

Copyright © 2016 Mohamed Tahar Ben Othman. This is an open access article distributed under the Creative Commons Attribution License,

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Journal of Advanced Computer Science & Technology, 5 (2) (2016) 28-33

Journal of Advanced Computer Science & Technology

Website: www.sciencepubco.com/index.php/JACST

doi: 10.14419/jacst.v5i2.6079

Research paper

Survey of the use of genetic algorithm for

multiple sequence alignment

Mohamed Tahar Ben Othman *

Senior Member, IEEE, Computer Science Dept., College of Computer,

Qassim University, Kingdom of Saudi Arabia

*Corresponding author E-mails: maathaman@qu.edu.sa, mtothman@gmail.com

Abstract

Multiple Sequence Alignment (MSA) is used in genomic analysis, such as the identification of conserved sequence motifs, the estimation

of evolutionary divergence between sequences, and the genes’ historical relationships inference. Several researches were conducted to

determine the level of similarity of a set of sequences. Due to the problem of the NP-complete class property, a number of researches use

genetic algorithms (GA) to find a solution to the multiple sequence alignment. However, the nature of genetic algorithms makes the

complexity extremely high due to the redundancy provided by the different operators. The aim of this paper is to study some proposed

GA solutions provided for MSA and to compare them using some criteria which we believe any solution should comply with in matters

of representativeness, closeness and original sequence invariance.

Keywords: Genetic Algorithms; Multiple Sequence Alignment; Representation Closeness; Representativeness; Sequence Invariance.

1. Introduction

Genetic algorithms are search heuristics which mimic the natural

selection process. They are used to generate good solutions

to optimization and search problems. Genetic algorithms belong to

the larger class of evolutionary algorithms (EA). They generate

solutions to the optimization problems using techniques inspired

from natural evolution, such as inheritance, mutation, selection,

and crossover. The general GA algorithm is described in Fig. 1:

1) Randomly generate the first population of n chromosomes
2) Evaluate the fitness function for each chromosome

3) Repeat the following steps to create new population

4) Select two parent chromosomes to crossover (with the crossover
rate) and generate offspring(s)

5) offspring(s) mutation (with the mutation rate)

6) Evaluate the fitness of the offspring(s)
7) Select chromosomes for discard (this can be done at the each new-

born level, (offspring(s) inside the loop within a population or at the

population level outside the loop)

Fig. 1: Generic Genetic Algorithm.

The algorithm generally terminates either by reaching a chosen

number of generations or by attaining the stability of the best-found

fitness. The fitness stability can be caused by a local optimum.

There are several parameters that should be chosen before starting

this algorithm: beginning with the chromosome representation,

then going through the process of choosing the number of chromo-

somes in the first population, completing a fitness calculation, initi-

ating a parent selection, defining the crossover operator and rate,

the mutation operator and rate, and the number of offspring(s),

activating the discard technique and ending with deciding the way

of the algorithm termination.

The aim of this paper is to focus on these different GA parameters

used in MSA through a set of researchers. We will use the same

randomly generated DNA sequences given in Fig. 2 throughout this

paper:

S1
S2

S3

S4

TTATGACGTT
ATTCTACTTT

GATTGTGCGA

GACAATGCTA

Fig. 2: Used Set of Sequences.

2. Chromosome representation

The chromosome representation is mainly chosen to:

a) Adapt to the optimization problem (here MSA) to GA oper-

ators

b) Simplify the alignment so that most of the operations will

be done on the representation and not on the aligned se-

quences.

c) Optimize the processing and reduce the complexity

To be able to achieve these objectives, we believe that the pro-

posed solution should comply with the following rules:

a) Closeness: Any operation should be close to the representa-

tion space in a way that after the operation is performed on

a chromosome, the result should remain within the criteria

set for the representation. Otherwise, the process may be left

with some chromosomes that can be either truncated or not

be represented at all, which drifts away from the process’

goal.

b) Representativeness: A representation should be able to rep-

resent any possible alignment even in a reduced space (i.e.

by fixing the maximum number of gaps).

c) Sequence Invariance: An operation on a representation

should not damage any original sequence. Otherwise, the

http://creativecommons.org/licenses/by/3.0/
http://www.sciencepubco.com/index.php/JACST
mailto:maathaman@qu.edu.sa
mailto:mtothman@gmail.com
http://en.wikipedia.org/wiki/Search_algorithm

Journal of Advanced Computer Science & Technology 29

alignment solution may not be a solution of the original se-

quences.

