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Abstract 
 

Video often include frames that are irrelevant to the scenes for recording. These are mainly due to imperfect shooting, abrupt movements 

of camera, or unintended switching of scenes. The irrelevant frames should be removed before the semantic analysis of video scene is 

performed for video retrieval. An unsupervised approach for automatic removal of irrelevant frames is proposed in this paper. A novel 

log-spectral representation of color video frames based on Fibonacci lattice-quantization has been developed for better description of the 

global structures of video contents to measure similarity of video frames. Hyperclique pattern analysis, used to detect redundant data in 

textual analysis, is extended to extract relevant frame clusters in color videos. A new strategy using the k-nearest neighbor algorithm is 

developed for generating a video frame support measure and an h-confidence measure on this hyperclique pattern based analysis method. 

Evaluation of the proposed irrelevant video frame removal algorithm reveals promising results for datasets with irrelevant frames. 
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1. Introduction 

The rapid growth of multimedia information volume and the in-

creasing demand of fast accesses to this information via the Inter-

net in recent years have brought much attention to the content-

based video retrieval (CBVR). CBVR is necessary because of the 

prohibitive amount of labor required for manual indexing. Ma-

chine learning methods have been used for searching relevant 

videos [5], [10], [20], [25-26], [32] in order to increase video re-

trieval accuracy. Depending on the learned criteria and concepts 

such as semantic dictionary, retrieval accuracy can be improved 

significantly by narrowing the semantic gap.  

Automatic selection of training sets is a key factor to these ma-

chine training and searching methods. Fig. 1 shows an example of 

irrelevant frames added to the “Hoover Dam” video from the 

TRECVID (2001) video collection [31]. The added frames include 

a “Y” sign, trash cans, a bicycle, a tree, an automobile, and a 

building. Since these frames are markedly different from the orig-

inal frames in the video, they are noise that negatively affects the 

quality of a retrieval solution if irrelevant frames are selected in a 

training set. The deliberately inserted irrelevant frames in Fig. 1 

correspond to the frames also existing in actual video sequences, 

which result from unwary shot switching, imprecise editing, or 

careless manual selection of training set. In practice, these irrele-

vant frames reduce the authenticity of the training set and hence 

decrease the efficiency of retrieval techniques using training data. 

Due to the rapidly increasing volume of video data, manual prun-

ing of frames sets used to train video indexing machine is infeasi-

ble. Automatic irrelevant frame removal is a necessary step for a 

good CBVR system. Obtaining a compact and relevant image set 

[9] is considered preferable. 

Cluttered environments [7, 19] were used to detect and search 

objects in the multimedia retrieval recently. Because cluttered 

environments can restrict the objective images to a reduced subset, 

approaches using cluttered environments are capable of increasing 

the efficiency of both data set collection and retrieval. The robust-

ness of cluttered data sets is an important component in the infor-

mation retrieval applications. Just as the cluttered scenes in the 

augmented “Hoover Dam” video in Fig. 1, the impurity of a clut-

tered environment will limit the efficiency and accuracy of subse-

quent retrieval algorithms. In light of problems with existing tech-

niques, we propose a novel unsupervised noise removal algorithm 

for video scene processing using spectrum analysis and hyper-

clique pattern mining. The key idea behind the proposed algorithm 

is the use of hyperclique patterns [33-34] as filters to eliminate 

irrelevant frames in the video frame set. Initially designed for text 

mining and pruning, hyperclique pattern methods are effective in 

removing data elements that are not tightly connected to other data 

elements in the data set. In this paper, we extend the application of 

hyperclique pattern based data pruning to color image and video 

processing. Furthermore, Fibonacci lattice color quantization is 

used to characterize the color information more accurately than 

using only 256 gray scales. We then use a log spectrum method to 

extract features in the frequency domain to summarize visual fea-

tures of color video frames for comparison. 
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Fig. 1: Training Set of Semantic Concept “Hoover Dam” Video from TRECVID 2001 Video Set and A Few Added Irrelevant Frames. 

