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Abstract 

In this paper, we develope the theory for generalized synchronization 
of bidirectionally coupled chaotic systems. The proposed theory is 
discussed taking Unified chaotic system and Rossler chaotic system as 
an example. Numerical simulation results are presented to show the 
feasibility and effectiveness of the approach. This synchronization 
method may be useful for sending secrete message and to understand 
synchronization of many biological systems, electronic circuits, 
chemical systems and potential applications to laser dynamics. 

Keywords: Bidirectionally coupled, Generalized synchronization (GS), 
Rossler system, Synchronization error and Unified chaotic system. 

1 Introduction 

Since the pioneer work by Pecora and Carroll [1], chaos synchronization has 

received much attention because of its fundamental importance in non-linear 

dynamics and potential applications to laser dynamics, electronic circuits, 

chemical and biological systems and secure communication. Many chaos 

synchronization and control methods [2] have been developed, such as 

backstepping design method [3], impulsive control method [4], invariant manifold 

method [5], adaptive control method [6], active control method [7], 

synchronization in unidirectionally coupled systems [8] and bidirectionally 

coupled systems [9]. 
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A pair of  dynamical systems 

               
( )

( )

X f X

Y g Y




                                                   (1) 

are said to be unidirectionally coupled if 

                        
( )

( ) ( , )

X f X

Y g Y h X Y



 
                                                       (2) 

where ( , )h X Y  is a nontrivial function of  X and Y .  

Physically, this means that in part of the phase space, the behavior of one system 

has no influence on the behavior of the other. If coupling is not unidirectional then 

it must be bidirectional. Systems are bidirectionally coupled if 

                              
( ) ( , )

( ) ( , )

X f X k X Y

Y g Y h X Y

 

 
                                                       (3) 

where ( , )h X Y  and ( , )k X Y  are nontrivial function of X and Y . 

Two dynamical systems are called synchronized if the distance between 

the corresponding states of the systems converges to zero as time goes to infinity. 

This type of synchronization is known as identical synchronization [1]. However 

in the coupled chaotic systems identical synchronization is a fairly restrictive 

concept and often difficult to achieve except under ideal conditions. Recently a 

more elaborate form of synchronization called generalized synchronization (GS) 

was proposed by Kocarev and Parlitz [10]. They formulated a condition for the 

occurence of GS for the following systems  

                          ( )X f X             driving system  
              ( , ) ( , ( ))Y g Y U g Y h X    driven system                       (4) 

where ,n mX R Y R   and 1 2( ) ( ( ), ( ),................... ( ))kU t u t u t u t  with 

0( ( , ))j ju h X t x . Here the variable ju  are introduced to include explicitly the 

case that a function ( )U h X  of  X is used for driving the response system. 

According to Kocarev and Parlitz [10] the system  (4) possess the property of GS 

between X  and  Y  if there exists a transformation : n mH R R , a manifold 

{( , ) : ( )}M X Y Y H X  , and a subset n m

X YB B B R R    with M B  such 

that all trajectories of (4) with initial conditions in the basin B  approach M as 

time t goes to infinity. If H equals to the identity transformation, this definition of 

generalized synchronization coincides with the usual definition of synchronization 

e.g. identical synchronization. Generalized synchronization (GS), which is defined 

by a time-independent nonlinear functional relation ( )Y X  between the states 

X  and Y of two systems. Experimental detection and characterization of GS from 

observed data is a challenging problem, especially in biology; e.g., for study on 

nonlinear interdependence observed in binding of different features in cognitive 

process and epilepsies in the brain. In unidirectionally coupled system, a way to 

detect GS is to make an identical copy 'Y  of the response system Y driven by the 
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common signal from the driver system X, then investigate whether orbits of both Y 

and 'Y  coincide after transient. Rulkov et.al. [11] discussed generalized 

synchronization of chaos in unidirectionally coupled chaotic systems. Hramov 

et.al. [12] proposed GS by a modified system approach. They investigated the 

physical reasons leading to GS appearance in unidirectionally coupled chaotic 

systems. In 2005 Hramov et.al. [13] explained the peculiarity of the GS onset in 

the unidirectionally coupled Rossler oscillators. Applications of GS may be more 

practical than those of identical synchronization because parameter mismatches 

and distortions always exist in the physical world. Yang and Chua [14] proposed a 

method for obtaining GS of two coupled chaotic systems via linear 

transformations. They also consider unidirectional coupled chaotic systems. Poria 

