

Journal of Advanced Computer Science & Technology, 4 (2) (2015) 231-236

www.sciencepubco.com/index.php/JACST

©Science Publishing Corporation
doi: 10.14419/jacst.v4i2.4749

Research Paper

AK-means: an automatic clustering algorithm

based on K-means

Omar Kettani*, Faical Ramdani, Benaissa Tadili

Mohamed V- University, Scientific Institute, Physics of the Earth Laboratory Rabat, Morocco

*Corresponding author E-mail: kettani.o@gmail.com

Copyright © 2015 O. Kettani et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use,

distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In data mining, K-means is a simple and fast algorithm for solving clustering problems, but it requires that the user

provides in advance the exact number of clusters (k), which is often not obvious. Thus, this paper intends to overcome

this problem by proposing a parameter-free algorithm for automatic clustering. It is based on successive adequate

restarting of K-means algorithm. Experiments conducted on several standard data sets demonstrate that the proposed

approach is effective and outperforms the related well known algorithm G-means, in terms of clustering accuracy and

estimation of the correct number of clusters.

Keywords: Automatic Clustering; G-Means; K-Means; Parameter-Free Clustering.

1. Introduction

Clustering is the process of grouping data into disjoint set called clusters such as that similarities among data members

within the same cluster are maximal while similarities among data members from different clusters are minimal. The

optimization of this criterion is an NP hard problem in general Euclidean space d, even when the clustering process

deals with only two clusters [1]. To tackle this problem, many approximation algorithms have been proposed, aiming to

find near optimal clustering solution in reasonable computational time. Most of the existing clustering algorithms

depend on one or more tuning parameters, which are often difficult to determine, because they may require many

empirical error-trials steps without a reliable effective result. K-means [2], the most prominent clustering algorithm has

a major drawback: the user must specify the correct number of clusters in advance, which is often a difficult task when

the distribution of the given data set is unknown.

In this paper, an alternative parameter free method for automatic clustering, called AK-means, is proposed. It is based

on successive adequate restarting of K-means. Algorithm validation and comparative study with G-means [3], a related

well known algorithm, are conducted using several real-worlds and artificial clustering data sets from the UCI Machine

Learning Repository [4].

In the next section, some related works are briefly discussed. Then the proposed approach is described in Section 3.

Section 4 presents application's results of this clustering method to different standard data sets and reports its

performance. Finally, conclusions of the paper are summarized in Section 5.

2. Related work

Despite the fact that obtaining an optimal number of clusters k for a given data set is an NP-hard problem [5], several

methods have been developed to find k automatically.

Pelleg and Moore [6] introduced the X-means algorithm, which proceed by learning k with k-means using the Bayesian

Information Criterion (BIC) to score each model, and choose the model with the highest BIC score. However, this

method tends to over fit when it deals with data that arise from non-spherical clusters. Tibshirani et al. [7] proposed the

http://creativecommons.org/licenses/by/3.0/

232 Journal of Advanced Computer Science & Technology

Gap statistic, which compares the likelihood of a learned model with the distribution of the likelihood of models trained

on data drawn from a null distribution. This method is suitable for finding a small number of clusters, but has difficulty

when k increases. Hamerly and Elkan [3] proposed the G-means algorithm, based on K-means algorithm, which uses

projection and a statistical test for the hypothesis that the data in a cluster come from a Gaussian distribution. This

algorithm works correctly if clusters are well-separated, and fail when clusters overlap and look non-Gaussian. In our

experiments, G-means tends to overestimate the number of clusters, as reported in section 4.

In the present work, an alternative approach is proposed, attempting to overcome these issues.

3. Proposed approach

The proposed algorithm starts by setting k=floor ((n)
 1/2

); where n is the number of objects in the given data set. This

choice is motivated by the fact that this number lies in the range from 2 to (n)
 1/2

, as reported by Pal and Bezdek in [8].

