

Journal of Advanced Computer Science and Technology, 2 (1) (2013) 9-27

©Science Publishing Corporation

www.sciencepubco.com/index.php/JACST

Identifying the effect of model modifications in State-Based models

and systems

Luay Tahat
1
, Nada Almasri

2
*

Management Information Systems Department, Gulf University for Science and Technology

1 E-mail: tahat.l@gust.edu.kw
2*Corresponding author E-mail: almasri.n@gust.edu.kw

Abstract

System modeling is a widely used technique to model state-based systems. System models are often used during the

development of a software system, e.g., in partial code generation and in test generation. Several modeling languages

have been developed to model state-based software systems, e.g., EFSM, SDL, and State Charts. Although state-based

modeling is very useful, system models are usually large and complex, and they are frequently modified because of

specification changes. Identifying the effect of these changes on the model and consequently on the underlying system

is usually challenging and time-consuming. In this paper, we present an approach to automatically identify the effect of

modifications made to the model. The goal is to identify those parts of the model that may exhibit different behaviors

because of the modification. These are usually critical parts of the system that should be carefully tested. In this

approach, the difference between the original model and the modified model is identified, and then the affected parts of

the model are computed based on model dependence analysis. An empirical study on different EFSM models is

performed in order to identify the affected parts of the model after a modification. The results of the study suggest that

our approach could considerably reduce the amount of time and efforts spent to validate the model after a modification.

Keywords: EFSM, Model Dependence Analysis, State-Based Systems, System Modeling.

1 Introduction

The demand for large and complex software systems has been steadily increasing over time. The development and

maintenance of these systems are difficult and costly due to the increased complexity of the systems. In recent years,

several new technologies have emerged, which have made a significant impact on new ways of software development.

One of these technologies is a development of modeling techniques to model state-based software systems. System

models are often used during the development of a software system, mainly in partial code generation and in test

generation for model-based testing. Typically, state-based systems can be modeled using formal description languages.

Several modeling languages have been developed to model state-based software systems such as: State Charts [19, 11,

12, 13], Extended Finite State Machines (EFSM) [20, 14, 15], Specification Description Language (SDL) [21, 16, 15],

Virtual Finite State Machine (VFSM) [18], and ESTELLE [19]. In recent years, several model-based test generation

[20, 22, 23, 24-26] and test suite reduction [9, 13] techniques have been developed based on these modeling languages.

System modeling reduces ambiguity, misunderstanding, and misinterpretation of system specifications. However,

modern systems tend to be very large and complex [27, 47] and, as a result, they are hard to understand, difficult to

modify and debug [28, 29, 27, 47].

During software maintenance of large and evolving software systems, their specification and implementation are

modified to fix defects, to enhance or change functionality, to add new functionality, or to delete the existing

functionality. Modifications in specifications frequently lead to modifications in system models. After a modification is

made to the model, the developer may be interested in parts of the model that affect the modification (modified parts of

the model) and parts of the model affected by the modification. Typically, modified models are only used to understand

the modifications made in the model. However, developers may have difficulties understanding the effect of

modifications on the system model and consequently on the system especially for large system models. Thus, there is a

need for techniques that can support understanding of model modifications and identifying their effect on the system.

In this paper, we present an approach of identifying the effect of model-based modifications. The goal is to identify

those parts of the model that are related to the modification and may exhibit different behavior because of the

http://www.sciencepubco.com/index.php/JACST

10 Journal of Advanced Computer Science and Technology

modification. We concentrate on EFSM models; however, the presented approach may be applied to other types of state

based modeling methods such as: SDL and State Charts. The approach uses the original model and the modified model,

and it automatically identifies a difference between these models, where the difference between two models is a set of

elementary model modifications [7, 43]. The approach using model-based dependence analysis identifies parts of the

model that affect the modification and parts of the model that are affected by the modification. Our initial experience

with the approach shows that it significantly helps in understanding and identifying the effect of modifications on the

system.

The rest of the paper is organized as follows: Section 2 provides an overview of state based modeling. Section 3

introduces model-based dependence analysis. Section 4 presents our approach in identifying the effect of model

modifications, and it introduces an algorithm to compute the parts affected by the modification as well as the parts

affecting the modifications. In Section 5, an empirical study is performed, and the results of the study are presented.

Section 6 outlines the related work on the application use of system models. In Section 7, conclusions and future

research directions are discussed.

2 State-Based modeling

The process of structuring and formulating software specifications is normally guided by modeling techniques. System

models for state-based systems describe the system behavior by a set of states and system actions represented as

transitions between states. The languages used for modeling state- based systems are often graphical, which make

modeling techniques easy to comprehend and utilize. Modeling techniques have received wide industry acceptance,

especially in the fields of telecommunication, embedded systems, and computer networking [14,], where state-based

systems are prevalent.

The most popular formal description techniques (languages) used for modeling of state-based systems are Finite State

Machine (FSM) [17], Extended Finite State Machine (EFSM) [7, 15, 14, 34, 36, 44], Specification Description

Language (SDL) [16, 15], State charts [11, 12, 13], Virtual Finite State Machines (VFSM) [18], and ESTELLE [19].

Formal modeling techniques provide the basis to validate the system design [39, 40], to generate system level test suites

[38, 41, 40, 37, 14, 31, 32], to simulate the system behavior by executing the model [42, 18] and to determine properties

of the system. Although modeling techniques can help eliminate complexity of many of today’s systems, the resulting

models are difficult to understand, analyze, and modify [28, 29], especially for large and complex systems [27, 47]

where there are a large number of states and transitions. During software maintenance developers are frequently

interested in a partial system model related to an element of interest, e.g., a requirement, a transition, or a feature [28,

30, 31, 32, 33, 34], that they need to analyze, understand, or modify, e.g., slices of models [34, 35]. However, the

existing techniques do not address the problems of understanding modifications of system models. Thus, there is a need

to develop techniques that can help in understanding model modifications.

In this paper, we concentrate on the EFSM system models, however, our approach can be extended to other modeling

languages such as SDL, State charts. EFSM [7, 15, 14, 34, 36, 43] is very popular technique for modeling state-based

systems like communications and control systems.

An EFSM consists of a set of states (including a start state and an exit state) and transitions between states. A transition

is triggered at its originating state when an event occurs (e.g., an input is received) and an enabling condition (e.g., a

Boolean expression) associated with the transition is satisfied. When the transition is triggered, a sequence of actions

may be performed (which may manipulate variables and produce an output) and the system is transferred to the

terminating state of the transition. The following elements are associated with a transition: an event, a condition, and a

sequence of actions. Figure 1 shows a graphical representation of an EFSM transition. We distinguish three types of

actions: an input action (read), an output action (write), and an assignment action. In our model assignment, actions

have syntax of assignment statements and enabling conditions have syntax of conditional statements of C language.

Event(parameters)

[Condition]/

Action
S

b
S

e

Fig. 1: EFSM Transition

An EFSM M is expressed formally as a 7 tuple: M = (Σ, Q, Start, Exit, V, O, R) where:

Σ is the set of events,

Q is the set of states,

Start  Q is the start state,

Exit  Q is the exit state,

Journal of Advanced Computer Science and Technology 11

V is a finite set of variables,

O is the set of actions,

R is the set of transitions, where each transition T is represented by the tuple: T = (E, C, A, Sb, Se) where:

E  Σ is an event,

 C is an enabling condition defined over V,

 A is a sequence of actions, A= <a1, a2,….., aj>, where ai  O,

 Sb  Q is the transition’s originating state,

 Se  Q is the transition’s terminating state.

In addition, the following notation related to a transition T is introduced:

Sb(T) is the originating state of transition T,

Se(T) is the terminating state of transition T,

C(T) is the enabling condition (a Boolean expression) associated with transition T,

E(T) is the event associated with transition T,

A(T) is a sequence of actions associated with transition T.