[15] discussed generalized chaos synchronization of two Lorenz dynamical 

systems via linear transformation considering unidirectional coupling. Recently in 

2012 Khan et. al. [16] have proposed generalized anti-synchronization of different 

chaotic systems. There are very few results about synchronization of 

bidirectionally coupled chaotic systems. But most of the natural system are 

bidirectionally coupled. Therefore the study of bidirectionally coupled systems are 

necessary. In this paper, we develop the theory of generalized synchronization 

(GS) of bidirectionally coupled chaotic systems. We discuss the theory 

considering two bidirectionally coupled chaotic systems. Finally simulation 

results are presented and discussed.   

2  Generalized Synchronization of Bidirectionally 
Coupled Chaotic Systems Design 

Generalized synchronization is characterized by a constant matrix. Consider the 

following chaotic systems 

                       ( , , )X f X Y t           driving system 

                       ( , , )Y g X Y t           driven system                                          (5) 

where  1 2( , ,.........., )nX x x x  and 1 2( , ,............, )nY y y y . If there exists a 

constant matrix   such that limt 0X Y   then we call that two systems 

are in a state of generalized synchronization, where  

11 12 13

21 22 23

31 32 33

  

   

  

 
 


 
  

. 

Theorem 2.1  

 

Consider the bidirectionally coupled chaotic systems in the form of  
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.

1( , )X AX h X t u                                               (6) 

                         
     

.

2( , )Y AY g Y t u  
   

                                          (7) 

 

The generalized synchronization between the system (6) and (7) will  

occur for an invertible matrix  , if the following conditions are satisfied 

                    ( ).i  1 ( , ) ( )u g Y t A A Y      

                      ( ).ii  1 1

2 ( , ) ( )u h X t BK X Y       

                      ( ).iii  the real parts of all the eigen values of (A-BK ) are negative. 

 

Proof: Define the error E X Y    between the systems (6) and (7). Then we 

obtain   
.

1 2( , ) ( , )E AX AY h X t g Y t u u        . 

Let  1 ( , ) ( )u g Y t A A Y     and 1 1

2 ( , ) ( )u h X t BK X Y      . Therefore 

                                 
.

( )E A BK E                                                    (8) 

For a feasible control, the feedback gain K  must be selected in such a way that all 

eigen values of ( )A BK  have negative real parts. Then the system (8) is 

asymptotically stable at the origin, which implies that (6) and (7) are in the state 

of generalized synchronization. i.e limt 0X Y  .   

3 Generalized Synchronization of Two Coupled 
Chaotic Unified Systems  

In this section, we consider the well-known Unified chaotic system given by 
                 = (25 10)( )x a y x   

   = (28 35 ) (29 1)y a x xz a y                                               (9) 

       
8

=
3

a
z xy z


  

where [0,1].a  For a =0, 0.8, 1 the system (9) represents the Lorenz chaotic 

system, Lu chaotic system and Chen chaotic system respectively. Practically, 

Unified chaotic system is chaotic for any [0,1].a  The system (9) can be written 

as  
.

( , )X AX h X t   

where 
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A =

(25 10) 0 0

(28 35 ) 1 0

(8 )
0 0

3

a

a

a

 
  
 

  
  
 
 

, h(x,t)= (25 10) , 29 ,
T

a y xz ay xy      (10) 

Following Theorem 1, the driving system and driven system can be constructed as 

the form of equation (6) and (7) in the following way 

1 2 1 11 2 12 1 2 1 3 13 1 2 3

74 22
(25 10)( ) {(28 35 ) (54 9) } ( )

3

a
x a x x y a y a y y y y y y  


          

 

2 1 1 3 2 21 2 1 22 2 1 3 1

23 1 2 2 11 1 12 2 13 3

(28 35 ) (29 1) {(25 10) (25 9) } {29 (28 35 ) }

5
( ) (35 28) (35 28) (28 35 )

3

x a x x x a x a y a y ay y y a y

a
y y y a y a y a y

 

   

            


       

 

3 1 2 3 31 2 1 32 2 1 1 3 33 1 2

8 74 22 88 5
{(25 10) } { (28 35 ) }

3 3 3

a a a
x x x x a y y y a y y y y y  

  
         

