matrix. The numerical results of this example are given

in Table 2.

Example 4.3. (See[10].) The H-matrix A is given by

A3 =




1 c1 c2
2
n c1 c2 c3 . . . . . . c1 c2 c3

c3 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . c2

c2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c1

c1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c1

...
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

...
...

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
...

...
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

...
...

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
...

c3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

n

c2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c2

c1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c1

2
n c1 c2 c3 . . . . . . . . . . . . c1 c2 c3 1




,

where c1 = 1
n+1 , c2 = 1

n , c3 = 1
n+1 . The numerical results of this example are given in Table 3.

Example 4.4. The Hermitian Positive Definite matrix A is given by

A4 =




t0 t1 t2 . . . . . . tn−1

t1 t0 t1 t2
. . .

...

t2
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . t2
...

. . . . . . . . . . . . t1

tn−1
. . . . . . t2 t1 t0




,

where tk =





1 + π2

5 , k = 0,

4(−1)k

k2 (π2 − 6
k2 ), k 6= 0.

This is an Toeplitz matrix which generated by f(θ) = θ4 + 1. For

n = 50, the numerical results are given in Table 4.

Example 4.5. (See [12].) The coefficient matrix A of (1) is given by

A5 =




1 1
20 − 1

20
1
30 − 1

20
1
40 − 1

20 . . . 1
10n − 1

20
1
20 − 1

20 1 1
30 − 1

20
1
40 − 1

20 . . . 1
10n − 1

20
1
30 − 1

20
1
20 − 1

20 1 1
40 − 1

20 . . . 1
10n − 1

20
1
40 − 1

20
1
30 − 1

20
1
20 − 1

20 1 . . . 1
10n − 1

20
...

...
...

...
. . .

...
1

10n − 1
20

1
10(n−1) − 1

20
1

10(n−2) − 1
20

1
10(n−3) − 1

20 . . . 1




This is an L-matrix. The numerical results of this example are given in Tables 5 and 6.

Example 4.6. The coefficient matrix A of (1) is given by

A6 =




1 1 4 2
1 1 −1 4
4 1 1 −1
1 4 1 1



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Table 1. The results for Example 4.1.

γ 0.0000 0.2500 0.1250 0.4550 0.3433 0.6730
ω 1.0000 0.5000 0.7540 0.8970 0.9725 1.0000

ρ(L̃γ, ω) 0.5539 0.5927 0.5050 0.4057 0.4530 0.3447 ρ∗(L̃γ, ω)=0.1930
ρ(Lγ, ω) 0.6513 0.6571 0.6046 0.5017 0.5516 0.4379 ρ∗(Lγ, ω)=0.2385

Table 2. The results for Example 4.2.

γ 0.0000 0.3628 0.9588 0.6921 0.1597 0.6513
ω 1.0000 0.5568 0.9468 0.6588 0.6548 0.9851

ρ(L̃γ, ω) 0.8070 0.8738 0.6877 0.8210 0.8649 0.7389 ρ∗(L̃γ, ω)=0.6580
ρ(Lγ, ω) 0.8254 0.8856 0.7168 0.8374 0.8777 0.7629 ρ∗(Lγ, ω)=0.6901

Table 3. The results for Example 4.3.

γ 0.0000 0.5497 0.2678 0.0128 0.3549 0.8451
ω 1.0000 0.9546 0.8912 0.5469 0.8452 0.9549

ρ(L̃γ, ω) 0.7563 0.3219 0.4057 0.5873 0.3275 0.1867 ρ∗(L̃γ, ω)=0.1545
ρ(Lγ, ω) 0.9322 0.3971 0.5190 0.5627 0.3785 0.2039 ρ∗(Lγ, ω)=0.1995

Table 4. The results for Example 4.4.

γ 0.3258 0.5687 0.3658 0.3698 0.8457 0.9812
ω 0.2685 0.9546 0.1254 0.5874 0.9523 0.5461

ρ(L̃γ, ω) 0.9845 0.9355 0.9926 0.9651 0.9205 0.9490 ρ∗(L̃γ, ω)=0.9053
ρ(Lγ, ω) 0.9843 0.9340 0.9925 0.9646 0.9175 0.9463 ρ∗(Lγ, ω)=0.9000

Table 5. Results for Example 4.5.

γ ω n ρ(L̃γ, ω) ρ(Lγ, ω)

0 1 10 0.2302 0.2571
30 1.1575 1.1505

0.3715 0.9245 10 0.2564 0.2807
30 1.1820 1.1726

0.1258 0.4598 10 0.6411 0.6534
30 1.0777 1.0741

0.7569 0.9512 10 0.1869 0.2110
30 1.2489 1.2334
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For this example, we have ρ(L0,1) = 5.29, ρ(L1,1) = 16.40, and ρ(L̃0, 1) = 0.5211. So, the Jacobi and the Gauss-
Seidel methods diverge, while the JV and the GSV methods converge.

Remark. From Tables 1-4, it is easy to verify that the numerical results are consistent with the Theorems
in Section 2. We observe that, for strictly diagonally dominant matrix, M-matrix, L-matrix, H-matrix, the rate
of convergence of the AORV method is faster than the rate of convergence of classical AOR method, while for
Hermitian positive matrix, the AOR method is a little faster than the AORV method. From Table 5, we get that
the results are in concord with Theorem 2.24 and the Theorem 3.3 in Section 3. In this table, we observe that in
the case of L-matrix, when the Jacobi method converges, the JV method also converges, and when the JV method
diverges the Jacobi method diverges too. We also observe that when both the Jacobi and JV methods converge,
the spectral radius of the JV method is smaller than that of the Jacobi method. From Example 4.6, we see that,
there is a coefficient matrix, A6, for which the JV and GSV methods converge, but the Jacobi and the Gauss-Seidel
methods diverge.

5 Conclusion

In this paper, we introduced a new basic iterative method, called AORV method, for solving linear systems. We
showed that, for strictly diagonally dominant matrix, M-matrix, L-matrix, H-matrix, and Hermitian positive matrix,
the new generalized AOR (AORV ) method converges, provided that the parameters γ and ω take particular values.
We have shown that, for L-matrix, the rate of convergence of the JV method is faster than the rate of convergence of
Jacobi method. This method is well-defined even when some elements on the diagonal of A are zero. The numerical
tests presented in this paper show the effectiveness of the proposed method.
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