 

The remaining of this paper is organized as follows. Section 2 

describes the work related to data pruning. Section 3 describes a 

new image feature extracted by log spectrum analysis. Section 4 

extends the hyperclique pattern mining method to the removal of 

irrelevant video frames. Section 5 presents experimental results to 

evaluate the performance of the proposed method. Section 6 con-

cludes this work. 

2. Related work 

Data pruning [1], also known as data cleaning [17], is one data 

mining technique. Angluin [3] illustrated that learning algorithms 

can cope with incorrect training examples in the classification of 

correct and noisy data. Because noisy data can have a wide variety 

of different influences, there is no general learning method capa-

ble of removing all noise [18]. 

Swets and Weng [27] used a tree structure for data pruning to 

accelerate the retrieval process. They used a set of discriminant 

features at each level of the tree. This technique can be deemed as 

a data pruning method that has been applied to many database 

applications. Xiong et al. [34] explored four techniques for data 

cleaning to enhance data analysis in the presence of high noise 

levels. Different from three methods based on traditional outlier 

detection techniques, a new hyperclique-based method was pro-

posed to remove two types of noise: low-level data errors resulting 

from an imperfect data collection process, and noise in the form of 

irrelevant or weakly relevant data. In order to increase classifica-

tion accuracy, a group of consensus filters and majority vote filters 

were used to identify and eliminate mislabeled training samples 

[6]. Furthermore, this unsupervised clustering-based data mining 

technique was also used to perform data pruning [11], [13], [16], 

[23], [35]. These clustering algorithms were designed to remove 

noise or outliers to purify training data sets. Clustering-based 

techniques identify core points in the data set according to speci-

fied similarity measures and then build clusters around the core 

points. Points outside of those clusters are treated as noise or out-

liers. This idea was extended to noisy image removal to improve 

image search engines [9]. 

RANSAC [12], an algorithm that estimates parameters of a math-

ematical model from a set of observed data including valid and 

noisy data, is capable of interpreting and smoothing image data. 

This algorithm assumes that model parameters can be estimated 

from N data items selected from M total items. Parameter values 

are estimated based on the N samples, the number of data items 

fitting the current model within a given error tolerance is found, 

and the model is thus determined to be either acceptable or unac-

ceptable. The process is repeated L times and the best fitting case 

is returned. Since RANSAC has no upper bound on the time to 

compute parameters, it can only estimate the model for a particu-

lar data set and is of little practical use in the analysis of diversi-

form color video or images. 

Angelova et al. [2] proposed a method based on combining the 

vote of multiple classifiers to identify examples that are noisy or 

unfit for learning and to exclude them from the training image set. 

Since an increasing number of video analysis techniques are based 

on learning methods, the impact of a given training set on the 

subsequent learning phase must be considered. In contrast with 

this approach, our proposed method based on the characteristics of 

hyperclique pattern mining does not need supervised training ex-

amples to prune noise and outliers. Moreover, instead of using a 

space transform for image analysis, we use log-spectrum represen-

tation to describe the contents of each video frame, because the 

second-order statistics of images are correlated with scene scale 

and scene category, and because it allows the fast and reliable 

categorization of scenes and objects [29]. 

3. Video frame feature extraction 

3.1. Retain color information using Fibonacci lattices 

quantization 

Pixels in 24-bit color images have three components: R, G, and B, 

which can be combined to generate over 16 million unique colors. 

Compared to a 256 grayscale image, a color image conveys much 

more visual information and provides the human perceptual sys-

tem with much more detail about the scene. However, not all 16 

million colors are distinguishable by humans, particularly if colors 

are very similar. Color quantization [15] is a sampling process of 

3-D color spaces (e.g. RGB, CIE Lab, HSV) to produce a subset 

of colors known as the palette, which are then used to represent 

the original color image. Color quantization is particularly con-

venient for color image compression, transmission, and display. 

Unlike most color quantization methods that generate a color pal-

ette with three separate color components for each color in the 

selected subset, quantization using Fibonacci lattices denotes col-

ors using single scalar values. This characteristic allows the con-

struction of log-spectrum representations of color images using the 

color indices generated by Fibonacci lattice quantization. 