In M, Σ is a set of events, each of which is an external stimulus (input) that may be associated with a list of arguments;

i.e., an event E  Σ is represented by E(arg1, arg2, …, argk). States in Q are passive elements in the EFSM model. States

are just snapshots of the system and they are not involved in any kind of decision-making or computation. The states

Start and Exit are where the system starts and terminates, respectively. The variables in V provide storage for values that

is accessible by enabling conditions and actions in transitions. An action ai  O is one of the following types:

assignment action, output action, or function call. An assignment action assigns a value to a variable. An output action

displays a variable or a constant to the external environment. A function call to some function f(v1, v 2, …, vk) returns the

evaluated value.

A transition T in R is triggered when the system is in the originating state Sb(T), the event E(T) occurs, and the enabling

condition C(T) is evaluated to TRUE. When transition T is triggered, the A(T) sequence of actions is performed and the

system is transferred to the terminating state Se(T). If a transition T is specified at a state with no enabling condition, no

other transition from that state can be associated with E(T).

EFSM models may be depicted as graphs where states are represented by nodes and transitions by directed edges

between states. A simple EFSM model of an ATM system is shown in Figure 2 [9, 17, 27]. This ATM system supports

two types of accounts: checking account and savings account and three types of transactions: withdrawal, deposit and

balance. Before ATM transactions can be performed, user must enter a valid pin that is matched against the pin stored

in an ATM card. A user is allowed a maximum of three attempts to enter the valid pin. For example, transition T2 is

triggered when the model is in state S1, event PIN(p) is received, the value of parameter p does not equal to variable pin,

and the value of variable attempts is less than three. When the transition is triggered, an error message is displayed, the

value of variable attempts is incremented, and the user is prompted to enter PIN. Notice that in this example, for

transition T2, Sb(T2) = S1, Se(T2) = S1, C(T2) = (p != pin) and (attempts < 3), E(T2) = PIN(p).

In this paper, we assume that the EFSM model is executable [18, 42, 43], i.e., enough detail is provided in the model so

that the model executor can execute the model based on the model specification (or an executable program

corresponding to the model can be generated from the model specification). In order to support model execution, some

actions may not be implemented (they are represented by “empty” actions). However, all actions are implemented

during the development of the system. An input to the EFSM is a sequence of events with values for arguments

associated with the events. For example, consider the following input for the EFSM of the ATM system of Figure 2:

t = Card(1234,100,200), PIN(1234), Savings(), Deposit(20), Receipt(), Withdrawal(50), Receipt(), Done(), Exit().

When the model of Figure 2 is executed on the sequence of events t above, the following sequence of transitions is

executed:  (t) = <T1, T4, T9, T11, T12, T10, T12, T8, T6>.

12 Journal of Advanced Computer Science and Technology

Start S1

Card(x, y, z)/

Prompt for PIN;

pin=x; sb=x;

cb=y; attempts = 0;

S4

PIN(p)
[p == pin]/

Display Saving/Checking

Deposit(d)/
cb = cb + d

Withdrawal(w)/[k<=2]/
cb =cb – w;k=k+1;

Withdrawal(w)[k>=2]
S5

PIN(p)

[(p != pin) and (attempts == 3)]/

Display wrong Pin;

Eject card;

PIN(p)

[(p != pin) and (attempts < 3)]/

Display error;

attempts = attempts+1;

Prompt for PIN;

Exit

T2

T3

T4

T15

T14

T13

S2

Checking

Savings

Exit/Eject card

T1

Balance[l='s']/
Display cb;k=k+1;

Receipt/Display cb ; Display Saving/Checking

S3
Deposit(d)/
sb = sb + d

Withdrawal(w)/
sb =sb - w

S7

T10

T11

Receipt/Display sb; Display Saving/Checking

T6

T5

T9

T16

T17

Done

Done

T8

T7

T12

Fig. 2: Sample ATM Model

In this paper, we assume that the EFSM model is deterministic, i.e., for every event Ei(xi) where xi = arg1, arg2, …, argk,

in t there is one and only one possible execution of model M (at most one transition is executed for a given event

Ei(xi)). When model M is executed for a given sequence of events t = <E1(x1), E2(x2), …, En(xn)>, a sequence of

transitions  (t) = <Ti1, Ti2, …, Tim> is executed.

Modifications in specifications frequently lead to modifications in system models. Traditionally, a modified model is

only used to understand the modifications made in the model. However, developers may have difficulties understanding

the effect of modifications on the model and consequently on the system. For example, consider a model of Figure 2,

the model is modified by adding a balance transition to the savings account: transition T18. The modified model is

shown in Figure 3.

Start S1

Card(x, y, z)/

Prompt for PIN;

pin=x; sb=y;

cb=z; attempts = 0;

S4

PIN(p)
[p == pin]/

Display Saving/Checking

Deposit(d)/
cb = cb + d

Withdrawal(w)/[k<=2]/
cb =cb – w;k=k+1;

Withdrawal(w)[k>=2]
S5

PIN(p)

[(p != pin) and (attempts == 3)]/

Display wrong Pin;

Eject card;

PIN(p)

[(p != pin) and (attempts < 3)]/

Display error;

attempts = attempts+1;

Prompt for PIN;

Exit

T2

T3

T4

T15

T14

T13

S2

Checking

Savings

Exit/Eject card

T1

Balance]/
Display cb;k=k+1;

Receipt/Display cb ; Display Saving/Checking

S3
Deposit(d)/
sb = sb + d

Withdrawal(w)/
sb =sb - w

S7

T10

T11

Receipt]/Display sb; Display Saving/Checking

T6

T5

T9

T16

T17

Done

Done

T8

T7

T12

Balance/
Display sb;k=k+1;T18

Fig. 3 Modified ATM model of Figure 2 (transition T18 is added)

The modification seems to be benign and should not have any effect on the system. Clearly, the developer may have

difficulties understanding actual effect of this modification on the system, and, as a result, some undetected problems

may be passed to the next phases of the development. Typically, the developer after making a modification to the

system model may be interested in answers to the following questions:

• Which parts of the model affect the modification?

• Which parts of the model are affected by the modification?

In the first question, the developer may be interested in model transitions, referred to as affecting transitions that affect

the modified part of the model. This may be important to understand whether the modification interacts with expected

transitions of the model. For example, Figure 4 shows parts of the model (affecting transitions) that affect the

modification, i.e., transition T18 in the modified model of Figure 3. The affecting transitions are shown in bold lines in

Figure 4. From Figure 4, the developer may easily identify that transitions T1, T4, T9, T10 and T11 affect the modification

as expected. However, transitions T5, T15 and T17 unexpectedly affect the modification. To a developer, it is not evident

how transitions of the checking account may have an effect of the savings accounts.

Journal of Advanced Computer Science and Technology 13

Start S1

Card(x, y, z)/

Prompt for PIN;

pin=x; sb=y;

cb=z; attempts = 0;

S4

PIN(p)
[p == pin]/

Display Saving/Checking

Deposit(d)/
cb = cb + d

Withdrawal(w)/[k<=2]/
cb =cb – w;k=k+1;

Withdrawal(w)[k>=2]
S5

PIN(p)

[(p != pin) and (attempts == 3)]/

Display wrong Pin;

Eject card;

PIN(p)

[(p != pin) and (attempts < 3)]/

Display error;

attempts = attempts+1;

Prompt for PIN;

Exit

T2

T3

T4

T15

T14

T13

S2

Checking

Savings

Exit/Eject card

T1

Balance]/
Display cb;k=k+1;

Receipt/Display cb ; Display Saving/Checking

S3
Deposit(d)/
sb = sb + d

Withdrawal(w)/
sb =sb - w

S7

T10

T11

Receipt]/Display sb; Display Saving/Checking

T6

T5

T9

T16

T17

Done

Done

T8

T7

T12

Balance/
Display sb;k=k+1;T18

Fig. 4 Model transitions affecting the modification

In the second question, the developer may be interested in transitions, referred to as affected transitions that may be

affected by the modification. As a result, the developer may have a better understanding whether the intended

transitions of the model are affected. For example, Figure 5 shows parts of the model (affected transitions) that are

affected by the modification in the modified model of Figure 3. The affected transitions are shown in bold lines. The

developer most likely expects that the modification should not affect any parts of the model. However, the modification

unexpectedly affects almost all transitions related to the checking account (T13, T14, T15, T16 and T17). In addition, the

modification affects transition T12.