Then it applies a deterministic initialization procedure proposed by the authors in [9]. K-means algorithm is applied

with these initial k centroids, and centroid of the smallest cluster is removed, then K-means restarts with the remaining

centroids. At each iteration, the maximum of CH cluster validity index [10] of the current partition is stored. We used

this index because it is relatively inexpensive to compute, and it generally outperforms other cluster validity indices as

reported by Milligan and Cooper in [11]. This process is repeated until k=2. Finally, the algorithm outputs the optimal k

and partition corresponding to the maximum value of CH stored so far. This algorithm is outlined in the pseudo-code

below:

Algorithm AK-means

Input: D= {x1, x2. . . xn} in R
d

 k

Output: k mutually disjoint clusters C1... Ck such that Cj=D
 j=1

k  (n)



XD

For j=1 to k do

 C j← KNNsearch(x1, X, n/k )

 cj ←∑x i / n/k 

 xi ∈ Cj

 X← X- C j

End For

[I,c] K-means (D,c,k)

ko k

Io  I

CHo  CH (I)

While k>2 do

 j argMin(Ci)

 ik

 cj

 kk-1

Journal of Advanced Computer Science & Technology 233

 [I,c] K-means (D,c,k)

 if CHo <CH(I) then

 ko k

 Io  I

 CHo  CH (I)

 End if

End while

Output: ko and Io

4. Experimental results

Algorithm validation is conducted using seven real-world clustering data sets, namely breast, iris, wine, glass, ruspini,

thyroid, yeast and 14 artificial generated clustering data sets from the UCI Machine Learning Repository. Data sets s1

to s4 are generated with varying complexity in terms of spatial data distributions, which have 5000 vectors scattered

around 15 predefined clusters with varying degrees of overlap. Data sets a1, a2, and a3 are generated in 2-dimensional

Gaussian distribution; there are 150 vectors per cluster. Dim32 to Dim528 are high-dimensional data sets with 16

Gaussian clusters.

Silhouette index [12] which measures the cohesion based on the distance between all the points in the same cluster and

the separation based on the nearest neighbor distance, was used in these experiments (bigger average silhouette value

indicates a higher clustering accuracy).

In these experiments, a comparative study between G-means and AK-means is conducted on these data sets using

Matlab software on a computer with Intel Core 2Duo CPU 2.8 GHZ and RAM 4.0GB memory. The number of clusters

found by both algorithms, the average of silhouette values and CPU running time are reported in table 1.

In our experiments, we used α = 0.0001 the significance level of the test, for G-means script.

The results of the experiments with different data sets indicate that the proposed approach estimates the correct number

of clusters, in 18 cases among 21 tested data sets. A Matlab code of the proposed approach is given in the appendix.

5. Conclusion

In this work, an algorithm was suggested for automatic clustering. This approach estimated the correct number of

clusters in almost all tested data sets. This method was compared with the related well known algorithm, G-means,

which improved for finding the correct number of clusters. The comparisons also showed that the proposed approach is

better than G-means in terms of clustering accuracy.

In future work, it will be of interest to find a tighter upper bound on the number of clusters, instead of n
1/2,

 in order to

reduce the number of computation's steps of the proposed approach. Another possible algorithm's speed up is to avoid

unnecessary distance calculations by exploiting the triangle inequality following the method developed by Elkan in [13].

A further possible improvement of the proposed approach will consist to try more adequate similarity measures instead

of Euclidean distance, in order to enhance its clustering accuracy.

Acknowledgements

This work is supported by Mohamed V University funding from P-U. Project.

234 Journal of Advanced Computer Science & Technology

Table 1: Experimental Results of Application of G-Means and AK-Means on Different Data Sets.

 G-means AK-means

Dataset k k found Mean Silh CPU time (s) k found Mean Silh CPU time (s)

