

Journal of Advanced Computer Science & Technology, 4 (1) (2015) 163-174

www.sciencepubco.com/index.php/JACST

©Science Publishing Corporation
doi: 10.14419/jacst.v4i1.4009

Research Paper

A four-phase data replication algorithm for data grid

Alireza Salah
1
, Reza Javidan

*

2
, Mohammad Taghi FatehiKhajeh

3

1,3Department of Computer Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran

2Department of Computer Engineering and Information Technology, Shiraz University of Technology, Shiraz, Iran

*Corresponding author E-mail: Reza.Javidan@Gmail.Com

Copyright © 2015 Reza Javidan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use,

distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Nowadays, scientific applications generate a huge amount of data in terabytes or petabytes. Data grids currently

proposed solutions to large scale data management problems including efficient file transfer and replication. Data is

typically replicated in a Data Grid to improve the job response time and data availability. A reasonable number and

right locations for replicas has become a challenge in the Data Grid. In this paper, a four-phase dynamic data replication

algorithm based on Temporal and Geographical locality is proposed. It includes: 1) evaluating and identifying the

popular data and triggering a replication operation when the popularity data passes a dynamic threshold; 2) analyzing

and modeling the relationship between system availability and the number of replicas, and calculating a suitable number

of new replicas; 3) evaluating and identifying the popular data in each site, and placing replicas among them; 4)

removing files with least cost of average access time when encountering insufficient space for replication. The

algorithm was tested using a grid simulator, OptorSim developed by European Data Grid Projects. The simulation

results show that the proposed algorithm has better performance in comparison with other algorithms in terms of job

execution time, effective network usage and percentage of storage filled.

Keywords: Data Grid; Data replication; Geographical Locality; Replica Placement; Temporal Locality.

1. Introduction

Today, the management of the huge distributed and shared data resources efficiently around the wide area networks

becomes a significant topic for both scientific research and commercial application. As a specialization and extension of

the Grid [1], the Data Grid is a solution for this problem [2]. A data grid connects a collection of hundreds of

geographically distributed computers and storage resources located in different parts of the world to facilitate sharing of

data and resources [3], [4]. Grids can be classified into computational grids and data grids [5]. Computational grids are

developed for managing computational intensive tasks, and data grids are developed for data sharing and collaboration,

which ‘‘involves the complete dynamic life cycle of service deployment, provisioning, management and

decommissioning’’.

In order to increase performance of data grids, jobs must be executed as fast as possible. Data intensive application runs

in Data Grid and need a huge amount of data that its size reaches from terabytes to petabytes. Managing such huge

amounts of data in a centralized manner is almost impossible due to extensively increased data access time. Data

replication is a key technique to manage large data in a distributed manner; that is, to create copies of a replica to get

faster access to it. Creating replicas can reroute the client requests to certain replica sites and offer remarkably higher

access speed than a single server. At the same time, the workload of the original server is distributed to replica servers

and decreases significantly. Data replication is a practical and effective method to achieve efficient network

performance in network bandwidth constrained environment, and it has been applied widely in the areas of distributed

database and Internet [6] [7] [8]. Data replication is a common technique to manage large data in distributed

environment such as data grid. It can be answered to the requirements of many grid applications Thereby, to increase

data reliability and availability identical copies of a data file are replicated and dispatched to the diverse grid sites [9].

Generally, the benefits of using replication are to reduce access latency and bandwidth consumption. Replication can

http://creativecommons.org/licenses/by/3.0/

164 Journal of Advanced Computer Science & Technology

also improve data availability and load balancing. Earlier research on data replication [10], [11] focused on decreasing

the data access latency and the network bandwidth assumption. As bandwidth and computing capacity have become

relatively cheaper, the data access latency can drop dramatically, and how to improve the data availability and system

reliability becomes the new focus. The most important questions any replication strategy has to answer are: Which files

should be replicated? When should the replicas be created? How many replicas should be created? Where the replicas

should be placed? Which replica should be deleted if there is no enough space in data storage? Depending on the

answers, various different replication strategies are born. In a classification, Replication methods are classified into

static and dynamic [2]. Replication methods can be classified as static and dynamic. For the static replication, after a

replica is created, it will exist in the same place till it is deleted manually by users or its duration is expired. The

drawback of static replication is evident, when client access patterns change greatly in the Data Grid, the benefits

brought by replica will decrease sharply. On the contrary, dynamic replication takes into consideration the changes of

the Grid environments and automatically creates new replicas for popular data files or moves the replicas to other sites

when necessary to improve the performance. Data grids are a dynamic environment so dynamic replication is more

suitable for these environment [8], [12].

In this Paper we have presented a Four-Phase Data Replication Algorithm named 4PDRA, based on Temporal and

Geographical locality is proposed. Temporal locality means files accessed recently are likely to be accessed again and

Geographical locality means files recently accessed by a client are likely to be accessed by nearby clients [13]. With the

fact of temporal locality, a popular data is determined by analyzing the users' access to the data. When the popularity of

the data passes a dynamic threshold, the replication operation will be triggered. The number of replicas will be

determined based on the system availability and failure probability. New replica will be created among data nodes in a

balanced way based on temporal geography. At last if there is no enough space for new replica, the data file with least

cost of average access time will be deleted. Simulation results show that the proposed method decrease job execution

time and network bandwidth use.

The rest of the paper is organized as follows, in Section 2 a summary of existing and related works are presented. In

Section 3, some definitions and assumptions are defined. In Section 4, A Four-Phase Data Replication Algorithm is

proposed. Section 5 describes the experiments and the results achieved followed by conclusion in Section 6.