Besides these rules, the main issue in genetic algorithms is the

considerable time of execution. The condition to reduce the execu-

tion time is to have genetic algorithm operators that lead to con-

vergence, which is difficult to achieve considering the nature of

these kind of functions. Researchers are attempting to have this

convergence by selecting the best fitness; and the trigger to stop

the execution is either a maximum number of populations or a

threshold level of fitness value set as parameters. Both of these

choices may not lead to an accepted solution.

There are several chromosome representations used in different

research papers among which hose discussed below.

2.1. Bit matrix and quantum representation

A chromosome is a NxM bit matrix [3] or Quantum Representa-

tion [4]. As showed in Fig. 3, a sequence, including gaps, in an

alignment is represented as a bit string. In this bit string, `1' (or '0')

corresponds to a gap, and the total number of `0's (or '1's) repre-

sents the length of the sequence. The alignment is expressed as a

matrix, which is a vertical arrangement of the bit strings.

0 0 1 0 1 1 0 1 1 0 0 0 0 0 0
0 1 1 0 1 0 1 0 0 0 0 0 0 0 0

1 0 0 0 0 1 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

TT-A--T--GACGTT
A--T-T-C-TACTTT

-GATT-G-TGCGA

GACAATGC-TA
Chromosome Correspondent Alignement

Fig. 3: Bit String Representation.

This representation can be used to implement the alignment algo-

rithm using hardware to reduce the execution time, but it does not

take into account the different nucleotides which must be managed

in parallel, and thus contrary to the chromosome representation

goal.

2.2. Steady GA

A steady GA is used in [7] that represents a chromosome with an

N*M matrix (N is the number of sequences and M is the size of

the longest sequence extended by 30% of gaps). Each row i de-

scribes the gap positions in ith sequence as presented in Fig. 4.

3 5 6 8 9 0 0 0 0 0 0 0 0 0 0

2 3 5 7 9 0 0 0 0 0 0 0 0 0 0

1 6 8 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TT-A--T--GACGTT

A--T-T-C-TACTTT

-GATT-G-TGCGA
GACAATGC-TA

Chromosome Correspondent Alignement

Fig. 4: Gaps Indexes Representation.

2.3. Permutation representation

A permutation solution PS in [13] is associated with each align-

ment solution. PS is a matrix MxN for M sequence with the total

size, including gaps, represented by N. Each row represents the

indexes of their elements in the alignment. If the original sequence

size is n, then the first n elements of the row are the new indexes

of the original sequence elements and the remaining represent the

gaps positions. Fig. 5 provides an example:

1 2 4 7 10 11 12 13 14 15 3 5 6 8 9

1 4 6 8 10 11 12 13 14 15 2 3 5 7 9

2 3 4 5 7 9 10 11 12 13 14 15 1 6 8

1 2 3 4 5 6 7 8 10 11 12 13 14 15 9

TT-A--T--GACGTT

A--T-T-C-TACTTT

-GATT-G-TGCGA

GACAATGC-TA

Chromosome Correspondent Alignment

Fig. 5: Permutation Representation.

Both representations in 2.2 and 2.3 use the sequences indexing. In

the first, the focus is in only the gaps indexes, whereas in the sec-

ond, all sequences including gaps indexes are used. For the same

chromosome, the first representation is included at the end of the

second representation. Although the 2-2 representation is more

concise and any different permutation of the gaps’ indexes in the

2-3 is representing the same sequence, the GA functions over a

permutation is easier.

2.4. Adaptive genetic algorithm

In [8] there is no particular representation of the chromosome as

the sequences themselves are used directly which does not reduce

the complexity of sequences management.

2.5. Divide and conquer

This method is used in [10] wherein each DNA gene is represent-

ed by two bits as shown in Table 1:

Table 1: DNA Coding

DNA Data DNA Symbol New Format

Adenine A 00

Cytosine C 01

Guanine G 10

Thymine T 11

The chromosome is then a set of binary strings. Fig. 6 shows an

example of using this representation:

S1
S2

S3

S4

TTATGACGTT
ATTCTACTTT

GATTGTGCGA

GACAATGCTA

11110011100001101111
00111101110001111111

10001111101110011000

10000100001110011100

Fig. 6: Bit Coding Representation.

