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Abstract 
 

In data mining, K-means is a simple and fast algorithm for solving clustering problems, but it requires that the user 

provides in advance the exact number of clusters (k), which is often not obvious. Thus, this paper intends to overcome 

this problem by proposing a parameter-free algorithm for automatic clustering. It is based on successive adequate 

restarting of K-means algorithm. Experiments conducted on several standard data sets demonstrate that the proposed 

approach is effective and outperforms the related well known algorithm G-means, in terms of clustering accuracy and 

estimation of the correct number of clusters. 
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1. Introduction 

Clustering is the process of grouping data into disjoint set called clusters such as that similarities among data members 

within the same cluster are maximal while similarities among data members from different clusters are minimal. The 

optimization of this criterion is an NP hard problem in general Euclidean space d, even when the clustering process 

deals with only two clusters [1]. To tackle this problem, many approximation algorithms have been proposed, aiming to 

find near optimal clustering solution in reasonable computational time. Most of the existing clustering algorithms 

depend on one or more tuning parameters, which are often difficult to determine, because they may require many 

empirical error-trials steps without a reliable effective result. K-means [2], the most prominent clustering algorithm has 

a major drawback: the user must specify the correct number of clusters in advance, which is often a difficult task when 

the distribution of the given data set is unknown. 

In this paper, an alternative parameter free method for automatic clustering, called AK-means, is proposed. It is based 

on successive adequate restarting of K-means. Algorithm validation and comparative study with G-means [3], a related 

well known algorithm, are conducted using several real-worlds and artificial clustering data sets from the UCI Machine 

Learning Repository [4].  

In the next section, some related works are briefly discussed. Then the proposed approach is described in Section 3. 

Section 4 presents application's results of this clustering method to different standard data sets and reports its 

performance. Finally, conclusions of the paper are summarized in Section 5. 

2. Related work 

Despite the fact that obtaining an optimal number of clusters k for a given data set is an NP-hard problem [5], several 

methods have been developed to find k automatically.  

Pelleg and Moore [6] introduced the X-means algorithm, which proceed by learning k with k-means using the Bayesian 

Information Criterion (BIC) to score each model, and choose the model with the highest BIC score. However, this 

method tends to over fit when it deals with data that arise from non-spherical clusters. Tibshirani et al. [7] proposed the 
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Gap statistic, which compares the likelihood of a learned model with the distribution of the likelihood of models trained 

on data drawn from a null distribution. This method is suitable for finding a small number of clusters, but has difficulty 

when k increases. Hamerly and Elkan [3] proposed the G-means algorithm, based on K-means algorithm, which uses 

projection and a statistical test for the hypothesis that the data in a cluster come from a Gaussian distribution. This 

algorithm works correctly if clusters are well-separated, and fail when clusters overlap and look non-Gaussian. In our 

experiments, G-means tends to overestimate the number of clusters, as reported in section 4. 

In the present work, an alternative approach is proposed, attempting to overcome these issues. 

3. Proposed approach 

The proposed algorithm starts by setting k=floor ((n)
 1/2

); where n is the number of objects in the given data set. This 

choice is motivated by the fact that this number lies in the range from 2 to (n)
 1/2

, as reported by Pal and Bezdek in [8]. 

Then it applies a deterministic initialization procedure proposed by the authors in [9]. K-means algorithm is applied 

with these initial k centroids, and centroid of the smallest cluster is removed, then K-means restarts with the remaining 

centroids. At each iteration, the maximum of CH cluster validity index [10] of the current partition is stored. We used 

this index because it is relatively inexpensive to compute, and it generally outperforms other cluster validity indices as 

reported by Milligan and Cooper in [11]. This process is repeated until k=2. Finally, the algorithm outputs the optimal k 

and partition corresponding to the maximum value of CH stored so far. This algorithm is outlined in the pseudo-code 

below: 

 

Algorithm AK-means 

 

Input: D= {x1, x2.  . . xn} in R
d
  

 
                                                                                         k 

Output:   k mutually disjoint clusters C1... Ck such that Cj=D 
                                                                                        j=1 

 

k  (n)



 

XD 

 

For j=1 to k do 

 

 C j← KNNsearch(x1, X, n/k ) 

 

 cj ←∑x i / n/k   

               xi  ∈ Cj 

 

 X← X- C j 

 

End For 

 

[I,c] K-means (D,c,k) 

 

ko k 

 

Io  I 

 

CHo  CH (I) 

 