The Fibonacci lattice sampling scheme [21] provides a uniform 

quantization of CIE Lab color space and a way to establish a par-

tial order relation on the set of points. For each different L value in 

CIE Lab color space, a complex plane in polar coordinates is used 

to define a spiral lattice as a convenient means for sampling. The 

following set of points in the (a, b) plane constitutes a spiral lat-

tice: 

 

j2 nZ n en
                                                                                (1) 

 

Fig. 2 shows an example of the spiral lattice for τ = (√5-1)/2 and 

=½. Each point zn is identified by its index n. Parameters τ and  

determine the axial distribution and the radial distribution of the 

points respectively. If there exist NL luminance (L) values and Np 

colors in the corresponding (a, b) plane, for each color in the pal-

ette, the corresponding symbol is determined by adding its chro-

minance index n to a multiple of its luminance index i: 

 

q = n+N
p
× i                                                                                (2) 

 

Therefore, the L, a, and b values for any color from the palette can 

be reconstructed from its symbol q. For a pixel p, with color com-
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ponents Lp, ap, and bp, the process of determining the closest pal-

ette point starts with finding the closest luminance level LS from 

the NL levels available in the palette. The luminance level LS de-

termines an (a, b) plane and one of the points zn, 0≤ n ≤ Np, in that 

plane is the minimum mean square error (MSE) solution. The 

exact solution, q, is the point whose squared distance to the origin 

is the closest to r
p

2 = a
p

2 +b
p

2
. 

 

 
Fig. 2: Points of the Fibonacci Lattice in a Complex Plane. 

 

These L values can approximately denote the luminance levels of 

the image. Since the (a, b) plane is not circular, there will be 

points in the Fibonacci Lattice whose colors are not valid in RGB 

color space. Thus, we label all these points as "range invalid". The 

points are given by z
n

= S ne
j 2pnt+a

0( )  where t = ( 5 -1) / 2 , α0=0.05, 

and S=1.5. For a 350×240 image shown in Fig. 3(a) having 44748 

colors, the L component is quantized into 12 user-selected values 

{0,10,20,30,40,50,65,70,76,85,94,100}. These L values and Np 

=60 points on each plane are used to construct the palette, so the 

size of the palette is 12×60 =720. 

Fig. 3(b) shows the resulting 27 indices of the original image 

shown in Fig. 3(a). Each of these index values has been assigned 

an 8-bit value (0, 9, 19, 28, 38, ∙∙∙, 247) for display. Fig. 3(c) show 

the quantized color image with 27 valid colors in the palette. Each 

pixel is labeled by the one dimensional symbol q, which not only 

is the index of an entry in the palette, but also represents the color 

information to some extent. In compared with Fig. 3(d), a 256 

grayscale image derived from the original, the blue trash cans and 

green bushes are much easier to distinguish in the quantized image 

(Fig. 3(c)) despite the grayscale frame having more levels (256) 

than the frame quantized by Fibonacci lattices (just 27). Easily 

distinguished colors can appear very similar in a grayscale image. 

Because human perception contrast in quantized images can be 

measured by the distance between the q symbols of two colors, it 

is more accurate to calculate log-spectrum representations based 

on color indices to a palette constructed by Fibonacci Lattice-

quantization than to use 256 levels of grayscale. 

 
A B 

  
C D 

  
Fig. 3: (A) Original Color Image, (B) 27 Quantized Indices, (C) Quantized 

Color Image, and (D) Grayscale Image of 256 Gray Scales. 

 

3.2. Log-spectrum representation 

The difference between frequency and spatial domains is that the 

frequency domain captures the global structure of the image but 

loses local details, while the spatial domain better represents local 

descriptions than global characteristics [14]. Since frame contents 

of a video scene change gradually, trivial details of the video con-

tent cannot be detected by observing only a few frames. For ex-

ample, trivial details regarding a small number of changing pixels 

cannot reflect the visual information of the entire frame or the 

complete scene. Furthermore, information about global structure 

can be captured from any given frame in a video scene. For these 

reasons, a global structure description method should be used to 

extract features from the video frames. 