breast 2 106 0.4226 5.1120 2 0.7542 1.0386

iris 3 3 0.7786 2.8643 3 0.7786 0.3728

glass 7 2 0.7879 0.7893 15 0.6514 0.5293

ruspini 4 4 0.9086 0.9048 4 0.9086 0.0997

thyroid 2 3 0.7773 0.9017 3 0.7773 0.4168

wine 3 3 0.5043 0.9940 3 0.5043 0.3411

yeast 10 19 0.2659 2.4021 2 0.4102 6.2920

a1 20 23 0.7337 2.0891 20 0.7892 5.2059

a2 35 40 0.7413 2.3931 35 0.7911 14.5874

a3 50 53 0.7727 3.7775 50 0.7949 27.6954

D31 31 31 0.9222 1.6490 31 0.9222 4.9055

dim32 16 111 0.4413 5.3006 16 0.9962 3.5238

dim64 16 109 0.5464 5.4418 16 0.9985 6.1691

dim128 16 111 0.6214 8.2748 16 0.9991 13.1553

dim256 16 106 0.6032 9.8462 16 0.9996 28.2731

dim528 16 109 0.5999 20.4447 16 0.9998 63.4478

R15 15 15 0.9361 1.2827 15 0.9361 0.4046

s1 15 80 0.5632 8.4497 15 0.8803 12.7067

s2 15 87 0.5563 13.4046 15 0.8009 18.1031

s3 15 73 0.5393 14.7327 15 0.6659 27.3990

s4 15 85 0.5315 25.1755 15 0.6446 26.1389

References

[1] Aloise, D.; Deshpande, A.; Hansen, P.; Popat, P. (2009). "NP-hardness of Euclidean sum-of-squares clustering". Machine Learning 75: 245–
249. http://dx.doi.org/10.1007/s10994-009-5103-0.

[2] Lloyd. S. P. (1982). "Least squares quantization in PCM". IEEE Transactions on Information Theory 28 (2): 129–137.

http://dx.doi.org/10.1109/TIT.1982.1056489.
[3] Greg Hamerly and Charles Elkan. Learning the k in k-means. In Proceedings of the seventeenth annual conference on neural information

processing systems (NIPS), pages 281–288, 2003

[4] Asuncion, A. and Newman, D.J. (2007). UCI Machine Learning Repository [http://www.ics.uci.edu/~mlearn/MLRepository.html]. Irvine,
CA: University of California, School of Information and Computer Science.

[5] H. Spath, Clustering Analysis Algorithms for Data Reduction and Classification of Objects, Ellis Horwood, Chichester, 1980.

[6] Dan Pelleg and Andrew Moore. X-means: Extending k-means with efficient estimation of the number of clusters. In Proceedings of the 17th
International Conf. on Machine Learning, pages 727–734. Morgan Kaufmann, 2000.

[7] Robert Tibshirani, Guenther Walther, and Trevor Hastie. Estimating the number of clusters in a dataset via the Gap statistic. Journal of the

Royal Statistical Society B, 63:411–423, 2001. http://dx.doi.org/10.1111/1467-9868.00293.
[8] Pal, N.R. and Bezdek, J.C. (1995) On Cluster Validity for the Fuzzy c-Means Model. IEEE Transactions on Fuzzy Systems, 3, 370-379.

http://dx.doi.org/10.1109/91.413225.

[9] Kettani, O.; Tadili, B. and Ramdani, F. - A deterministic k-means algorithm based on nearest neighbor search. International Journal of
Computer Applications (0975 – 8887), Vol. 63, No.15, February 2013. http://dx.doi.org/10.5120/10544-5541.

[10] T. Calinski and J. Harabasz. A dendrite method for cluster analysis. Communications in Statistics, 3:1–27, 1974.

[11] G. W. Milligan and M. C. Cooper. An examination of procedures for determining the number of clusters in a data set. Psychometrica, 50:159–
179, 1985. http://dx.doi.org/10.1007/BF02294245.

[12] L. Kaufman and P. J. Rousseeuw. Finding groups in Data: "an Introduction to Cluster Analysis". Wiley, 1990.

http://dx.doi.org/10.1002/9780470316801.
[13] C. Elkan, "Using the triangle inequality to accelerate k-means", ICML 2003 Conference Proceedings, p. 147#153, 2003.

http://dx.doi.org/10.1007/s10994-009-5103-0
http://dx.doi.org/10.1109/TIT.1982.1056489
http://dx.doi.org/10.1111/1467-9868.00293
http://dx.doi.org/10.1109/91.413225
http://dx.doi.org/10.5120/10544-5541
http://dx.doi.org/10.1007/BF02294245
http://dx.doi.org/10.1002/9780470316801

Journal of Advanced Computer Science & Technology 235

Appendix

a Matlab code of the proposed approach

clear all;