Start S1

Card(x, y, z)/

Prompt for PIN;

pin=x; sb=y;

cb=z; attempts = 0;

S4

PIN(p)
[p == pin]/

Display Saving/Checking

Deposit(d)/
cb = cb + d

Withdrawal(w)/[k<=2]/
cb =cb – w;k=k+1;

Withdrawal(w)[k>=2]
S5

PIN(p)

[(p != pin) and (attempts == 3)]/

Display wrong Pin;

Eject card;

PIN(p)

[(p != pin) and (attempts < 3)]/

Display error;

attempts = attempts+1;

Prompt for PIN;

Exit

T2

T3

T4

T15

T14

T13

S2

Checking

Savings

Exit/Eject card

T1

Balance]/
Display cb;k=k+1;

Receipt/Display cb ; Display Saving/Checking

S3
Deposit(d)/
sb = sb + d

Withdrawal(w)/
sb =sb - w

S7

T10

T11

Receipt]/Display sb; Display Saving/Checking

T6

T5

T9

T16

T17

Done

Done

T8

T7

T12

Balance/
Display sb;k=k+1;T18

Fig. 5 Model transitions affected by the modification

3 Model dependencies

In order to identify affecting and affected transitions for a model modification, we use model dependence analysis. In

this section, we introduce model dependencies that may exist in the system model, specifically in the EFSM model [7,

33]. We define two types of dependencies between transitions (“active” elements of a model): data dependence and

control dependence. Note that states are “passive” elements of the model. These dependencies capture the notion of

potential “interactions” between transitions in the model.

14 Journal of Advanced Computer Science and Technology

3.1 Data dependence

Model dependence analysis with respect to data dependence focuses on occurrences of variables within the system

model. Each variable occurrence is classified as being a variable definition or a variable use. We refer to these as

definition and use, respectively. A definition of a variable v in a transition is any occurrence of v at which v is assigned a

value. A transition can define a variable v by defining v as a part of the action(s) (e.g., v = x + 5). A use of a variable v

in a transition is any occurrence of v that references the value of v. A transition can reference a variable v in a Boolean

expression associated with the transition (e.g., [v < 0]) or by using v in action(s) associated with the transition (e.g., x =

v + 5).

Let T be a transition. The following concept related to transition T is introduced:

 D(T) is a set of variables defined by transition T, i.e., variables defined by an action(s) or by a triggering event

of T.

 U(T) is a set of variables used in transition T, i.e., variables used in a condition and an action(s) of T.

For example, in the EFSM model of Figure 2, for transition T1, D(T1) = {pin, sb, cb, attempts} and U(T1) = {x, y, z}.

Data dependence captures the notion that one transition defines a value of a variable and another transition may

potentially use this value. There exists a data dependence between transitions Ti and Tk if transition Ti modifies the

value of variable v, transition Tk uses v, and there exists a path (transition sequence) in the model from Ti to Tk along

which v is not modified [33]. More formally, there exists data dependence between transitions Ti and Tk if there exists a

variable v such that: (1) v  D(Ti), (2) v  U(Tk), and (3) there exists a path (transition sequence) in the EFSM model

from Ti to Tk along which v is not modified; such a path is referred to as a definition-clear path. For example, there

exists a data dependence between transitions T1 and T11 in the model of Figure 2. This is because transition T1 assigns a

value to variable sb in the action “sb = y”, transition T11 uses variable sb in action “sb=sb+1”, and there exists a path

from T1 to T11 along which sb is not modified (sequence of transitions T1, T4, T9, T11). Notice that there is no data

dependence between T1 and T12 because along the path from T1 to T12, sb is modified by transitions T10 or T11.

3.2 Control dependence

Control dependence was originally defined for a program’s Control Flow Graph (CFG) [45]. Control dependence

captures the notion that one node in the control graph may affect the execution of another node. In this paper, we

extended the concept of program control dependence to the EFSM model [9]. Control dependence in an EFSM exists

between transitions and it captures the notion that one transition may affect traversal of another transition. Control

dependence between transitions is defined similarly to control dependence between nodes of a CFG [45], i.e., in terms

of the concept of post-dominance. Let Y and Z be two states (nodes) and T be an outgoing transition (edge) from Y.

State Z post-dominates state Y if Z is on every path from Y to the exit state of the EFSM. State Z post-dominates

transition T if Z is on every path from Y to the exit state of the EFSM through transition T. Transition Tk is control

dependent on transition Ti iff: (1) Sb(Tk) does not post-dominate Sb(Ti) and (2) Sb(Tk) post-dominates transition Ti. Notice

that the definition of control dependence presented in this paper captures the same view as the definition of control

dependence between nodes in a CFG [45].

For example, transition T4 has control dependence on transition T9 in the model of Figure 2 because state S2 does not

post-dominate state S1 (condition 1 of control dependence definition is true) and state S2 post-dominates transition T4

(condition 2 is TRUE). The issue of control dependence in EFSMs is discussed in more detail elsewhere [46, 48].

3.3 Model dependence graph

Data and control dependence in the model can be graphically represented by a directed graph where nodes represent

model transitions and directed edges represent model data and control dependencies.

More formally, let M = (Σ, Q, Start, Exit, V, O, R) be an EFSM model and let G=(R, E) be a model dependence graph of

model M:

Where:

R is a set of nodes (set of transitions)

E is a binary relation on R, E  R  R, referred to a set of directed edges where: edge (Ti, Tk)  E, if there

exists data or control dependence between transitions Ti and Tk.

Journal of Advanced Computer Science and Technology 15

Throughout this paper, we will be consistent on using the statement “there exists dependence between transitions Ti and

Tk”. It will always mean that Tk depends on Ti (not the opposite), so in the dependence graph, the relation will be

represented by the directed edge (Ti, Tk).

Due to space limitation, Figure 6 shows only a partial model dependence graph of the model of Figure 2. Variables

associated with data dependencies are also not shown. Note that data dependencies are shown as solid edges and control

dependencies are shown as dashed edges.

T1

T3 T2

T4

T10

T11

T22

T9

Control Dependence

Data Dependence

Fig. 6 Partial Model Dependence graph of the ATM model

4 Effect of modifications

Our approach to support identifying the impact of modifications in system models is based on the observation that

usually not the whole system model is affected by the modified part of the model (a modification). Frequently, only a

relatively small part of the model is affected by the modification. When a software system is modified two types of

analysis can be performed to support understanding the model modifications: identifying the effect of the model on the

modification (affecting transitions), and identifying the effect of the modification on the remaining part of the model

(affected transitions). In order to identify the effect of a model modification, we compare changes in dependencies

between the original model and the modified model. In this section, we formally define “Model Modification”, “Affects

Relationship”, “Affecting Transition” and “Affected Transitions”, and then we introduce an algorithm to compare the

difference in dependencies between the original model and the modified model. The end results of the algorithm are the

set of affecting transitions and the set of affected transitions.

Definition 4.1: For a Model Mo, an elementary modification represents one of the following actions:

1. Deleting an existing transition T where T  R

2. Adding a new Transition T to R (1)

In this context, editing an existing transition TR is equivalent to deleting the transition T and adding a new transition

T′ .

