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Abstract 

Robust statistical methods were first adopted in computer vision to 
improve the performance of feature extraction algorithms at the 
bottom level of the vision hierarchy.  These methods tolerate the 
presence of data points that do not obey the assumed model such 
points are typically called “outlier”.  Recently, various robust 
statistical methods have been developed and applied to computer 
vision tasks. Random Sample Consensus (RANSAC) estimators are 
one of the widely applied to tackle such problems due to its simple 
implementation and robustness. There have been a number of recent 
efforts aimed at increasing the efficiency of the basic RANSAC 
algorithm. N Adjacent Points Sample Consensus (NAPSAC) is one of 
the RANSAC method used in computer vision task. In this paper a 
new algorithm is proposed which is the modified version of NAPSAC 
with 2-sphere method. The accuracy of the proposed algorithm has 
been studied through a simulation study along with the existing 
algorithms in the context of RANSAC techniques. 
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1 Introduction 

Robust estimators were developed and applied in statistics and computer vision 

during the past decades; most of them can tolerate outliers up to 50%. In computer 

vision tasks, it frequently happens that outliers and pseudo-outliers occupy the 

absolute majority of the data. Therefore, the requirement in these robust 

estimators that occupy outliers less than 50% of all the data points is far from 
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being satisfied for real tasks in computer vision. A good robust estimator should 

be able to correctly find the fit when outliers occupy a higher percentage of the 

data. Also, ideally, the estimator should be able to resist the influence of all types 

of outliers (such as uniformly distributed outliers, clustered outliers and pseudo-

outliers).  

Fishler and Bolles (1981) were proposed RANdom Sample Consensus algorithms 

for model fitting with applications of image analysis and other computer vision 

tasks.  The general algorithm of RANSAC is as follows: Repeatedly, subsets of 

the input data are randomly selected with replacement, and model parameters 

fitting these subsets are computed. Then, the quality of the parameters is evaluated 

on the input data. Different cost functions have been proposed, the standard being 

the number of data points consistent with the model. The process is terminated 

when the probability of finding a better model becomes lower than a user 

specified probability η0. The 1-η0 confidence in the solution holds for all levels of 

contamination of the input data, that is, for any number of outliers within the input 

data. The performance of RANSAC algorithms depends on two factors: The 

number of random samples and the number of the input data points. In all 

common settings where RANSAC is applied, almost all models whose quality is 

verified are incorrect with arbitrary parameters originating from contaminated 

samples. Such models are consistent with only a small number of the data points. 

In this paper a new inlier identification method is proposed based on the 

NAPSAC developed by Myatt and et al (2002). The next section deals with the 

introduction about the RANSAC and N Adjacent Points SAmple Consensus 

(NAPSAC). The algorithm of newly proposed robust RANSAC method called 

Improved NAPSAC (INAPSAC) along with mathematical calculation is presented 

in section 3. In Section 4 the performance of the proposed algorithm is studied 

with the existing RANSAC and NAPSAC methods and it is observed that it gives 

better results in certain situations. The last section provides certain remarks and 

recommendations which will form a basis for further studies in the field and solve 

other problems which may occur in practice. 

 

2 Random Sample Consensus techniques 

Anton and et al (2005) uses the following strategy for RANSAC technique. The 

measured data has total of N samples with unknown fraction of inliers γ. To 

estimate true model parameters we would like to label data as outliers and inliers 

and estimate the model parameters from inliers only. As this labeling is initially 

unknown, RANSAC tries to find outlier-free data subset randomly, in several 

attempts. To maximize the probability of selecting sample without outliers 

RANSAC tests only samples of minimal size.  

The RANSAC algorithm consists of M iteration of the following three steps:  
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 Random sampling m elements of the input data xSk   

 Estimating hypothesis  θk from Sk 

 Measuring the hypothesis score, Rk=R(θk) 

After generation and evaluation of M hypothesizes, the one with highest 

score, )(max ,1 kNk R , is selected as the result of robust estimation. Given the 

expected fraction of inliers γ in the input data and the total number of samples N, 

the number of algorithm iterations M necessary to find the true model parameters 

with desired probability P can be calculated. 

The algorithm of NAPSAC focused on the efficiency of the sampling strategy. 

The idea is that inliers tend to be closer to one another than outliers, and the 

sampling strategy can be modified to exploit the proximity of inliers. This might 

bring efficient robust recovery of high dimensional models, where the probability 

of drawing an uncontaminated sample becomes very low even for data sets with 

relatively low contamination of outliers. Non-uniform sampling has been shown 

to provide a theoretical advantage over uniform sampling, but will now be shown 

experimentally to be just as effective in high noise and higher dimensions. To 

demonstrate this, a simple enhanced sampling algorithm was created. The 

following algorithm can be used in place of the uniform point sampling process in 

any of the robust estimation algorithms. 

 Select an initial point X0 randomly from all points. 

 Find the set of points, Sx0, lying within a hyper sphere of radius r centered 

on X0. 

 If the number of points in Sx0 is less than the minimal set size then fail.. 

 Select points from Sx0 uniformly until the minimal set has been selected, 

inclusive of X0. 

The enhanced sampling algorithm was integrated with the RANSAC consensus 

set cost function to facilitate experimentation. This combination was named N 

Adjacent Points SAmple Consensus (NAPSAC). 