While k>2 do 

 

 j argMin(Ci) 

 

        ik 

 

 cj

 

 kk-1 

 



Journal of Advanced Computer Science & Technology 233 

 

 

 

 

 [I,c] K-means (D,c,k) 

 

 if CHo <CH(I) then  

 

  ko k 

 

  Io  I 

 

  CHo  CH (I) 

 

 End if 

 

End while 

 

Output: ko and Io 

4. Experimental results 

Algorithm validation is conducted using seven real-world clustering data sets, namely breast, iris, wine, glass, ruspini, 

thyroid, yeast and 14 artificial generated clustering data sets from the UCI Machine Learning Repository. Data sets s1 

to s4 are generated with varying complexity in terms of spatial data distributions, which have 5000 vectors scattered 

around 15 predefined clusters with varying degrees of overlap. Data sets a1, a2, and a3 are generated in 2-dimensional 

Gaussian distribution; there are 150 vectors per cluster. Dim32 to Dim528 are high-dimensional data sets with 16 

Gaussian clusters.  

Silhouette index [12] which measures the cohesion based on the distance between all the points in the same cluster and 

the separation based on the nearest neighbor distance, was used in these experiments (bigger average silhouette value 

indicates a higher clustering accuracy).  

In these experiments, a comparative study between G-means and AK-means is conducted on these data sets using 

Matlab software on a computer with Intel Core 2Duo CPU 2.8 GHZ and RAM 4.0GB memory. The number of clusters 

found by both algorithms, the average of silhouette values and CPU running time are reported in table 1. 

In our experiments, we used α = 0.0001 the significance level of the test, for G-means script. 

The results of the experiments with different data sets indicate that the proposed approach estimates the correct number 

of clusters, in 18 cases among 21 tested data sets. A Matlab code of the proposed approach is given in the appendix. 

5. Conclusion 

In this work, an algorithm was suggested for automatic clustering. This approach estimated the correct number of 

clusters in almost all tested data sets. This method was compared with the related well known algorithm, G-means, 

which improved for finding the correct number of clusters. The comparisons also showed that the proposed approach is 

better than G-means in terms of clustering accuracy. 

In future work, it will be of interest to find a tighter upper bound on the number of clusters, instead of n
1/2,

 in order to 

reduce the number of computation's steps of the proposed approach. Another possible algorithm's speed up is to avoid 

unnecessary distance calculations by exploiting the triangle inequality following the method developed by Elkan in [13]. 

A further possible improvement of the proposed approach will consist to try more adequate similarity measures instead 

of Euclidean distance, in order to enhance its clustering accuracy. 
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Table 1: Experimental Results of Application of G-Means and AK-Means on Different Data Sets. 

 G-means AK-means 

Dataset k k found Mean Silh CPU time (s) k found Mean Silh CPU time (s) 

breast 2 106 0.4226 5.1120 2 0.7542 1.0386 

iris 3 3 0.7786 2.8643 3 0.7786 0.3728 

glass 7 2 0.7879 0.7893 15 0.6514 0.5293 

ruspini 4 4 0.9086 0.9048 4 0.9086 0.0997 

thyroid 2 3 0.7773 0.9017 3 0.7773 0.4168 

wine 3 3 0.5043 0.9940 3 0.5043 0.3411 

yeast 10 19 0.2659 2.4021 2 0.4102 6.2920 

a1 20 23 0.7337 2.0891 20 0.7892 5.2059 

a2 35 40 0.7413 2.3931 35 0.7911 14.5874 

a3 50 53 0.7727 3.7775 50 0.7949 27.6954 

D31 31 31 0.9222 1.6490 31 0.9222 4.9055 

dim32 16 111 0.4413 5.3006 16 0.9962 3.5238 

dim64 16 109 0.5464 5.4418 16 0.9985 6.1691 

dim128 16 111 0.6214 8.2748 16 0.9991 13.1553 

dim256 16 106 0.6032 9.8462 16 0.9996 28.2731 

dim528 16 109 0.5999 20.4447 16 0.9998 63.4478 

R15 15 15 0.9361 1.2827 15 0.9361 0.4046 

s1 15 80 0.5632 8.4497 15 0.8803 12.7067 

s2 15 87 0.5563 13.4046 15 0.8009 18.1031 

s3 15 73 0.5393 14.7327 15 0.6659 27.3990 

s4 15 85 0.5315 25.1755 15 0.6446 26.1389 
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Appendix 

a Matlab code of the proposed approach 

clear all; 