Definition 4.2: For an original Model Mo, a model modification (MF) is represented by two sets: Rd and Ra, where Rd is

the set of transitions to be deleted from Mo, and Ra is the set of transitions to be added to Mo. We call the resulting

model after applying the model modification on Mo: “the modified model Mm”. (2)

Definition 4.3: Let G=(R, E) be the dependence graph of the model M. A transition T in R “affects” another transition

T′ in R if and only if there is a non-null path from T to T′ in G. (3)

Since the dependence relationship itself is not transitive, then we can look at the “affects” relationship as the transitive

relation of the dependence relation between transtions. For example, if transition T depends on transition Q, and

transition Q depends on transion S, then S “affects” T.

Definition 4.4: Let G=(R, E) be the dependence graph of the model M. The set of affecting transitions for a transition T

in G is the set of all transitions T′ that “affects” the transition T. Formally, we define this set as:

16 Journal of Advanced Computer Science and Technology

AG(T) = R′, where R′  R, and T′ R′ if and only if “T′ affects T ” on R. (4)

Definition 4.5: Let G=(R, E) be the dependence graph of the model M. The set of affected transitions for a transition T

in G is the set of all transitions T′, where T “affects” T′. Formally, we define this set as:

AD(T) = R′, where R′  R, and T′ R′ if and only if “T affects T′ ” on R. (5)

Definitions 4.4 and 4.5 present an understanding of “affected transitions” and “affecting transitions” as a function of a

specific transition of interest T. In this paper however we are more interested in understanding the effect of the whole

modification of the model rather than the effect of a single transition. Therefore, in the remaining of this section we

formalize our understanding of affecting and affected transitions as a funciton of model modification MF instead of a

transition T.

4.1 Identifying affecting transitions

Introducing a model modification to an original model Mo produces a modified model Mm. To understand the effect of

the modification, we analyze the dependence graph of the original model G0=(Ro, Eo), and compare it with the

dependence graph of the modified model Gm=(Rm, Em).

We have defined model modification in definition 4.2 as two sets: the set of added transitions Ra, and the set of deleted

transition Rd. To understand what parts of the model have an impact on the modifed part of the model (MF), we focus

on the transitions affecting the added transitions. As for deleted transtions, they can no longer be affected by other

transitions in the model since they have been deleted, however, their deletion may affect the model. Consequently, we

can derive the set of transtions affecting the model modification by looking at Ra. We investigate the impact of the

deletion of transtions in Rd as part of the effect of the modication on the model.

Definition 4.6: Let Gm=(Rm, Em) be the dependence graph of the modified model Mm. The set of affecting transitions for

a model modifcation MF on Mo is the Union of AG(T) for all transitions TRa . Fromally, we define the affecting

transitions for a model modification as follows:

AG(MF) =
 

 (6)

Fig. 7: Model dependence sub-graph that affects added transition T18

For example, suppose a developer is interested in understanding the modification of adding transition T18 in the model

of Figure 2, which results in the model of Figure 3. Figure 7 shows a dependence sub-graph with respect to added

transition T18 of the model of Figure 3. All transitions in this sub-graph affect T18 and are highlighted in the modified

model as shown in Figure 4.

4.2 Identifying affected transitions

Identifying transitions affected by the modification is more complex than identifying transitons affecting the

modification. This is true mainly because we need to look at both Ra and Rd in order to understand the impact of the

modification on the original model Mo. In this section, we identify five cases covering all possible changes in the

dependence graph that may be caused by the addition of a new transtion or the deletion of a transition. The first three

cases discuss the possible impact of adding a new transtion, while the last two cases discuss the possible impact of

deleting a transition.

Journal of Advanced Computer Science and Technology 17

Case 1: When a new transition is added, it will have a direct impact on the transitions that will be involved in a

dependece relation in Gm with the added transition. In other words we say that an added transition T has an impact on a

transition Q, if there exists an edge(T, Q) Em, where Q Ro. For example, Figure 8 shows a dependence sub-graph

with respect to added transition T18 of the model of Figure 3 after forward traversal starting from T18. All transitions in

this sub-graph are affected by T18.

Fig. 8 Model dependence sub-graph that is affected by added transition T18

Case 2: When a new transition is added, new dependencies between existing transitions may be introduced. For

example, the new transition may create a definition-clear path between other existing transitions. This path will lead to

new dependencies in Gm that didn’t exist in Go. In this case, the added transition will have an indirect impact on the

transitions invovled in the new dependcies. Mainly, an added transtion T has an impact on a transition Q if there exists

an edge(S,Q)  Em where edge(S,Q) ∉ Eo and S, Q Ro. For example, in the original model of Figure 2, there is no

dependence between T1 and T12. However, when transition T18 is added into the model of Figure 3, transition T12

becomes data dependent on transition T1 in the modified model.

Case 3: When a new transition is added, it may break a dependency relation between two transitions. As a result, a

previously existing dependence relation in Go may cease to exist in Gm. Consequently, transitions which were involved

in a dependence relation in Go, but are no longer involved in this dependence relation in Gm are indirectly affected by

the addition of the new transition. An added transtion T has an impact on a transition Q if there exists an edge(S, Q) 

Eo where edge(S, Q) ∉ Em and S, Q  Rm. For example, assume that figure 9 is the original ATM model, and suppose

that transition T17 is added to the model resulting in the model of Figure 3. Adding transitions T17 breaks the

dependency between T1 and T16 in the original model of Figure 9. We notice that this dependency between T1 and T16

doesn’t exist anymore in the modified model of Figure 3. Clearly, T16, the dependent transition, may behave differently

because of the modification.

Case 4: When a transition is deleted, it will have direct impact on the transitions that were previously invovled in a

dependence relation with the deleted transition. These transitons may have dependence relation on other transtions in

Mm. Thus, a deleted transition T will have an impact on a transition Q if there exists an edge(T, Q)  Eo where Q Rm

and TRd. For example, consider the model of Figure 3. Suppose transition T17 is deleted from this model, resulting in

the model of Figure 9. The modification is a deletion of transition T17. In the original model of Figure 3, there is a data

dependence between transition T17 and T13, T15 and T18. Clearly, these transitions are affected by deletion of T17.

Case 5: When a transition is deleted, it may delete a definition-clear path between two transitons. In this case the

dependence relation between existing transtions may cease to exist after applying the modification. This case has the

same effect as case 3 although the cause is different. A deleted transtion T has an indirect impact on a transtion Q if

there exists an edge(S,Q)  Eo where edge(S,Q) ∉ Em and S,Q  Rm. For example, consider the original model of Figure

2, suppose that transition T17 is deleted from this model resulting in the model of Figure 9. The modification consists of

the deletion of transition T17. We notice that the dependence relation between T1 and T16 in the original model Mo cease

to exist in modified model Mm. Clearly, T16 may behave differently because of this modification.

18 Journal of Advanced Computer Science and Technology

Start S1
Card(pin, sb, cb)/

Prompt for PIN;

attempts = 0

S4

PIN(p)
[p == pin]/

Display Saving/Checking

Deposit(d)/
cb = cb + d

Withdrawal(w)/[k<=2]/
cb =cb – w;k=k+1;

Withdrawal(w)[k>=2]

S5

PIN(p)

[(p != pin) and (attempts == 3)]/

Display wrong Pin;

Eject card;

PIN(p)

[(p != pin) and (attempts < 3)]/

Display error;

attempts = attempts+1;

Prompt for PIN;

Exit

T2

T3

T4

T15

T14

T13

S2

Checking

Savings

Exit/Eject card

T1

Receipt/Print cb ; Display Saving/Checking

S3
Deposit(d)/
sb = sb + d

Withdrawal(w)/
sb =sb - w

S7

T10

T11

Receipt]/Print sb; Display Saving/Checking

T6

T5

T9

T16

Done

Done

T8

T7

T12

Balance/
Display sb;k=k+1;T18

Fig. 9 Modified Version of the ATM model

The above five cases identify all possible sets of transitions on which the model modifcation will have a direct or an

indirect impact. The model modification doesn’t only affect the transitions identified in these five cases, but it also

affects all transitions affected by theses identifed transitions as well. The formal definition of the set of affected

transitons for a model modification is:

Definition 4.7. Let C1, C2, C3, C4, and C5 represnt the sets of transitions identifed in the above five cases. Let G=(R, E)

be the dependence graph of the model M. The set of affected transitions for a model modifcation AD(MF) on M is the

Union of AD(Q) for all transitions Q {C1 C2 C3 C4 C5}.