The chromosome representation is mainly used to ease the GA

operators by reducing the overall complexity of this algorithm.

What distinguishes this technique is that all GA operations should

be done at the gene level and not at bit level as it is done in [10].

Crossover and mutation that were presented in the paper are exe-

cuted in bit level which may modify the main DNA original se-

quences. Moreover, there is no gap representation. Table 2 gives a

comparison between all studied representation techniques vs. the

performance criteria set described at the beginning of this paper.

Table 2: Representations vs. Performance Criteria

Repre-

senta-

tion

Performance Criteria

Closeness
Representative-

ness
Invariance

Q
u

an
tu

m
 R

ep
re

se
n
ta

ti
o

n

This Representation

Aims To Simplify

The Processing
Through Parallelism

And/Or By Building

A Hardware Solu-
tion. Certainly, If

The Operations Are

Respecting Even Bit
Boundary, The

Result Of Falls Into

The Representation
Space.

The Gap Is Not

And Cannot Be
Represented As

Only Two Bits

Are Used.

Some Proposed

Solutions While
Processing At A

Bit Level Do Not

Specify How To
Keep The Origi-

nal Sequences
Invariant. If The

Operations Are

Completed At
The Bit Level It

Certainly Impacts

The Invariance.
For Example In

[10] The Differ-

ent Genes Are
Represented With

Two Bits, If An

Operation Is
Done At The Bit

Level A Gene 'A'

May Change To
'C' By Changing

The First Bit.

D
iv

id
e

A
n
d

 C
o

n
q
u

er

30 Journal of Advanced Computer Science & Technology

B
it

 M
at

ri
x

In The Proposed

Representation In

[3] A Bit Is A Gap
Or A Gene. The

Major Problem In

This Solution Is A
Ga Operator (I.E.

Crossover) May

Include More Gaps
Than Supported And

Then Part Of The

Sequence Will Not
Be Represented.

This Solution Is

Generally Not

Representative
As A Static

Matrix Cannot

Hold All Chro-
mosomes Un-

less A Maxi-

mum Number
Of Gaps Is

Allowed,

Which Will
Add More

Complexity In

Tracking The
Number.

The Representa-

tion, While It Is

Respecting The
Rules 1 And 2,

Does Not Impact

The Original
Sequences.

S
te

ad
y

 G
a

Although, It May Be

Easily Managed,

The Number Of

Gaps Are Either

Maximized, Which
Complicates Its

Management, Or -

For More Flexibility
- It Is Not And An

Operation Adding

Gaps May Conclude
With The Total

Matrix Not Close To

The Predefined
Space. Also, All

Numbers Represent-

ing The Gaps Index-
es Should Be Main-

tained Distinct.

Both Solutions

Are Representa-
tive If The

Number Of

Gaps Is Delim-
ited. While

There Is More

Flexibility In
The First Solu-

tion, There Is

No Need For
Tracking In The

Second, Which
Reduces The

Complexity.

With The Need
For Extra-

Management In

The Steady Solu-
tion When Gaps

Flexibility Is

Used, Both Solu-
tions Do Not

Impact The Orig-

inal Sequences.

P
er

m
u

ta
ti

o
n

 R
ep

re
se

n
ta

ti
o
n

Although Different
Permutations May

Represent The Same

Chromosome, With-
out Any Complexity

Increase, All Ga

Operation Is Close
To This Representa-

tion.

A
d

ap
ti

v
e

G
e-

n
et

ic
 A

lg
o

-

ri
th

m
 As seen in [8], the authors are using the sequences themselves

and not a transformation. All rules are respected at the cost of
the processing complexity.

3. Gap insertion

Symbolized by the ‘-’ character in alignments, gaps are used to

align the sequences. They represent the insertion or deletion of a

gene, or genes, in one of the genetic sequences. They give the

ability to account the addition or missing information between

aligned sequences. It is comparable to the problem of missing

information in deteriorated or damaged papyrus fragments [9].

Gaps are inserted in sequences so that the same genes in different

sequences will be on top of each other as frequently as possible.

Each gap introduces a penalty. Some papers [1] use different

methods of scoring gaps: opening, extending and terminal gaps,

which may have different penalties.