 

3 Improved N Adjacent Points Sample Consensus 
(INAPSAC) 

Myatt and et.al (2002) proved that the uniform point sampling may be failed in 

higher dimensions. So, it may be related to its neglect of the spatial relationship 

between the inlying data points. Using the distribution of the inlying data within 

the multi-dimensional space to modify the point sampling may improve 

hypothesis selection. Such models are already used to determine the quality of 

estimation. The method proposed here is to use a similar technique to select 
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hypotheses through improved point selection. The proposed a new inlier 

identification scheme based on proximity in three dimensions spheres is as 

following. Let {X1,X2,…,XN}be the set of all data points (inliers and outliers). 

First assume that the initial data point x0 has already been selected and that point 

lies on the manifold. So, therefore marginal density of inliers and outliers at a 

distance r from X0 can be calculated. Then, by comparing these marginal 

densities, it can be determined whether selecting by proximity increases the 

probability of sampling inliers over uniform random sampling. To examine the 

worst case scenario, where the points are uniformly distributed on the manifold 

between limits −t<x<t and –t<y<t, such that the probability density function of x 

and y are pi(x) = 1/2t and pi(y) =1/2t. Assume that inlier point coordinates are 

measured with error that satisfies Gaussian distribution with zero mean and 

standard deviation σ. This distribution is truncated −t< z< t, since t>σ, the 

truncation will have negligible effect on subsequent calculations. Thus, the joint 

probability density of the inliers is 
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The outliers are uniformly distributed in a 2-sphere centered on the origin radius t 

then the Probability density function of outliers is 
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Then the joint p.d.f of inliers and outliers is 

P(x,y,z)=μpi(x,y,z)+(1-μ)po(x,y,z) 

In order to find the conditional probability density of selecting an inlying point 

from a given point on the manifold as a function of their mutual distance, a 

coordinate transform from Cartesian to Polar is required 
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However, using the trigonometric identities sin
2
φ = sin2(φ + π) and sin

2
 φ=1/2 (1 

− cos 2φ) this can be rearranged to 
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Integrating the above equation with respect to φ, we get 












































2

2

02

2

44
exp2)(






r
I

r
Krrmi  

where I0 is the modified Bessel function of first kind. After simplifying the above 

equation we get marginal density as 
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The polar to Cartesian transformation of outliers is 

P0(r,φ)= r
t 34

3


 

The marginal density of outliers is 
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distance at which both marginal densities are equal, then 
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The following INAPSAC algorithm is used in the place of sample selection. 

 Select initial data point X0 from U at random. 

 Find the set of sample points
0XR lying in a 3 dimensional hyper-sphere (2-

sphere) of radius r centered on X0. 

 If the size of
0XR is less than the minimal set size m-1 then fail 

 Repeat the above steps until the minimal set has been selected including the 

point X0. 
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This results in a cluster of points being selected from a ball. If the initial point, X0, 

lies on the manifold, then the rest of the points sampled adjacently will 

theoretically have a significantly higher probability of being inliers. If there are 

not enough points within the hyper sphere to estimate the manifold, then that 

sample is considered a failure. 

 

4 Simulation Study 

This section presents the simulation study results to compare the performance of 

INAPSAC techniques with RANSAC and NAPSAC methods. The simulation 

study is carried out for different number of threshold such as 2, 4 and 6 and for 

various sample sizes, n=100, n=500 and n=1000. The data is generated using TLS 

model. The number of inliers and the corresponding mean value for those inliers 

are estimated using various RANSAC techniques, the results are summarized in 

table. It is observed from the table, in all the situations the INAPSAC technique 

gives the better result than the other methods, since the no of inlier points are 

more than the other method. 

 

Table1. The Estimated Results of INAPSAC with other RANSAC Techniques  

T Methods 
n=100 n=500 n=100 

Mean Inliers Mean Inliers Mean Inliers 

2 

TLS 0.074522 95 0.022838 475 0.027711 950 
RANSAC 0.085800 93 0.031563 457 0.021601 916 
NAPSAC -0.490461 85 0.504939 441 0.350763 922 
INAPSAC 0.500666 95 -0.263359 460 0.017260 936 

4 

TLS 0.175107 95 -0.049626 475 -0.033793 950 
RANSAC -0.603010 96 0.269810 477 0.189419 959 
NAPSAC -0.442057 84 0.112394 476 1.063397 959 
INAPSAC 0.314658 97 -0.238840 480 0.819703 961 

6 

TLS -0.024324 95 -0.017501 475 0.051102 950 
RANSAC -0.029559 96 1.252636 483 0.953964 962 
NAPSAC 0.121398 96 0.200737 483 -0.381640 963 
INAPSAC -0.075238 98 -0.038167 485 -1.446939 966 

 

5 Conclusions 

In this paper a new RANSAC method is introduced, which is the modified version 

of NAPSAC method, through a simulation study and it is observed that it gives 

better results when compared to existing algorithms in certain situations. 
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INAPSAC has been used extensively and has proven to give better performance 

than various other robust estimators. The problem of fitting a model with noisy 

data is still a major and challenging task within the computer vision communities. 

So, developing a RANSAC method which can tolerate high percentage of outliers 

is very helpful for researchers. In order to solve problems this may occur in 

practice. 
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