AD(MF) = , for all Q{C1 C2 C3 C4 C5}. (7)

4.3 Algorithm to compute affected and affecting transitions

In this section, we present an algorithm to compute affecting transitions and affected transitions for any complex model

modification. The algorithm is shown in Figure 10. The algorithm uses the original model Mo and the modified model

Mm and automatically identifies the difference between these models, where the difference between two models

represents the model modification MF. This difference between the two models Mo and Mm is represented by the set Ra

of added transitions and the set Rd of deleted transitions. A transition addition may occur between existing states or may

involve an introduction of a new state when a transition is added to the model. Similarly, a transition deletion may, in

some cases, result in the deletion of a state. Notice, however, that an addition of a new state and a deletion of a state are

always associated with a transition addition and a transition deletion. Therefore, addition of a new state or a deletion of

a state is not considered as an elementary modification. For example, the difference between the original model of

Figure 2 and the modified model of Figure 3 is Ra={T18} and Rd={}. On the other hand, the difference between the

original model of Figure 2 and the modified model of Figure 9 is the following elementary modifications: deletion of

transition T17 , and addition of transition T18, i.e., Ra={T18 } and Rd={T17 }. After the difference between models is

identified, the algorithm uses the dependence graph of both the original model and the modified model to compute the

affecting transitions for all added transitions in Ra. The algorithm then computes the set of affected transitions based on

both Ra and Rd.

In line 1, the algorithm computes the difference between the original model Mo and the modified model Mm, i.e., sets Ra

and Rd. The algorithm used to compute the difference between the two models is straight forward [17, 28, 43], hence

modifications in terms of the added and deleted transitions can be devised as follows. Let Ro be a set of transitions of Mo

and Rm be a set of transitions of Mm. The algorithm then amounts to taking two set differences between Ro and Rm

provided that the state and transition names are preserved across versions of the models. That is, only previously unused

state and transition names appear in the modified model Mm for the added states and transitions, then, the algorithm

becomes the following:

Ra = Rm – Ro

Rd = Ro – Rm

The complexity of this algorithm is at most, 4*(| Ro |+ | Rm |)-1 comparisons provided that the sets Ro and Rm are sorted

in the same order over the transition names [50].

Journal of Advanced Computer Science and Technology 19

Fig. 10 Algorithm to compute affecting and affected transitions

20 Journal of Advanced Computer Science and Technology

In lines 2 and 3, the model dependence graph Go of the original model and the model dependence graph Gm of the

modified model are computed respectively.

In lines 4-15, the algorithm computes set A of affecting transitions defined as AG(FM) in definition 6. Initially, all

added transitions in Ra are marked in the model dependence graph Gm (line 6). In the while-loop (lines 7- 15), the

algorithm traverses backwards the model dependence graph Gm for each marked transition. In lines, 11-14, transitions Q

for which there exists data or control dependence between Q and T in Gm are marked as well. At the termination of the

while loop (lines 7-15) set A contains affecting transitions AG(MF).

In lines 16-39, the algorithm computes set B of affected transitions defined as AD(FM) in definition 7. In this part of the

algorithm we can identify two phases, the marking phase (lines 17-30), and the forward traversal phase (lines 31-39). In

the marking phase, the algorithm identifies all transitions on which the model modifcation will have a direct or an

indirect impact (as specified in the five cases presented in section 5.2). In the forward tranversal phase, the algorithm

tranverses all marked transitions in order to compute AD(FM) as defined in definition 7.

In the marking phase, the algorithm starts by marking all transitions in Ra (line 18), this will take care of all transitions

related to case 1. Forward traversal of these marked transitions will identify the set of affected transtions for each

transtion Q in Ra (). In lines (21-22), the algorithm marks all transitions Q if there exists data

or control dependence between Q and at least one deleted transition in Rd. This part of the algorithm takes care of the

transitions related to case 4. The forward traversal of these transtions will identify the set of affected transtions for each

transtion Q . In lines (26-27), the algorithm marks transitions involved in new dependencies that do exist in the

modified model but do not exist in the original model. These are the transitions related to case 2.

Forward traversal of these transitions will identfiy the set of affected transitions for each transition Q . In lines

(28- 29), the algorithm marks transitions involved in dependencies that cease to exist, i.e., dependencies that do exist in

the original model but do not exist in the modified model. These transitions are related to case 3 and case 5. . Forward

traversal of these transitions will identfiy the set of affected transitions for each transition Q By the end of

the forward traversal phase, set B contains all transitions affected by the model modification AD(MF).

5 Empirical study

The goal of this empirical study is to verify that the average size of the set of affecting transitions AG(MF) and affected

transitions AD(MF) for a model modification is relatively smaller than the size of the original model in terms of number

of transitions. The smaller the size of these sets is, the more practical they can be used by the developer. In this case,

after a model is modified, it will be enough for the developer to validate only the transitions within these sets without

having to look at all transitions of the modified model. Notice that in the worst case scenario the size of AG(MF) is the

same as the size of M, and the size of AD(MF) is the same as the size of M. We want, however, in this experiment to

verify that the average size of these sets is reasonably smaller than the size of M.

For this experiment, we have used six EFSM models. Due to the unavailability of system models for real world

commercial software, we used EFSM system models that are in the public domain for the empirical study. These EFSM

models are: an ATM model [10, 11, 53], a cruise control model [45], a fuel pump model [46], the Transfer Control

Protocol-communication dialer (TCP) [44], Print-Token [24], and the Integrated Service Digital Network (ISDN)

protocol [47]. The sizes of models range from 5 to 20 states and 20 to 89 transitions. The details about the models are

shown in Table 1.

Table 1: System models used in the experiment

Model Name TN SN NV

ATM 28 8 8

Cruise Control 20 5 18

Fuel Pumps 16 13 12

TCP-Dialer 50 17 31

ISDN 92 20 4

Print Token 98 11 5
 TN: number of transitions

 SN: number of states

 NV: number of variables

Our approach in this experiment is as follows: For a given model M of size n, we run n iterations of what-if-analysis

using a tool that we developed for the purpose of this experiment. In each iteration, we consider a single transition in the

model, and we analyze what-if this transition is edited. In this context, we consider editing a transition equivalent to

Journal of Advanced Computer Science and Technology 21

deleting the transition, and adding a new transition. Therefore, for a single iteration of the analysis, Rd will contain one

deleted transition, and Ra will contain one added transition. The result of a single stage of analysis is the set of affecting

transitions AG(MF) and the set of affected transitions AD(MF).