3.1. First generation

Most of the research papers create the first generation randomly,

depending on the chromosome representation. Random means that

the gaps are randomly inserted in the different sequences. The

papers that penalize differently gaps generally give the lowest

penalty for the first population inserted gaps.

3.2. Fitness function

Most of the papers use the Sum of Pair Method, which is the sum

of fitness values between all pairs of sequences. The main differ-

ence is how to calculate the similarity (fitness) of two sequences.

3.3. Weighted sum of pair method (WSPM)

Alignment cost(A) = ∑ ∑ Wi,j
i−1
j=1

N
i=2 cost(Ai, Aj) (1)

Where cost is the score of the similarity between two sequences

(Ai and Aj) and Wi,j is their weight.

3.4. Score coffee

The score COFFEE described in the equation 2 is used in [4].

Alignment cost(A) =
∑ ∑ Wi,j

N
j=i+1

N−1
i=1 cost(Ai,Aj)

∑ ∑ Wi,j∗LenN
j=i+1

N−1
i=1

 (2)

3.5. Gap penalty distinction

To impose a start-up penalty for new gaps a distinction between

“gap groups” and “individual gaps” is introduced in [2]. The fit-

ness in this work is calculated by adding 1 for each matching pair

of symbols, and subtracting 4 for every group of consecutive gaps,

and 0.4 for each individual gap.

fitness = (total matches) * 1.0 - (gap penalties) (3)

gap penalties = (gap groups) * 4.0 + (total number of gaps) * 0.4

In [13] there is no difference between the different gaps, but there

is a penalty of -1 if there is no match between genes and of -2 if

there are a gene and a gap. The gain of a match is 2.

3.6. Score matrix

Most algorithms define a score matrix to define the cost (Ai, Aj)

for all Ai, Aj  {A, C, G, T, -}:

Table 3: Score Matrix Used in [8]

 A C T G -

A 0 5 2 5 10

C 5 0 5 2 10
T 2 5 0 5 10

G 5 2 5 0 10

- 10 10 10 10 0

Table 4: Score Matrix Used in [12]

 A C T G -

A 1 -1 -1 -1 -2

C -1 1 -1 -1 -2

T -1 -1 1 -1 -2
G -1 -1 -1 1 -2

- -2 -2 -2 -2 0

The values in the score matrix do not change for all the processing

time except for those penalizing the gaps differently. Also, most

papers do not give biological reasons behind the values they pro-

pose, as seen in Table 3 and Table 4, barring those using the Point

Accepted Mutation, also known as PAM [11] or the Blocks Sub-

stitution Matrix (also called BLOSUM matrix) [9]. PAM describes

the replacement of an amino acid in the primary structure of

a protein with another amino acid. There are several PAM ver-

sions. The most used is pam250. The score matrix is used to cal-

culate the fitness, which has to be either minimized when it de-

scribes the penalty, as shown in table 1, or maximized when it

describes the similarity as demonstrated in table 2. The Blocks

Substitution Matrix (also called BLOSUM matrix) [9] - based on

conserved blocks bounded in similarity - was calculated by ex-

tracting sections of alignment from a database of observed genetic

https://en.wikipedia.org/wiki/Protein

Journal of Advanced Computer Science & Technology 31

sequence alignments. Once the relative frequencies for each amino

acid were calculated, a log-odds ratio was recorded for every pos-

sible amino acid substitution pair. The formula for constructing

the BLOSUM matrix is:

Sij =
1


log (

pij

qiqj
) (4)

Where pij is the probability of two amino acids i and j replacing

one another in any sequence and qi is the background frequency of

finding amino acid i in any sequence. λ is a scaling factor.

4. Selection technique

In Genetic Algorithm, the selection mechanism is a process that

aims to recruit the better individuals for the next generation. The

selection technique provides a way to selectively favor the better

individuals. The selection technique is used to select the parent

chromosomes for crossover and mutation, which produces off-

spring children. Several selection techniques are used:

4.1. Random

Two parents are randomly selected each time for crossover. This

technique is simple, but cannot always lead to the most beneficial

results.

4.2. Best fitness

This technique needs a sorted population, which adds complexity,

believing that "the best parents potentially give better offspring,"

which is not always true.