Log-spectrum representation, to describe the global structure of 

image contents, has been used in research on statistical scene 

analysis [22], [28-30]. Instead of using a simple grayscale version 

(Fig. 3 (d)) of the color image that poorly summarizes the original 

color content of the image, we calculate the log spectrum of color 

indices quantized by Fibonacci lattices to better represent the color 

image. The log spectrum can be calculated as 

 

L (f) = log (A (f)) and, A (f) = || FFT2 (IFL(x, y)) ||,                                  (3) 

 

Where A (f) is the magnitude of the Fourier spectrum (power 

spectrum), FFT2 (∙) is the 2-D Fourier transform, and IFL(x, y) 

denotes the image whose pixel colors are represented by Fibonacci 

lattice-quantization indices. If the image size is p×q, the Fourier 

descriptors of the image can be calculated as the vertical projec-

tion of L (f) in the positive semi-axis and expressed as  

 

F () = L (f ()), = 0, 1, 2, ∙∙∙, (p / 2)-1,                                           (4) 

 

Where (p / 2) denotes the number of data points in the positive 

semi-axis of the log spectrum. Fig. 4 shows the plots of four log-

spectrum examples that can be used as features to calculate frame 

similarity. 

 

 
Fig. 4: Examples of Log Spectrum. 

4. Hyperclique pattern guided irrelevant 

frame removal 

4.1. Hyperclique pattern 

A hyperclique pattern [33], [34] is a type of association pattern 

that contains objects that are highly affiliated with one another. 

Any two objects within such a pattern have a similarity measure 

above a certain threshold level. If an object is not part of any hy-

perclique pattern, then it is not closely related to other objects in 

the set of considered objects and likely to be a noisy datum or an 

outlier. Similarly, in video scene analysis, similar frames should 

be considered part of the current scene, since they have similar 

visual and semantic content with each other. For instance, the 

original “Hoover Dam” frames in Fig. 1 are very similar to each 

other and belong to the same cluster, which typifies the essential 
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content of the current scene. In contrast, the added frames (the 

“Y” sign, bicycle, etc.) are dissimilar to those of the “Hoover 

Dam” cluster, and they should be considered irrelevant and deter-

mined to be noise. The “Hoover Dam” cluster in the frame set of 

Fig.1 is the representative of the hyperclique patterns that we wish 

to detect.  

Let I={i1,i2,∙∙∙,in} be a set of items and T={t1,t2,∙∙∙,tl} be a set of 

transactions as shown in Table 1, where each transaction ti (1 i 

l) is also a set of items such that tiI. Define a pattern X to be a set 

of items such that XI, and further define the support of X, 

supp(X), to be the fraction of total transactions in T that contain X. 

Unlike a frequent pattern, a hyperclique pattern contains items that 

are strongly correlated with each other. The presence of an item in 

one transaction strongly implies the presence of every other item 

that belongs to the same hyperclique. The h-confidence measure is 

specifically designed to capture the strength of this association 

[33], [34]. 

 
Table 1: A Sample Transaction Data Set. 

Transactions t1 t2 t3 t4 t5 

Items 
i1 , i2, 

i3 

i1 , i3, i4 , 

i5 

i1 , i2, i4 , 

i6 

i1 , i2, i3 , 

i4 

i1 , i2, i3 , 

i6 

 

Definition 4.1: The h-confidence of a pattern X={i1,i2,∙∙∙,im}, de-

noted as hconf(X), is a measure that reflects the overall affinity 

among items within the pattern. This measure is defined as  

 
hconf(X)=min(conf({i1}→{i2,∙∙∙,im}), conf({i2}→{i1, i3,∙∙∙,im}),∙∙∙, 

conf({im}→{i1, i2,∙∙∙,im-1})) 

 

Where conf is the confidence of association rule as given above. 