The analysis we apply distinguishes between data dependence and control dependence. As a result, for each iteration of

the analysis nine sets of transitions are generated: ADd, ADc, ADcd, AGd, AGc, AGcd, AGDd, AGDc, AGDcd where:

 ADd is the set of affected transitions, AD(MF), considering only data dependence,

 ADc is the set of affected transitions, AD(MF), considering only control dependence,

 ADcd is the set of affected transitions, AD(MF), considering both data and control dependence,

 AGd is the set of affecting transitions, AG(MF), considering only data dependence,

 AGc is the set of affecting transitions, AG(MF), considering only control dependence,

 AGcd is the set of affecting transitions, AG(MF), considering both data and control dependence,

 AGDd is the union of affecting and affected transitions, considering only data dependence (ADd AGd),

 AGDc is: the union of affecting and affected transitions, considering only control dependence (ADc AGc)

 AGDcd is: the union of affecting and affected transitions, considering both data and control dependence (AGDd

 AGDc)

By the end of all n iterations of the analysis, we obtain a size matrix, S, summarizing the n assumed model

modifications. The size matrix is n×9, where n is the number of transitions in the input model, and 9 is the number of

sets obtained in each iteration of the analysis. One row in this matrix represents one iteration of the analysis. A row has

9 values, each value represents the size of one of the resulting sets. For example, in the size matrix S, the value of the

entry S3,5 will represent the size of the fifth resulting set of the third iteration of the analysis. In this case, the value is the

size of the set of affecting transitions for control dependence: |ADc|, assuming a modification in transition T3 of the input

model. Table 2 represents the size matrix obtained for the fuel pump model.

Table 2 Size of affecting and affected transitions for fuel pump model

 Affecting AG(MF) Affected AD(MF) AG(MF) U AD(MF)

 AGd AGc AGcd ADd ADc ADcd AGDd AGDc AGDCD

T1 0 0 0 0.31 0 0.31 0.31 0 0.31

T2 0 0 0 0 0 0 0 0 0

T3 0 0 0 0 0 0 0 0 0

T4 0 0 0 0.25 0.38 0.56 0.25 0.38 0.56

T5 0 0.13 0.13 0 0 0 0 0.13 0.13

T6 0.06 0 0.06 0.31 0.38 0.63 0.31 0.38 0.63

T7 0.06 0.13 0.19 0.19 0.19 0.38 0.25 0.31 0.56

T8 0.06 0.13 0.19 0.19 0.19 0.38 0.25 0.31 0.56

T9 0 0.25 0.25 0.19 0 0.19 0.19 0.25 0.44

T10 0.44 0 0.44 0.19 0 0.19 0.56 0 0.56

T11 0.13 0.25 0.25 0 0 0 0.13 0.25 0.25

T12 0.44 0 0.44 0 0 0 0.44 0 0.44

T13 0.44 0 0.44 0 0 0 0.44 0 0.44

T14 0 0.25 0.25 0 0 0 0 0.25 0.25

T15 0 0 0 0 0 0 0 0 0

T16 0 0 0 0 0 0 0 0 0

Avg 0.1 0.07 0.16 0.1 0.07 0.16 0.2 0.14 0.32

The size is expressed as a percentage of the total size of the model. Looking at transition T4, we notice that the values of

the first three columns are zeros, which means that there are no transitions affecting a model modification involving

only transition T4. On the other hand, 25% of the transitions in the model will be affected by the modification

(considering data dependence), and 38% of the transitions in the model will be affected by the modification

(considering control dependence). This leads to a combined total of 56% of the transitions affected by the modification

(either based on data dependence or control dependence). We notice that the size of AGcd is not exactly equal to the sum

of |AGc| and |AGd| since some transitions are included in both sets (AGd and AGc). Looking at column AGDcd, the worst

case modification scenario is for transition T6 with 63% of the transitions either affecting the modification or affected

by the modification. Namely, 31% (5 out of 16) of the transitions are affecting the modification, and 38% (6 out of 16)

of the transitions are affected by the modification.

It is worth mentioning here that the average of affecting and affected transitions for the whole model is the same since

the “affects” relationship is a binary bidirectional relation. So, whenever the relation “Ti affects Tk” appears in the

model, we get Ti in the set of affecting transitions for Tk, and we get Tk in the set of affected transitions for Ti.

22 Journal of Advanced Computer Science and Technology

To better understand the analysis results, box-plots of the average size values for each model modification of each

EFSM model are shown in figure 11. Additionally, the last box-plot BP#7 represents the cumulative average size values

for all modifications in all EFSM models.

Fig. 11Box-plots of the affected parts of the models

Journal of Advanced Computer Science and Technology 23

 The analysis results represented in all of the seven box plots indicate that our approach significantly help developers

identifying the effect of the model on the modification AG(FM), and identifying the effect of the modification on the

remaining part of the model AD(FM). Looking at BP#7, AGcd shows that only 25% (the third quartile) of the model

modifications are affected by more than 53% of the transitions in M. Another 25% (the second quartile) of the

modifications are affected by more than 28% of the transitions in M (but less than 53%), and the remaining 50% of the

modifications are affected by less than 28% of the transitions in M.

Looking at ADcd, we notice that 25% of the model modifications (the third quartile) are affecting more than 86% of the

transitions on M, another 25% of the model modification (the second quartile) are affecting less than 86% of the

transitions in M, and the remaining 50% of the modifications are affecting less than 10% of the transitions in M. These

numbers indicate that, excluding the top 25% transactions of a model, the developer can look at a considerably smaller

dependence graph when testing the model after a modification.

Table 3 summarizes the average size of the sets of affecting and affected transitions for all model modifications applied

on all six models.

Table 3: Average size of the sets of affecting and affected transitions for all models

 Affecting AG(MF) Affected AD(MF) AG(MF) AD(MF)

Models AGd AGc AGcd ADd ADc ADcd AGDd AGDc AGDcd

ATM 0.16 0.06 0.21 0.16 0.06 0.21 0.21 0.11 0.32

Fuel Pump 0.1 0.07 0.16 0.1 0.07 0.16 0.2 0.14 0.32

Cruise Control 0.25 0.28 0.48 0.25 0.28 0.48 0.4 0.44 0.59

Print Token 0.03 0.48 0.49 0.03 0.48 0.49 0.04 0.67 0.68

TCP 0.08 0.16 0.22 0.08 0.16 0.22 0.14 0.32 0.41

ISDN 0 0.28 0.28 0 0.28 0.28 0 0.48 0.48

Average 0.1 0.22 0.31 0.1 0.22 0.31 0.17 0.36 0.47

Figure 12 represents Box plot for the data in table 3. From AGDcd, we can conclude that on average, 25% of the

modifications (third quartile) are affecting/affected by 56% to 68% of the transitions in M. Another 25% of the

modifications (second quartile) are affecting/affected by 44% to 55% of the transitions in M. Another 25% of the

modifications are affecting/affected by 31% to 43% of the transitions in M. The last 25% of the modifications affect/are

affected by less than 31% of the transitions in M.

Fig. 12 Average size of affecting/affected transitions for all six EFSM models

The significance of our approach becomes more evident when we categorize transitions of an EFMS model into four

categories: high-impact transitions, medium-impact transitions, low-impact transitions, and no impact transitions. These

categories are based on the number of affecting transitions and affected transitions expressed as: |AG(MF) AD(MF)|.

Table 4 declares the boundaries of each category. According to table 4, a transition is categorized as high-impact

transition if modifying the transition generates a set of affecting/affected transitions >=60% of the original size of the

model.

0%

20%

40%

60%

80%

AGd AGc AGcd ADd ADc ADcd AGDd AGDc AGDcd

24 Journal of Advanced Computer Science and Technology

Table 4 High-impact, medium-impact, low-impact, and no-impact transitions

Category Criteria

High-impact |AG(MF) U AD(MF)| > = 0.60 * |M|

Medium-impact |AG(MF) U AD(MF)| > = 0.30 * |M| And |AG(MF) U AD(MF)| < 0.60 * |M|

Low-impact |AG(MF) U AD(MF)| > 0 And |AG(MF) U AD(MF)| < 0.30 * |M|

No-impact |AG(MF) U AD(MF)| = 0

Figure 13 categorizes all transitions of the six models according to the impact of the modification. We can clearly see

that cumulatively, less than 40% of the transitions are categorized as high-impact transitions, which means that for the

remainder of the transitions the developer will be able to validate a change by looking at a sub-graph of less than <60%

of the original size of the model.