[file,filePath] = uigetfile('*.txt');  

if isequal(file, 0) 

   return; 

end 

dname = [filePath file]; 

try 

  a = load(dname); 

catch 

  set(handles.Outext1, 'String', 'Running state: incorrect data file !'); 

  return 

end; 

% a(:,3)=[] 

co = 'brgmcyk'; 

pt = 

{'bs','r^','md','go','c+','rs','m^','gd','co','b+','gs','b^','rd','bo','g+','ms','c^','cd

','mo','m+','g+','gs','b^','rd','bo','g+','ms','c^','cd','mo','m+','g+','ms','c^','cd','m

o','m+','g+','gs','b^','rd','bo','g+','ms','c^','cd','mo','m+','g+','bs','r^','md','go','

c+','rs','m^','gd','co','b+','gs','b^','rd','bo','g+','ms','c^','cd','mo','m+','g+','gs',

'b^','rd','bo','g+','ms','c^','cd','mo','m+','g+','ms','c^','cd','mo','m+','g+','gs','b^'

,'rd','bo','g+','ms','c^','cd','mo','m+','g+','bs','r^','md','go','c+','rs','m^','gd','co

','b+','gs','b^','rd','bo','g+','ms','c^','cd','mo','m+','g+','gs','b^','rd','bo','g+','m

s','c^','cd','mo','m+','g+','ms','c^','cd','mo','m+','g+','gs','b^','rd','bo','g+','ms','

c^','cd','mo','m+','g+'}; 

lc = length(co); 

[n,p]= size(a); 

k=round(sqrt(n)) 

m=init(a,k) 

[idx,m] = kmeans(a,k,'start',m,'emptyaction','singleton') 

ko=k 

CHo= vCH(a,idx) 

idxo=idx 

while k>2 

  [mD,id] =min(arrayfun(@(j) length(find(idx==j)),1:k)) 

   m(id(1),:)=[] 

   k=k-1 

   [idx,m] = kmeans(a,k,'start',m,'emptyaction','singleton') 

    CH= vCH(a,idx) 

      if CHo<CH 

          CHo=CH 

          ko=k 

          idxo=idx 

      end;    

end 

k=ko 

idx=idxo 

[s,h]  = silhouette(a,idx);  

figure; 

for j=1:k 

plot(a(idx==j,1),a(idx==j,2),pt{j},'MarkerSize',5) 

hold on 

end 

si0= mean(s); 

disp(si0) 

disp(k) 

 
 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function [CH] = vCH(data,labels) 

[nrow,nc] = size(data); 

labels = double(labels); 

k=max(labels); 

[sw,sb] = v_sumsqures(data,labels,k); 
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ssw = trace(sw); 

ssb = trace(sb); 

if k > 1 

  CH = ssb/(k-1);  

else 

  CH =ssb;  

end 

CH = (nrow-k)*CH/ssw;    % Calinski-Harabasz 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function [W, B] = v_sumsqures(data,labels,k) 

  

if (size(labels, 1) == 1) 

    labels = labels';  

end 

[ncase,m] = size(data); 

Dm = mean(data); 

Dm = data - Dm(ones(ncase,1),:);  

T = Dm'*Dm; 

W = zeros(size(T)); 

Dm = zeros(k,m); 

for i = 1:k 

   if k > 1 

      Cindex = find(labels == i); 

   else 

      Cindex = 1:ncase; 

   end 

   nk = length(Cindex); 

   if nk > 1 

      dataC = data(Cindex,:); 

      m = mean(dataC); 

      Dm(i,:) = m; 

      dataC = dataC - repmat(m,nk,1); 

      W = W + dataC'*dataC; 

      dataC = sum(dataC.^2,2); 

   end 

end 

B = T - W; 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function distances = calcdist2(data,center) 

[n,dim] = size(data); 

[n2,dim2] = size(center); 

if n2 == 1 

    distances = sum(data.^2, 2) - 2*data*center' + center*center'; 

elseif n2 == n 

    distances = sum( (data - center).^2 ,2); 

else 

    error('bad number of centers'); 

end 

distances = distances; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function C=init(a,k) 

[n,p]= size(a); 

Z=a 

C=[] 

idx=[] 

for j=1:k-1 

     idx=knnsearch(Z(1,:),Z,round(n/k)) 

     C(j,:)=mean(Z(idx,:)) 

     Z(idx,:)=[] 

end 

 C(k,:)=mean(Z(1:end,:)) 

 