As an example, for the sample transaction data set shown in Table 

1, let us consider a pattern X={i1,i3,i4}. We have supp({i1})=100%,  

 
supp({i3})=80%, supp({i4})=60%, and supp({i1,i3,i4})=40%. Then, 

 conf({i1}→{i3, i4})= supp({i1,i3,i4})/ supp({i1})=40% 

 conf({i3}→{i1, i4})= supp({i1,i3,i4})/ supp({i3})=50% 
 conf({i4}→{i1, i3})= supp({i1,i3,i4})/ supp({i4})=66.7% 

Therefore,  

hconf(X)=min(conf({i1}→{i3,i4}), conf({i3}→{i1, i4}),conf({i4}→{i1, 
i3}))=40% 

 

Definition 4.2: A pattern X is a hyperclique pattern if hconf(X) ≥ 

hc, where hc is a user-specified minimum h-confidence threshold. 

4.2. Color video irrelevant frame removal 

Unlike text analysis in which items are clearly distributed into 

their corresponding transactions, color video frames usually need 

manual selection of training sets to distribute them to appropriate 

groups. In order to perform unsupervised irrelevant frame removal, 

we use an unsupervised K-Nearest Neighbor (KNN) technique to 

automatically group the whole set of video frames into different 

transactions, from which we can then extract video hyperclique 

patterns (VHP) that include frames relevant to an intended scene.  

KNN is a pattern recognition method in which an object is classi-

fied by the majority votes of its neighbors [8, 24]. It categorizes 

similar data into the same group to form a compact set. The under-

lying principle of hyperclique patterns suggests that each item 

(frame) should belong to one or more transactions. For each cur-

rent frame, KNN can sort all other frames using the log-spectrum 

similarity measure so that it can construct visual transactions simi-

lar to transactions in text processing. Ideally, each transaction 

typifies one semantic or visual category. 

Assume that there are M color video frames of the size p×q in the 

data set. After being quantized by Fibonacci lattices to obtain 

typical color indices, each frame can be represented with features 

calculated based on log spectrum. KNN is used to find the K 

frames nearest to the current frame. The algorithm is summarized 

below.  

1) Select a value for the parameter K. 

2) Construct a data matrix with each row corresponding to the 

feature vector of each frame. 

3) Calculate the distances between the current row and all oth-

er rows, sort the distances, and obtain the nearest K rows 

(neighbors). 

4) Repeat Step 3 for all M rows. 

Each current frame and its K nearest neighbors can be used to 

construct one transaction whose items have similar attributes. The 

transaction derived from the current frame and its K nearest 

neighbors represents a compact clustering data set, which presum-

ably has semantic or visual similarity. In practice, it is assumed 

that all frames in a given transaction belong to the same scene. If 

one noisy frame is grouped into a pattern or transaction with other 

valid frames, the frequency of its occurrence in the scene will be 

very low. Furthermore, if a pattern has too many items, its h-

confidence is too small to be discriminated because it is unlikely 

to have this large pattern appearing in the transaction. On the other 

hand, if a pattern has a single item, all h-confidences with this 

pattern will equal to be 1, which is also meaningless. In our exper-

iments, the number of items in each pattern was set to PN=2. The 

number of items in each transaction was set to K+1. The algorithm 

used to calculate each pattern’s support and h-confidence 

measures is as follows: 

(1) Set the number of frames in each pattern as 2 (the current 

frame and its closest neighbor). 

(2) For each current frame Fc and its K nearest neighbors (Fc1, 

Fc2, ∙∙∙, Fck), Fc and Fc1 (Fc’s closest neighbor) are chosen to 

construct one pattern and Fc, Fc1, Fc2, ∙∙∙, Fck (K+1 frames) to 

construct one transaction. 

(3) Repeat Step 2 until all M patterns and M transactions of all 

frames are extracted. 

(4) For each current frame, calculate its support measure ac-

cording to the generated M transactions (Section 4.1). 

(5) For each of the M unique patterns, calculate its h-

confidence measure in M transactions (Definition 4.1). 

(6) Set threshold values of support measure or h-confidence 

measure, and extract the remaining final compact set. 

The final compact set contains the valid frames relevant to the 

current video scene or irrelevant frames as one set of outliers. By 

setting the thresholds for the support measure, the h-confidence 

measure, or both, the relevant frames of the scene can be deter-

mined. 