[file,filePath] = uigetfile('*.txt');

if isequal(file, 0)

 return;

end

dname = [filePath file];

try

 a = load(dname);

catch

 set(handles.Outext1, 'String', 'Running state: incorrect data file !');

 return

end;

% a(:,3)=[]

co = 'brgmcyk';

pt =

{'bs','r^','md','go','c+','rs','m^','gd','co','b+','gs','b^','rd','bo','g+','ms','c^','cd

','mo','m+','g+','gs','b^','rd','bo','g+','ms','c^','cd','mo','m+','g+','ms','c^','cd','m

o','m+','g+','gs','b^','rd','bo','g+','ms','c^','cd','mo','m+','g+','bs','r^','md','go','

c+','rs','m^','gd','co','b+','gs','b^','rd','bo','g+','ms','c^','cd','mo','m+','g+','gs',

'b^','rd','bo','g+','ms','c^','cd','mo','m+','g+','ms','c^','cd','mo','m+','g+','gs','b^'

,'rd','bo','g+','ms','c^','cd','mo','m+','g+','bs','r^','md','go','c+','rs','m^','gd','co

','b+','gs','b^','rd','bo','g+','ms','c^','cd','mo','m+','g+','gs','b^','rd','bo','g+','m

s','c^','cd','mo','m+','g+','ms','c^','cd','mo','m+','g+','gs','b^','rd','bo','g+','ms','

c^','cd','mo','m+','g+'};

lc = length(co);

[n,p]= size(a);

k=round(sqrt(n))

m=init(a,k)

[idx,m] = kmeans(a,k,'start',m,'emptyaction','singleton')

ko=k

CHo= vCH(a,idx)

idxo=idx

while k>2

 [mD,id] =min(arrayfun(@(j) length(find(idx==j)),1:k))

 m(id(1),:)=[]

 k=k-1

 [idx,m] = kmeans(a,k,'start',m,'emptyaction','singleton')

 CH= vCH(a,idx)

 if CHo<CH

 CHo=CH

 ko=k

 idxo=idx

 end;

end

k=ko

idx=idxo

[s,h] = silhouette(a,idx);

figure;

for j=1:k

plot(a(idx==j,1),a(idx==j,2),pt{j},'MarkerSize',5)

hold on

end

si0= mean(s);

disp(si0)

disp(k)

%%

function [CH] = vCH(data,labels)

[nrow,nc] = size(data);

labels = double(labels);

k=max(labels);

[sw,sb] = v_sumsqures(data,labels,k);

236 Journal of Advanced Computer Science & Technology

ssw = trace(sw);

ssb = trace(sb);

if k > 1

 CH = ssb/(k-1);

else

 CH =ssb;

end

CH = (nrow-k)*CH/ssw; % Calinski-Harabasz

%%

function [W, B] = v_sumsqures(data,labels,k)

if (size(labels, 1) == 1)

 labels = labels';

end

[ncase,m] = size(data);

Dm = mean(data);

Dm = data - Dm(ones(ncase,1),:);

T = Dm'*Dm;

W = zeros(size(T));

Dm = zeros(k,m);

for i = 1:k

 if k > 1

 Cindex = find(labels == i);

 else

 Cindex = 1:ncase;

 end

 nk = length(Cindex);

 if nk > 1

 dataC = data(Cindex,:);

 m = mean(dataC);

 Dm(i,:) = m;

 dataC = dataC - repmat(m,nk,1);

 W = W + dataC'*dataC;

 dataC = sum(dataC.^2,2);

 end

end

B = T - W;

end

%%

function distances = calcdist2(data,center)

[n,dim] = size(data);

[n2,dim2] = size(center);

if n2 == 1

 distances = sum(data.^2, 2) - 2*data*center' + center*center';

elseif n2 == n

 distances = sum((data - center).^2 ,2);

else

 error('bad number of centers');

end

distances = distances;

%%

function C=init(a,k)

[n,p]= size(a);

Z=a

C=[]

idx=[]

for j=1:k-1

 idx=knnsearch(Z(1,:),Z,round(n/k))

 C(j,:)=mean(Z(idx,:))

 Z(idx,:)=[]

end

 C(k,:)=mean(Z(1:end,:))