                                                                                                                             (11) 

  where    

11 12 13

21 22 23

31 32 33

  

   

  

 
 


 
  

 and    

2

1 3 2

1 2

(25 10)

( , ) 29

a y

g y t y y ay

y y

 
 

  
 
  

                       (12) 

and 
3 3

1 2 1 1 1 2 2 3 3 1

1 1

3 3

2 1 1 3 2 1 1 2 2 3 3 2

1 1

3

3 1 2 3 1 1 2 2 3 3

1

(25 10)( ) ( ) ( )

(28 35 ) (29 1) ( ) ( )

8
( ) (

3

i i i i i i i

i i

i i i i i i i

i i

i i i i i i

i i

y a y y k x y y y b

y a y y y a y k x y y y b

a
y y y y k x y y y b

   

   

  

 

 

 

 
       

 

 
         

 

  
      

 

 

 


3

3

1

)i

 

                 (13) 

where   

11 12 13 1

1

21 22 23 2

31 32 33 3

,

b

B b

b

  

   

  



   
   

 
   
      

  and 

1

2

3

T
k

K k

k

 
 


 
  

                           (14) 

Choose  A=

(25 10) 0 0

28 35 1 0

8
0 0

3

a

a

a

 
  
 

  
 

 
 

,  B=

1

1

1

 
 
 
  

, K=

14

11

2

T

 
 
 
  

 and 

1 3 5

2 7 9

1 0 0



 
 


 
  
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Then the error system of (8) can be written as 

                

1 1 2 3

2 1 2 3

3 1 2 3

(25 24) (25 1) 2

(14 35 ) 12 2

14
14 11

3

e a e a e e

e a e e e

a
e e e e

     

   


   

                                           (15) 

where 

                

1 1 11 1 12 2 13 3

2 2 21 1 22 2 23 3

3 3 31 1 32 2 33 3

e x y y y

e x y y y

e x y y y

  

  

  

   

   

   

                                                      (16) 

Now we give numerical simulation results to show the effectiveness of the 

proposed theory. Here Fourth-order Runge-Kutta  method is used to solve the 

system (15) with time step being equal to .001. The initial  synchronization error  

are taken as 1 2 3( (0), (0), (0)) (20,2, 10)e e e   , then the corresponding numerical  

simulation results are shown in Fig.1(a-c). Fig.1(a), Fig.1(b) and Fig.1(c) shows 

that the time evolution of the synchronization error  1 2 3

T
e e e e tends to zero 

as time goes to infinity for 0, 0.8a a   and for 1a  . Therefore generalized 

synchronization between the systems (11) and (13) are achieved. 

 

Theorem 3.1 

 

Consider the driving system in the form of  

                      
.

1( , ) ( , )X AX h X t k X Y                                           (17) 

where 
nX R , A is an n n  constant matrix. Assume that the driven system 

coupled with (17)  is as follows 

                     
.

2 2( , ) ( , )Y AY g Y t k X Y u                                      (18) 

Then for an invertible matrix  , generalized synchronization between the 

systems (17) and (18) will occur if the following conditions are satisfied. 

( ).i  1 1

2 1 2[ ( , ) ( , )] ( , ) ( , )u h X t k X Y g Y t k X Y AY A Y          

( ).ii  The real parts of all the eigen values of A  are negative.     

 



 

 

 

Generalized synchronization of……… 309 

 

 

 

 

Fig.1(a): Generalized synchronization error of bidirectional coupled unified 

chaotic system for a=0.0 i.e for the Lorenz chaotic system. 

 

 
Fig.1(b): Generalized synchronization error of bidirectional coupled unified 

chaotic system for a=0.8 i.e for the Lu chaotic system 

 

Fig.1(c): Generalized synchronization error of bidirectional coupled unified 

chaotic system for a=1.0 i.e for the Chen chaotic system. 
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Proof:  

 

Define the error E X Y   between the system (17) and (18) then we obtain   

  1 2 2( , ) ( , ) ( ( , ) ( , ) )E AX h X t k X Y AY g Y t k X Y u                   (19) 

Let 1 1

2 1 2[ ( , ) ( , )] ( , ) ( , )u h X t k X Y g Y t k X Y AY A Y          

Therefore the equation (19) becomes 

                                           E AE                                                                 (20) 

For a feasible control, we select A  such that all eigen values of A , if any have 

negative real parts then the system (19) is asymptotically stable at the origin, 

which implies that (17) and (18) are in the state of generalized synchronization. 