5. Experimental results 

5.1. Color video irrelevant frame removal 

We used three videos, “Hoover Dam”, “Colorado” and “campus” 

to test the proposed method. The first two videos are from the 

TRECVID (2001) video collection, and the third one was captured 

using a video camera on a university campus. Frames from the 

“Hoover Dam” video are shown in Fig. 1. Frames from the “Colo-

rado” and “campus” videos are shown in Fig. 5(a) and 5(b), re-

spectively. Frames in “Hoover Dam” and “Colorado” have 

352×240 pixels and frames in “campus” have 400×300 pixels. The 

total number of valid frames and the number of irrelevant frames 

for these three videos are 42, 48, and 23 and 6, 6, and 5, respec-

tively. The valid frames in the videos typify different shots cap-

tured in a particular setting that is consistent for each video. The 

irrelevant frames were added to test the capabilities of the pro-

posed algorithm in detecting unrelated frames. 
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a) Video “Colorado” frames and noisy frames 

 

 
 

b) Video “campus” frames and noisy frames 

 

 
Fig. 5: Video Frames of (A) “Colorado” and (B) “Campus” and Their Irrelevant Frames. 

 

5.2. Performance evaluation 

We employed the F-measure [4] to evaluate the performance of 

the proposed algorithm. F-measure combines recall and precision 

measures, each of which measures a single aspect of retrieval 

quality if used separately. The F-measure considers both measures 

and is defined as follows: 

 

F j( ) = 2 1 r j( )+1 p j( ){ }                                                                   (5) 

 

Where r (j) is the recall of the jth element in the ranking, p(j) is the 

precision for the jth element in the ranking, and F(j) is the harmon-

ic mean of r(j) and p(j). The function F assumes values in the in-

terval [0, 1]. It is 0 when no relevant documents have been re-

trieved and is 1 when all retrieved elements are relevant. Further-

more, the harmonic mean of F reaches a high value only when 

both recall and precision are high. Therefore, the higher the F-

measure value, the better the noisy frame removal algorithm can 

perform. 

We used the F-measure as defined in [34] to evaluate the perfor-

mance of the proposed method. Each video contains frames in two 

groups: relevant (Group 1) and irrelevant (Group 2) frames. Using 

the proposed algorithm, video frames were separated into two 

clusters: relevant (Cluster 1) and irrelevant (Cluster 2). Recall and 

precision were calculated as follows: 

 

Recall=r/n                                                                                       (6) 

 

Precision=r/m                                                                                  (7) 

 

where r is the number of relevant frames successfully classified as 

relevant, n is the number of relevant frames (Group 1) in the video, 

and m is the number of relevant frames clustered as Cluster 1. The 

F-measure was calculated as. 

 

F (i, j) =2×Recall×Precision/( Recall+Precision)                                 (8) 

 

Consider the “Hoover Dam” video as an example. The video has 

36 (Group 1 or n) relevant frames and 6 (Group 2) irrelevant 

frames. Assume that the KNN algorithm separates them into 34 

(Cluster 1 or m) relevant and 8 irrelevant frames automatically 

(unsupervised). Assume further that our video hyperclique pattern 

(VHP) analysis successfully classifies 35 frames as relevant of 

which only 32 (r) are actually relevant. Recall and precision can 

then be calculated as 32/36=0.889 and 32/34=0.941, respectively. 

The F-measure can be calculated as 2×0.889×0.941/ 

(0.889+0.941) = 0.914.  

In order to evaluate the robustness of the proposed feature extrac-

tion and hyperclique pattern mining methods for irrelevant frame 

removal, we compared the proposed algorithm with the unsuper-

vised Histogram K-means method [9] only, rather than with other 

supervised methods such as [2]. The Histogram K-means method 

first extracts features that are translational and rotational invariant 

to represent the image contents in the histogram form. Then, a K-

means clustering algorithm is used to remove the irrelevant or 

noisy images from the output of a video retrieval search engine. 

We then used the F-measure to evaluate the performance of both 

the proposed algorithm and the Histogram K-means method. For 

each video, we used four irrelevant frame percentages by remov-

ing different numbers of relevant frames from each video. For 

example, for “Hoover Dam” video, we used 6 (irrelevant)/42 (total 

frames), 6/30, 6/18, and 6/12. The experimental parameters for 

irrelevant frame removal are shown in Table 2. F-measures at 

different irrelevant frame percentage levels are presented in Fig. 6. 