4.3. Tournament selection

Each time a number of individuals (called the tournament size) is

chosen from the population at random. For the crossover, from the

pool/tournament choose the best individual as the first parent with

probability p and choose the second best individual as the second

parent with probability p*(1-p). If p=1, the best fitness individual

will be chosen.

4.4. Proportional selection

There are different algorithms for proportional selection. The most

popular are:

 Roulette Wheel Selection (RWS),

 Stochastic Reminder Roulette Wheel Selection (SRRWS),

and

 Stochastic Universal Sampling (SUS).

In this technique, a probability of selection is associated with each

chromosome. The probability of a chromosome i with a fitness fi

is calculated using the equation:

pi =
fi

∑ fj
N
j=1

, where N is the total number of chromosomes (5)

4.5. Ranking selection

The Ranking selection is identical to the proportional selection;

however, it commences by ranking the chromosomes using their

fitness, which helps to avoid premature convergence.

5. Crossover operation

Several types of crossover operators are proposed in the research

field. This operator is based on an analogy with biological crosso-

ver:

5.1. One-point crossover

The first parent is cut straight at some randomly chosen position

and the second one is tailored so that both right and left pieces of

each parent can be joined while respecting the invariance rule of

the original sequences. Any void space that appears at the junction

point is filled with gaps. This technique is used in [1]. An example

is given in Fig. 7:

-TTATGA---CGTT

AT-TCT-ACTT--T

--GAT-TGTGCG-A
G-AC-A-ATGC-TA

TTATGA---CGTT

ATTCT-ACTT--T

GAT-TGTGCG-A
GAC-A-ATGC-TA

Alignment Parent 1

Alignment Offspring 1

TTATG-ACG---TT

ATT-CTA-C--TTT

GATTG-TGCG--A-
GACAA-T-GCTA--

-TTATG-ACG---TT

AT-T-CTA-C--TTT
--GATTG-TGCG--A-

G-ACAA-T-GCTA--

Alignment Parent 2 Alignment Offspring 1

Fig. 7: One-Point Crossover.

5.2. Uniform crossover

Promotes multiple exchanges between two parents at gene level

rather than the segment level. The algorithm consists of two main

steps. Step 1 seeks to find the consistent positions in the parents’

alignments. Step 2 exchanges the subsequences between two posi-

tions with a probability typically equal to 0.5. Two positions are

considered consistent between two alignments if, in each row,

they contain the same residue or a gap. The main flaw of this

technique is that it fails in most cases to satisfy the invariance rule.

In [1], a position is a column of residues or gaps in an alignment.

This technique may work mainly for sequences with high similari-

ty. To preserve the sequence invariance, the definition of con-

sistency given in [1] should be extended to the fact that all genes

before the position should be the same in the same rows in the

parent alignments. On the other hand, forcing column (same posi-

tion in all sequences) reduces the number of possibilities failing

the invariance rule.

5.3. Window-frame crossover

The window-frame crossover is used in [3]. Some windows are

selected in each parent, and they are copied in the same sequences

in a copy of the second parent. The main setback of this technique

is that it fails the representativeness rule when the number of gaps

exceeds a certain threshold. Fig. 8 presents an example of a win-

dow-frame crossover:

As demonstrated, it cannot preserve the maximum number of gaps

that are used in a sequence, which may lead to the lack of repre-

sentation of some gaps or genes in the chromosome; or they can

be simply considered dummies (they exist but with no effect). The

result of such alignment cannot be considered as nearly optimal as

not all possible alignments can be represented.

5.4. Partially matched crossover (PMX)

Let p1 and p2 represent parent chromosomes in permutations

space. Two random numbers between 1 and the length n are gen-

erated and set as Lower-Level (LL) and Upper-Level (UL) as

showed in Fig. 9. The segment of p1 between LL and UL is copied

to form a partial list of offspring po in the same position as it ap-

pears in p1. All the remaining positions in po are copied in order

from p2. This technique is used in [13].