Fig. 13: Size of each of the categories of transitions based on the modification impact

6 Related research

There has been a significant amount of research that uses system model for several applications such as: managing

requirements changes [48], regression testing [3, 4, 7, 26], model slicing [34, 46, 47], and test prioritization and

reduction [36, 50].

Korel and Tahat [43] presented an approach toward understanding modifications on model-based systems. the approach

uses the original and the modified models to automatically identify the difference between them. The modification in

the model might be as a result of maintenance, error correction, or a change in functionality driven by a change in

requirements. This paper is an extension to Korel et al’s work on understanding model modifications. In this paper, we

have formally defined “model modification”, and we have formally defined the relationship “affects” which is the core

concept toward understanding the effect of model modifications. We have explored different possible cases of model

modifications, where each case focuses on a specific effect of the modification. Finally, we performed an empirical

study involving six EFSM system models to show the effectiveness of our approach.

Lin et al. [48] introduced a technique for a requirement change management. Requirements change management is one

of the most difficult problems to deal with in requirements tracking. They proposed a set of algorithms for managing all

possible automatic requirements changes. Their approach used state machines to model and manage requirements

changes.

Briand et al. [1] introduced a Regression Test Selection Tool which used systems modeled in UML. More recently, this

work has been developed and extended into a comprehensive study of the regression test selection problem for UML

[2]. Orso et al. [3] presented two regression test selection techniques for component-based systems, using component

metadata to support the identification of selective subsets of tests to be used in efficient re-testing strategies. Their

approach was illustrated in terms of component-based systems specified as UML statecharts and was evaluated using

two real world java systems. Their approach used state based models, similar to our approach. Farooq et al. [4] also

recently presented a regression test selection approach based on changes identified in both the statecharts and class

diagrams of the UML.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

No impact

Low impact

Journal of Advanced Computer Science and Technology 25

Wu and Offutt [5] presented retesting strategies for UML, based on a differencing approach that identified the modified

parts of the new model. Similar to our work, Wu and Offutt also incorporated the tracing of data dependence based

changes in their work. Pilskalns et al. [6] presented a safe and efficient re-test strategy based on UML model level

changes, illustrating their approach with a case study of an open source system called Batik. Their work is concerned

with regression testing the model itself.

Korel et al. [7] presented methods of test prioritization based on the state-based model of the system under test. These

methods assumed that the modifications were made on both the system under test and its model. The existing test suite

was executed on the system model and information about this execution was used to prioritize tests. Korel et al.

extended their research on model-based prioritization for a class of modifications for which models were not modified

(only the source code is modified) [8, 9]. Several model-based test prioritization heuristics were introduced. Their major

motivations for these heuristics were simplicity and effectiveness in early fault detection. The results of their study

suggested that system models might improve the effectiveness of test prioritization with respect to early fault detection.

Korel et al. [10] proposed simple model-based test prioritization heuristics. The major stress was on simplicity. These

simple heuristics have shown promise when a large number of transitions was modified. However, for small

modifications the performance of these heuristics could be equivalent to the selective prioritization -Version II.

Korel et al. [34] presented a technique for slicing EFSMs that used data and control dependence for EFSM. They first

constructed a dependence graph by using dependence relations. Then the algorithm started from the node in the

dependence graph representing the slicing criterion and nodes (i.e. transitions) that were backward reachable from the

slicing criterion in the dependence graph were marked in the slice. Once the transitions in the slice have been marked,

Korel et al. [34] have implemented different algorithms for automatically reducing the size of an EFSM slice.

7 Conclusion and future work

In this paper, we have presented an approach toward understanding modifications in model-based systems. The

approach can be used for any modification of the system model. The goal is to identify these parts of the model that

may exhibit different behavior because of the modification. The approach uses the original model and the modified

model and automatically identifies a difference between these models. Our introduced approach uses model-based

dependence analysis to identify the affected parts of the model and the parts that may affect the modified transitions.

Our empirical study shows that this approach helps developers in understanding the effect of model modification by

providing them with a set of affecting transitions and a set of affected transitions with a significantly smaller number of

transitions compared to the total number of transition in the model. During evolutionary software maintenance, system

models are modified to fix defects, to enhance or change functionality, to add new functionality, or to delete the existing

functionality. The presented approach does not only help in understanding the impact of the modification on the system,

but also facilitates isolating parts of the modified model that may contribute to a faulty behavior. We have developed a

tool to compute the parts of the model that are affected by the modification and the parts of the model that affect the

modification. Additionally, the tool generates subsets of affected/affecting transitions based on the type of dependency.

The results of the empirical study indicate that our presented approach may significantly help in understanding the

effect of modifications on the system. In the future, we plan to perform an experimental study in which we will

investigate advantages and limitations of the presented approach in understanding modifications of large state-based

models. In addition, we plan to investigate the mapping between the source code of the system and the model.

References

[1] Lionel C. Briand, Yvan Labiche and G. Soccar. Automating impact analysis and regression test selection based on UML designs.

International Conference on Software Maintenance (ICSM), Montréal, Canada, pages 252-261, 2002.

[2] Lionel C. Briand, Yvan Labiche and S. He. Automating regression test selection based on UML designs. Information and Software

Technology. 51(1):16-30, 2009.

[3] Alessandro Orso, Hyunsook Do, Gregg Rothermel, Mary Jean Harrold, David S. Rosenblum. Using component metadata to regression test

component-based software. Software Testing Verification and Reliability (STVR). 17(2):61-94, June 2007.

[4] Qurat-ul-ann Farooq, Muhammad Zohaib Z. Iqbal, Zafar I Malik andAamer Nadeem. An approach for selective state machine based

regression testing. Proceedings of the 3rd International ACM Workshop on Advances in Model-Based Testing, London, United Kingdom,

pages: 44 – 52, 2007.

[5] Ye Wu and Jeff. Offutt. Maintaining evolving component-based software with UML. Seventh European Conference on Software

Maintenance and Reengineering(CSMR), pages 133- 142, 2003.

[6] Orest Pilskalns, Gunay Uyan, Anneliese Andrews. Regression Testing UML Designs. 22nd IEEE International Conference on Software

Maintenance, Philadelphia, Pennsylvania, USA, pages: 254 – 264, 2006.

26 Journal of Advanced Computer Science and Technology

[7] B. Korel, L. Tahat, M. Harman. Test Prioritization Using System Models. Proc. IEEE International Conference on Software Maintenance.

Budapest, Hungary, pp. 559-568, 2005.

[8] B. Korel, G. Koutsogiannakis, L. Tahat. Model-Based Test Prioritization Heuristic Methods and Their Evaluation. IEEE International

Conference on Software Maintenance. ICSM 2008, Beijing, China, September. 2008, pp: 247-256.

[9] B. Korel, G. Koutsogiannakis. Experimental Comparison of Code-Based and Model-Based Test Prioritization, 5th Workshop on Advances in

Model Based Testing, A-MOST 2009, Denver, April 2009, IEEE digital library.”

[10] B. Korel, G. Koutsogiannakis, L. Tahat. Prioritization Algorithms for Regression Testing in Model Based Systems. Proc. the 3rd ACM

Workshop on Advances in Model Based Testing (A-MOST), London, United Kingdom, pp. 34-43, 2007.

[11] Douglass B. P. "UML Statecharts", ESP Jan-1999. I-Logix.

[12] Harel D. "Statecharts: A Visual Formalism for Complex Systems”. Science of Computer Programming. Vol. 8 (1987), pp. 231-274.

[13] Harel D. “From Play-In Scenarios to Code: An Achievable Dream,” Proc. Fundamental Approaches to Software Engineering (FASE),

Lecture Notes in Computer Science, Vol. 1783, 2000, pp. 22-34.