 
Table 2: Experimental parameters for the proposed algorithm. 

 A1 B2 C3 D4 E5 F6 G7 H8 I9 

Hoover 
Dam 

2 >0.08 N.A. >0.1 N.A. N.A. >0.58 N.A. 0.5-0.71 

Colorado 2 >0.09 N.A. >0.15 N.A. >0.15 >0.60 N.A. >0.73 

Campus 2 >0.15 N.A. >0.22 N.A. N.A. >0.50 N.A. <0.83 

 
(1) Number of clusters of algorithm output. 
(2) Support measure threshold for noise percentage at position 1 

(smallest noise percentage). 

(3) h-confidence measure threshold for noise percentage at position 1 
(smallest noise percentage) 

(4) Support measure threshold for noise percentage at position 2 

(5) h-confidence measure threshold for noise percentage at position 2 
(6) Support measure threshold for noise percentage at position 3 

(7) h-confidence measure threshold for noise percentage at position 3 

(8) Support measure threshold for noise percentage at position 4 (high-
est noise percentage) 

(9) h-confidence measure threshold for noise percentage at position 4 

(highest noise percentage) 
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It can be seen in Fig. 6 that the proposed algorithm outperformed 

the Histogram K-means algorithm on the three test videos. At low 

irrelevant percentage levels, the proposed algorithm was able to 

remove more irrelevant frames and maintained better integrity of 

valid video than Histogram K-means – the proposed algorithm’s 

F-measures were higher. As the irrelevant frame percentage in-

creased, the Histogram K-means algorithm failed to remove irrel-

evant frames. Its F-measures decreased as the irrelevant frame 

percentage increased. On the other hand, the proposed algorithm’s 

F-measures maintained on the same level or even increased as the 

irrelevant frame percentage increased.  

At low irrelevant frame percentages, the support measure alone 

was able to remove irrelevant frames efficiently. This is because 

the KNN algorithm was able to remove frames less frequently 

presented in the valid video frames. These frames less frequently 

presented were the irrelevant frames because they are hardly 

grouped into K nearest neighbors. As irrelevant frame percentage 

increased, the support measure began to fail to remove irrelevant 

frames by itself. However, the h-confidence measure was able to 

take over and effectively remove irrelevant frames because it can 

classify irrelevant frames as outliers. The best results were ob-

tained when both support and h-confidence measures were com-

bined to remove irrelevant frames. For instance, in video “Colora-

do”, when the irrelevant frame percentage was set to 33%, the 

combination of support and h-confidence measures detected all 

irrelevant frames and achieved an optimal result. 
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Fig 6: Performance Comparison of the Proposed Algorithm and Histogram 

K-Means; (A) “Hoover Dam”, (B) “Colorado”, and (C) “Campus”. 

 

The proposed method performed better than the Histogram K-

means algorithm previously used to remove irrelevant images 

from the output of an image search engine. Although the proposed 

method requires setting the final support and h-confidence meas-

ure thresholds manually, it was able to detect special clusters es-

pecially at higher percentages of irrelevant frames. The proposed 

algorithm is an unsupervised method that does not require the 

manual selection of training set. 

6. Conclusion 

In summary, we have presented a hyperclique pattern based irrele-

vant video frame removal technique. Considering that color index 

values can more accurately represent meaningful image content 

than grayscale representations, we used the Fibonacci lattice-

quantization method to quantize color video frames into scalar 

indices. Because Fourier descriptors can capture the global struc-

tures of image contents, we then use log-spectrum representation 

on quantized color indices to extract video frame features. By 

constructing transactions and patterns with KNN algorithm, we 

applied hyperclique pattern analysis to remove irrelevant video 

frames. Experiments show that the proposed algorithm has better 

performance than the unsupervised Histogram K-means method. 

In future work, we will address the challenge of how to simplify 

dynamic settings of thresholds for support and h-confidence 

measures. 
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