https://en.wikipedia.org/wiki/Probability

32 Journal of Advanced Computer Science & Technology

10000001110000

00101000000110

11000000100010

01001010000100

10000010000000

00101000000110

11000000100010

01000010100000

Parent 1
Crossover

Offspring 1

00000100011100

00010001011000

00000100001101

00000101000011

00000011100000

00010001011000

00000100001101

00001010000101

Parent 2

 Offspring 2

-TTATGA---CGTT
AT-TCT-ACTT--T

--GAT-TGTGCG-A

G-AC-A-ATGC-TA

-TTATG-ACGTT
AT-TCT-ACTT--T

--GAT-TGTGCG-A

G-ACAA-T-GCTA
Alignment Parent 1

Alignment Offspring 1

TTATG-ACG---TT
ATT-CTA-C--TTT

GATTG-TGCG--A-

GACAA-T-GCTA--

TTATGA---CGTT
ATT-CTA-C--TTT

GATTG-TGCG--A-

GACA-A-TGCT-A-
Alignment Parent 2 Alignment Offspring 1

Fig. 8: The Window-Frame Crossover.

P1 3 9 5 4 6 10 7 8 1 2

P2 10 4 5 2 9 7 3 6 1 8
 LL=3, UL=7

P3 2 9 5 4 6 10 7 3 1 8

Fig. 9: Crossover Illustration.

5.5. Position based crossover (PBX)

The algorithm of the PBX [13] can be summarized as follows:

 Select randomly a set of position from one permutation.

 Produce a proto-permutation child by copying genes (ele-

ments) on these positions into the corresponding position of

the proto-permutation child.

 Delete genes, which are already selected from the second

permutation. The resulting sequence of permutations ele-

ments contains the elements of the proto-permutation

child’s needs.

 Place the chromosomes (permutations) into the unfixed po-

sition of the proto child from left to right according to the

order of the sequence to produce one offspring (permuta-

tion). Fig. 10 gives an illustration of PBX crossover:

Selected Points

    

1
7 8 1 4 2 6 5 3 9

    
*

4 8 3 1 2 6 7 5 9

2
6 4 8 3 1 9 2 7 5

Fig. 10: Crossover PBX Illustration.

5.6. Cycle crossover (CX)

Fig. 11 presents an illustration of CX crossover [13]. Starting from

a position in the permutation of one sequence and copying the

index at the same position in the offspring, the next element from

the same sequence has the index with the value having the same

position as the first in the second sequence. This process is repeat-

ed until a cycle is found (return to the starting point). All remain-

ing values are copied from the permutation of the second se-

quence.

Selected Points

 

P1 7 1 8 4 6 2 5 9 3

    

P2 6 4 7 3 9 1 2 8 5

     
po 7 4 8 3 6 1 2 9 5

Fig. 11: Crossover CX Illustration.

5.7. Hybrid crossover (HX)

The Hybrid Crossover aims to randomly use one of the sets of

different crossovers operators [13].

6. Mutation operation

6.1. Delimited position mutation

In this mutation, a delimited position (dp) is selected for the per-

mutation [13], as shown in Fig. 12. This position divides the per-

mutation into two parts from which two alleles are randomly se-

lected and exchanged.

P 2 4 5 8 6 10 7 3 9 1

 dp=4

Pm 2 4 7 8 6 10 5 3 9 1

Fig. 12: Delimited Position Mutation.

6.2. Island shift mutation

The island shift mutation is used in [3]. Some windows, called

islands, are selected in some sequences as presented in Fig. 13.

The mutation point is selected either at the beginning or at the end

of the island and the mutation is done by a shift between this point

and the opposite.

10000001110000

00001000000110

11000111100010

00001010000100

Mutation

10010000110000

00000000001110

11100011010010

00001010000100

a- Offspring before b- Offspring after

-TTATGA---CGTT

ATTC-TACTT--T

--GAT----TGT-GCGA
GACA-A-TGCT-A

-TT-ATGA--CGTT

ATTCTACTTT---

---GAT--T-GT-GCGA
GACA-A-TGCT-A

c- Alignment before d- Alignment After

Fig. 13: The Island-Shift Mutation.

6.3. Mutation operations discussion

We start with the last kind of mutation operation namely "Island

shift mutation" on a binary chromosome representation, where '1'

represents a gap. As aforementioned in the crossover using this

kind of chromosome representation, the mutation may lead to

inconsistency and the failing representativeness rule (as we can

see in the alignment in Fig. 13-d compared to the alignment repre-

sentation in Fig. 13-b). The size of the array is static, and then

when doing the mutation operation, we may insert more gaps than

authorized or replace some 0's with 1's, which may lead to some

genes or gaps not being represented on the chromosome represen-

tation. An example is given in the sequence 2, where the last zero

in the offspring after the mutation holds no significance. Also in

sequence 3, the last three genes are not represented in the matrix

and no possibility is given to insert a gap in them, which means

that the proposed solution may not lead to a good result and it

cannot cover all of them.