[14] Savage, P., Walters, S., Stephenson, M., “Automated Test Methodology for Operational Flight Programs,” Proceedings of IEEE Aerospace

Conference, vol. 4, pp. 293 - 305, 1997.

[15] Dssouli, R., Saleh, K., Aboulhamid, E., En-Nouaary, A., Bourhfir, C., “Test Development For Communication Protocols: Towards

Automation,” Computer Networks, 31, pp. 1835 – 1872, 1999.

[16] Bourhfir, C., Aboulhamid, E., Khendek, F., Dssouli, R., “Test Case Selection from SDL Specifications,” Computer Networks, 35(6), pp. 693

– 708, 2001.

[17] Holzman, G., Design and Validation of Protocols, Prentice-Hall, 1990.

[18] F. Wagner, “VFSM Executable Specification,” Proc. CompEuro, 1992, pp. 226-231.

[19] Lee, D., Lee, J., “A Well-Defined Estelle Specification for Automatic Test Generation,” IEEE Trans. on Communications, 40, pp. 526 - 542,

1991.

[20] K. Cheng, A. Krishnakumar, Automatic Functional Test Generation Using The Extended Finite State Machine Model, Proc. ACM/IEEE

Design Automation Conf.,, Dallas, TX, USA, pp. 86-91, 1993.

[21] ITU-T. Recommendation Z.100 Specification and description language (SDL). International Telecommunications Union, Geneva,

Switzerland, 1999.

[22] J. Dick, A. Faivre, Automating the Generation and Sequencing of Test Case from Model-Based Specification, Proc. International Symposium

on Formal Methods, San Francisco, CA, USA, pp. 268-284, 1992.

[23] R. Dssouli, K. Saleh, E. Aboulhamid, A. En-Nouaary, C. Bourhfir, Test Development For Communication Protocols: Towards Automation,

Computer Networks, 31, pp.1835-1872, 1999.

[24] H. Ural, K. Saleh, A.W. Williams. Test generation based on control and data dependencies within system specifications in SDL, Computer

[25] Y. Duale, M. U. Uyar. A method enabling feasible conformance test sequence generation for EFSM models. IEEE Transactions on

Computers, 53(5):614–627, 2004.

[26] Vaysburg, L. Tahat, B. Korel, Dependence Analysis in Reduction of Requirement Based Test Suites, Proc. ACM International Symposium

on Software Testing and Analysis, Rome, Italy, pp. 107-111, 2002.

[27] Friedman, G., Hartman, A., Nagin K., Shiran, T., “Projected State Machine Coverage for Software Testing,” Proc. of the ACM Intern.

Symposium on Software Testing and Analysis, pp. 134 – 143, 2002.

[28] Heimdahl, M., Whalen, M., “Reduction and Slicing of Hierarchical State Machines,” ACM SIGSOFT Software Engineering Notes, 22(6), pp.

450 – 467, 1997.

[29] Heimdahl, M., Thompson, J., Whalen, M., “On Effectiveness of Slicing Hierarchical State Machines: A Case Study,” Proc. of the 24th

Euromicro Conference, pp. 435 – 444, 1998.

[30] Oda, T., Araki, K., “Specification Slicing in Formal Methods of Software Engineering,” Proc. of the 7th Intern. Computer Software and

Applications Conference, 1993.

[31] Tahat, L., Vaysburg, B., Korel, B., Bader, A., “Requirement-Based Automated Black-Box Test Generation,” Proc. of the 25th Annual IEEE

Intern. Computer Software and Applications Conference (COMPSAC), pp. 489 - 495, 2001.

[32] Vaysburg, B., Tahat, L., Korel, B., Bader, A., “Automating Test Case Generation from SDL Specifications,” Proc. of 18th Intern. Conf. on

Testing Computer Software, pp. 130 – 139, 2001.

[33] Vaysburg, B., Tahat, L., Korel, B., “Dependence Analysis in Reduction of Requirement Based Test Suites,” Proc. of the ACM Intern.

Symposium on Software Testing and Analysis, pp. 107 – 111, 2002.

[34] Korel, B., Singh, I., Tahat, L., Vaysburg, B., "Slicing of State -Based Models," IEEE Intern. Conf. on Software Maintenance, pp. 34-43, 2003.

[35] Lyle, J., Weiser, M., “ Experiments on Slicing-based Debugging Tools,” 1st Conference on Empirical Studies of Programming, pp. 187 - 197,

1986.

[36] Korel, B., Tahat, L., Vaysburg, B., “Model Based Regression Test Reduction Using Dependence Analysis,” Proc. of the Intern. IEEE Conf.

on Software Maintenance, 2002, pp. 214-223.

[37] Dick, J., Faivre, A., “Automating the Generation and Sequencing of Test Case from Model-Based Specification,” Proc. of the Industrial

Strength Formal Methods, 5th Intern. Symposium on Formal Methods, pp. 268 – 284, 1992.

[38] Carver, R., H., Tai, K., C., “Use of Sequencing Constraints for Specification-Based Testing of Concurrent Programs,” IEEE Trans. on

Software Engineering, 24(6), pp. 471 – 490, 1998.

[39] Apfelbaum, L., “Spec-based Tests Make Sure Telecom Software Works,” IEEE Spectrum Magazine, 34(11), pp. 77 – 83, 1997.

[40] Dalal, S., Jain, A., Karunanithi, N., Leaton, J., Lott, C., Patton, G., Horowitz, B., “Model-based Testing and Practice,” in Proc. of the Intern.

Conference on Software Engineering (ICSE), pp. 185 – 194, 1999.

[41] Cheng, K., Krishnakumar, A., “Automatic Functional Test Generation Using The Extended Finite State Machine Model”, The 30th

ACM/IEEE Design Automation Conf., pp. 86 – 91, 1993.

Journal of Advanced Computer Science and Technology 27

[42] Budkowski, T., Dembinski, P., “An Introduction to Estelle: A Specification Language for Distributed Systems,” Comp. Netw. & ISDN, 14(1),

pp. 3-24, 1987.

[43] Luay Tahat, Bogdan Korel, Mark Harman, and Hasan Ural,"Regression test suite prioritization using system models", Journal of Software

Testing, Verification, and Reliability, in press 2011.

[44] Bogdan Korel, Luay Tahat, “Understanding Modification in State-Based System”, Proceeding of the 12th IEEE International Conference on

Program Comprehension (IWPC’04), London, UK, September 2004: pages:246-250.

[45] Ferrante K., Ottenstein K., Warren J., “The Program Dependence Graph and its Use in Optimization,” ACM Transactions on Programming

Languages and Systems, 9(5), pp. 319 – 349, 1987.

[46] K. Androutsopoulos, et al. Control Dependence for Extended Finite State Machines. Proc. Fundamental Approaches to Soft. Eng. (FASE

'09) , York, UK, 22nd-29th March, 2009. Springer LNCS volume 5503, pages 216-230.

[47] K. Androutsopoulos, N. Gold, M. Harman, Z. Li, and L. Tratt. A Theoretical and Empirical Study of EFSM Dependence. Proc. 25th IEEE

International Conference on Software Maintenance (ICSM 2009), Edmonton, Alberta, Canada, 23rd-26th September 2009, pp.287-296.

[48] L. Lin, S. J. Prowell2, J. H. Poore1, "The impact of requirements changes on specifications and state machines ", Software: Practice and

Experience Volume 39, Issue 6, pages 573–610, 25 April 2009.

[49] Tahat L, Korel B., Hartman M, Ural H., “Regression Test Suite Prioritization Using System Models”, Software Testing, Verification, and

Reliability Journal (STRV), Wiley Inter science, special edition on Model-Based Testing, in press 2011, DOI: 10.1002/stvr.461

[50] Basili, V. R., “Viewing Maintenance as Reuse-Oriented Software Development”, IEEE Software, 7(1):19-25, 1990.