4 Generalized Synchronization of Coupled Rossler 
Systems 

In the second example, we study generalized synchronization of two chaotic 

Rossler systems to discuss the above theory. Otto Rossler [17], proposed the 

following system which is known as Rossler system. 

 

1 2 3

2 1 2

3 3 1( )

x x x

x x ax

x b x x c

  

 

  

                                              (21) 

where ,a b  and c  are three positive parameters. This system contains only one 

non-linear term 1 3x x  and is even simpler than Lorenz system which has two non-

linear term. In the culinary spirit of the pastry map and the backer’s map Otto 

Rossler found inspiration in a tuffy –putting machine. By pondering its action, he 

found the above set of three differential equations. The system (21) can be written 

as ( , )X AX h X t   

where     

1 1 1

1 1 0

0 0

A

c

   
 

 
 
  

,   

1

2

1 3

( , ) ( 1)

x

h X t a x

b x x

 
 

 
 
  

                                          (22) 

 

Choosing

1 1

1 2 2

1 3 1 3

( , ) ( 1)( )

y x

k X Y a y x

y y x x

 
 

  
 
  

, 

1

2 2

1 3

( , ) ( 1)

x

k X Y a x

b x x

 
 

 
 
  

 and according to 

Theorem 2, the driving system and driven system can be constructed as  
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1 1 2 3 1

2 1 2 2

3 3 1 3

( 1)

x x x x y

x x x a y

x cx b y y

    

   

   

                                                          (23) 

and 

 

1 11 1 1 2 3 12 2 1 2 13 1 3 3

2 21 1 1 2 3 22 2 1 2 23 1 3 3

3 31 1 1

( ) ( 1) ( ) ( ) ( )

( ) ( 1) ( ) ( ) ( )

(

i i i i i i i i i i i i

i i i i i i i i i i i i

i

y y y y y a y y y b y y c y

y y y y y a y y y b y y c y

y y

        

        

 

                    

                    

 

     

     

2 3 32 2 1 2 33 1 3 3) ( 1) ( ) ( ) ( )i i i i i i i i i i iy y y a y y y b y y c y                             

                                                                                                                             (24) 

 

Where 

11 12 13

21 22 23

31 32 33

  

   

  

 
 


 
  

,

11 12 13

1

21 22 23

31 32 33

  

   

  



 
 


 
    

and  

1

2

1 3

( , ) ( 1)

y

g Y t a y

b y y

 
 

 
 
  

          (25) 

 

Therefore the error dynamical system can be written as 

1 1 2 3

2 1 2

3 3

e e e e

e e e

e ce

   

 

 

                                                            (26) 

where  

 

                             

1 1 11 1 12 2 13 3

2 2 21 1 22 2 23 3

3 3 31 1 32 2 33 3

e x y y y

e x y y y

e x y y y

  

  

  

   

   

   

                                                (27) 

 

Now we give numerical simulation results to discuss the matter. Here Fourth 

order Runge-Kutta method is used to solve the system (26). Let

1 3 5

2 7 9

1 0 0



 
 


 
  

 

and the parameter of Rossler system are chosen as 0.2a b  and 5c  . The 

initial states for the synchronization error system are given 

by 1 2 3( (0), (0), (0)) (20,2, 10)e e e   , then the corresponding numerical simulation 

results are shown in Fig.2. Figure shows the time evolution of the synchronization 

error  1 2 3

T
e e e e tends to zero as time goes to infinity for the Rossler chaotic 

system. 
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Fig.2: Generalized synchronization error of bidirectional coupled Rossler chaotic 

system. 

5 Conclusion  

We have proposed a scheme for generalized synchronization of bidirectionally 

coupled chaotic systems. We discuss the theories considering coupled Unified 

chaotic system and Rossler system. Our numerical simulation results show the 

efficiency of the proposed scheme. This scheme may be useful for sending secrete 

message and to understand synchronization of many biological systems e.g. for 

study of nonlinear interdependence observed in binding of different features in 

cognitive process and epilepsies in the brain. 
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