Journal of Advanced Computer Science & Technology 33

7. Cross-over and mutation probabilities

Although most of the research papers use a probability of one (1)

for crossover and mutation operations, some include probabilities

such as:

Pm =
−1

1+e−k2∗∆
+ 1.0, ∆= favg − fmax (6)

(favg, (resp fmax)is the average (resp max)fitness value of a population)

8. Discard techniques

Most of the papers use the same population size over the time of

the execution. To maintain this size, a discard technique should be

periodically executed. This period can be between every two pop-

ulations or after the arrival of each new offspring resulting from a

crossover and mutation operations. There are several techniques

among which a) discarding those having poor fitness, b) discard-

ing randomly, are options. In some papers, a hybrid solution is

used where only the better of the two children is kept [1] and be-

tween two populations a global discard is done. The latter has an

effect only if the new offspring is active in its birth population,

which generally is not the case unless the selection technique is

random.

9. Conclusion

The aim of this study is to validate different genetic algorithm

operators used for multiple sequence alignment against the rules

of representativeness, closeness, and invariance. Although, Bit

matrix, Adaptive Genetic Algorithm, and Permutation representa-

tion have full representativeness, only the latter two meet the

closeness and original sequence invariance. The difference of

complexity of the execution depends mainly on the way the fitness

is calculated. More precisely, it depends on the reduction of the

number of original sequences comparisons. This is more thor-

oughly dissected in [13, 17] using the Permutation representation.

The main common setback for all mentioned solutions, to the

exception of those using hardware, is how to ensure the conver-

gence by reducing the work space each time. This can be achieved

by reducing the redundancy provided by the nature of genetic

algorithms, which will be focused on in the future work.

References

[1] C. Notredame, D.G. Higgins, "SAGA: Sequence

Alignment by Genetic Algorithm", Nucleic Acid Research, Vol. 24,

1515-1524, 1996 http://dx.doi.org/10.1093/nar/24.8.1515.
[2] Kosmas Karadimitrion and Donald H. Kraft, “Genetic Algorithms

and The Multiple Sequence Alignment Problem in Biology”,

Proceedings of the Second Annual Molecular Biology and
Biotechnology Conference, Baton Rouge, LA., February 1996.

[3] Isokawa M, Wayama M, Shimizu T, “Multiple sequence alignment

using a genetic algorithm”, Genome Informatics, 1996, 7:176–177.
[4] Layeb, A. ; Meshoul, S. ; Batouche, M., "Multiple sequence

alignment by quantum genetic algorithm", 20th

International Parallel and Distributed Processing Symposium
(IPDPS), 2006, http://dx.doi.org/10.1109/IPDPS.2006.1639617.

[5] Naznin F, Sarker R, Essam D. "Vertical decomposition with Genetic

Algorithm for Multiple Sequence Alignment.", BMC

Bioinformatics 2011; 12:353; PMID:21867510;

http://dx.doi.org/10.1186/1471- 2105-12-353.

[6] Naznin, F. ; Sarker , R. ; Essam, D., "Progressive Alignment
Method Using Genetic Algorithm for Multiple Sequence

Alignment", IEEE Transactions on Evolutionary Computation, Vol

16, Issue: 5, http://dx.doi.org/10.1109/TEVC.2011.2162849.
[7] Pramanik, S. ; Setua, S.K., "A steady state Genetic Algorithm for

Multiple Sequence Alignment", International Conference on
Advances in Computing, Communications and Informatics

(ICACCI), 2014, http://dx.doi.org/10.1109/ICACCI.2014.6968251.

[8] Liu Chao ; Liu Shuai, "The research on DNA multiple sequence

alignment based on adaptive immune genetic algorithm",

International Conference on Electronics and Optoelectronics
(ICEOE) , 2011, Vol 3,

http://dx.doi.org/10.1109/ICEOE.2011.6013304.

[9] Williams, A.C. ; Carroll, H.D. ; Wallin, J.F. ; Brusuelas, J. ;
Fortson, L. ; Lamblin, A.­ F. ; Haoyu Yu, "Identification of Ancient

Greek Papyrus Fragments Using Genetic Sequence Alignment

Algorithms", IEEE 10th International Conference on e­ Science (e­
Science), 2014, Vol 2, http://dx.doi.org/10.1109/eScience.2014.14.

[10] Al Junid, S.A.M. ; Reffin, M.S. ; Majid, Z.A. ; Tahir , N.M. ; Har
on, M.A., "Implementation of genetic algor ithm for optimizing

DNA sequence alignment", IEEE Business Engineering and

Industrial Applications Colloquium (BEIAC) , 2012.
http://dx.doi.org/10.1109/BEIAC.2012.6226111.

[11] Naznin, F. ; Sarker , R. ; Essam, D., "DGA: Decomposition with

genetic algorithm for multiple sequence alignment", IEEE
Symposium on Computational Intelligence in Bioinformatics and

Computational Biology (CIBCB) , 2010,

http://dx.doi.org/10.1109/CIBCB.2010.5510595.
[12] Miranda, L.A. ; Caetano, M.A.F. ; Melo, A.C.M.A. ; Correa, J.M. ;

Bordim, J.L., "Multiple Biological Sequence Alignment with a

Parallel Island Injection Genetic Algorithm", 12th IEEE
International Conference on High Performance Computing and

Communications (HPCC) , 2010,

http://dx.doi.org/10.1109/HPCC.2010.31.
[13] Ben Othman, M.T. ; Abdel­ Azim, G., "Multiple sequence

alignment based on genetic algorithms with new chromosomes

representation", Electro-technical Conference (MELECON) , 2012
16th IEEE Mediterranean,

http://dx.doi.org/10.1109/MELCON.2012.6196603.

[14] Kumar S, Filipski A (2007) Multiple sequence alignment: In pursuit
of homologous DNA positions. Genome Res 17: 127–135.

http://dx.doi.org/10.1101/gr.5232407.

[15] T. Manning, R.D. Sleator, P. Walsh, Naturally selecting solutions:

The use of genetic algorithms in bioinformatics, Bioengineered 4

(2012) 266–278. http://dx.doi.org/10.4161/bioe.23041.

[16] Amouda Nizam, Jeyakodi Ravi, and Kuppuswami Subburaya,
"Cyclic Genetic Algorithm for Multiple Sequence Alignment",

International Journal of Research and Reviews in Electrical and

Computer Engineering (IJRRECE), Vol. 1, No. 2, June 2011.
[17] Mohamed Tahar Ben Othman, Gamil Abdel-Azim, "Genetic

Algorithms with Permutation Coding for Multiple Sequence

Alignment.", Recent Patent DNA Gene Seq. 2013: 22974260,
VOLUME: 7, ISSUE: 2, Page: [105 - 114], Pages: 10,

http://dx.doi.org/10.2174/1872215611307020004.

http://dx.doi.org/10.1093/nar/24.8.1515
http://ieeexplore.ieee.org.ezproxy.qu.edu.sa/search/searchresult.jsp?searchWithin=p_Authors:.QT.Meshoul,%20S..QT.&newsearch=true
http://ieeexplore.ieee.org.ezproxy.qu.edu.sa/search/searchresult.jsp?searchWithin=p_Authors:.QT.Batouche,%20M..QT.&newsearch=true
http://dx.doi.org/10.1109/IPDPS.2006.1639617
http://dx.doi.org/10.1109/TEVC.2011.2162849
http://dx.doi.org/10.1109/ICACCI.2014.6968251
http://dx.doi.org/10.1109/ICEOE.2011.6013304
http://dx.doi.org/10.1109/eScience.2014.14
http://dx.doi.org/10.1109/BEIAC.2012.6226111
http://dx.doi.org/10.1109/CIBCB.2010.5510595
http://dx.doi.org/10.1109/HPCC.2010.31
http://dx.doi.org/10.1109/MELCON.2012.6196603
http://dx.doi.org/10.1101/gr.5232407
http://dx.doi.org/10.4161/bioe.23041
http://abdel-azim.g.lib.bioinfo.pl/auth:Abdel-Azim,G
http://dx.doi.org/10.2174/1872215611307020004