2. Related works

Several recent studies have taken into account data replication algorithm in the Data Grid. In [14], Ranganathan et al.

simulated the six replica strategies (No Replica, Best Client, Cascading Replication, Plain Caching, Caching plus

Cascading Replica and Fast Spread) for the three user access patterns (random access, small temporal locality, and

small geographical and temporal locality). The simulation results show that the best strategy has significant savings in

latency and bandwidth consumption if the access patterns contain a moderate amount of geographical locality.

In [2], Khanli et al. proposed PHFS (predictive hierarchal fast spread), which is a replication technique designed to

decrease the access latency of data access. This is an extension of fast spread presented by Ranganathan et al. [14].

PHFS uses predictive techniques to predict the future usage of files and then pre-replicates them in hierarchal data grid

on a path from source to client. It works in two phases, in phase one it makes the file access log files by collecting the

access information from all over the system. In the next phase it applies data mining techniques like clustering and

association rule mining to find useful knowledge like clusters of files that are accessed together or most frequent

sequential access patterns. In this way PHFS finds the relationship between the files for future predictions. In this way

PHFS tries to increase the locality in access by predicting the user’s succeeding file demands and pre-replicates them in

the hierarchal method in advance and achieves higher availability with optimized usage of storage resources.

In [8] Park et al. proposed an algorithm called Bandwidth Hierarchy Replication (BHR), which reduces data access time

by avoiding network congestions in a data grid network. With the BHR strategy, one can take advantage of ‘network

level locality’, which means that the required file is located in a site that has a large amount of bandwidth between it

and the job execution site. In a data grid, some sites may be located within a region where sites are linked closely. For

instance, a country can be referred to as this network region. Network bandwidth between sites within a region will be

broader than those sites across regions. If the required file is located in the same region, less time will be consumed

fetching the file. The BHR strategy reduces data access time by maximizing network level locality. In another paper

[15], the authors proposed the BHR algorithm by using three level hierarchical structures. They addressed the problems

of both scheduling and replication.

In [16] Sashi et al. have presented a modified form of Bandwidth Hierarchy Replication (BHR) to overcome its

limitations. In the modified BHR model a network region is defined as a network topological space where sites are

located closely. Whenever the required replica is present in the same region, the job completion will be fast. The storage

locations for popular files are determined by considering the temporal and geographical localities. If the required file is

not present locally then the Replica Optimizer algorithm looks for it in the nearby sites of same region and proceeds to

execute the job. Then it sorts files in all storage elements (SE) in Most Frequently Accessed order to find the SE which

accesses the file for most of the time. If the selected SE has enough space to hold this file, the file is replicated to it.

Otherwise it looks for a duplication of this replica in other sites within the same region; if such duplications are present

the replica optimizer will be terminated. If no duplications are present the replica optimizer will find the LRU file and

Journal of Advanced Computer Science & Technology 165

check whether this file is duplicated on any other site in the same region or not. If it is present within same region and

its access frequency is less than the access frequency of new replica, then it is deleted from the selected SE to make

room for the replication of the new file. In this way the Modified BHR replicates the file within the region with the

condition that the replica is present in the site where it is accessed for most of the time. In this paper OptorSim

simulator is used for evolution the purposed algorithm. Result shows that this algorithm enhances the performance by

minimizing the data access time and avoiding unnecessary replication.

Another Dynamic Replication Algorithm (DRA) [17] was proposed by Sashi et al. for European Data Grid. It considers

a network topology in which different clusters are present. Within a cluster the sites are located closely. DRA improves

the availability of a file by replicating it within a cluster. The data is initially produced in cluster master and it is then

distributed to all cluster heads. Access frequency of all the files is determined and most popular files are replicated to

the site where it is requested for most of the times, considering the geographical and temporal localities. The matrices

used for evaluation of performance of DRA are Mean Job Execution time (MJET) and Average Storage Used. During

simulation they have compared DRA with No Replication, LRU and LFU and it is observed that performance of DRA

is better.

3. Problem definition

In this section, a system model, a series of availability definitions and a mathematical analysis to describe the

relationship between system availability and the number of replicas are presented in detail.

3.1. Problem assumption

Let be a file set composed of Fn files, R = {r1, r2, … , rRn} be a replica set composed Rn replicas, and Ri =

{ri1 , ri2 , … , riRni
} be a sub-set of replicas of the i-th file fi, where Rni is the number of replica of fi, so the number of

replica of whole system can be calculate as (1).

Rn = ∑ Rni
Fn
i=1 (1)

Let DC = {dc1, dc2, … , dcDCn} be a data center set of composed DCn data centers, U = {u1, u2, … , uUn} be a user set

composed Un users, J = {j1, j2, … , jJn} be a job set composed Jn jobs, and Fjk
= {fjk1

, fjk2
, … , fjkFnk

} be a sub-set of files

of the k-th job jk, where Fnk is the number of sub-files, and fjkl
 is the l-th requested file by job jk and independent of the

other jobs. For simplicity, we assume that the jobs are non-preemptable and non-interruptible which mean that a job

cannot be broken into smaller sub-jobs and it has to be executed as a whole on a single processor with given resources.

In addition, as soon as a job starts its execution on a processor, it cannot be interrupted and it occupies the processor

until its execution completes successfully or a failure occurs.

3.2. Availability

One of the most important objectives of distributed system is to provide the highest availability by placing all replicas

of data files in a load balanced way on different of data centers, which is similar to that for grid environments [18].

Definition 3.2.1: (Availability): It is the ability of a system to limit, control, and provide proper service un- der given

constraints, defined as the “readiness for correct service” of a system [19]. The lifetime of a grid can be divided into a

set of “up states” and a set of “down states”.

Definition 3.2.2: (Replica Availability): Replica availability is the ability of a data replica to limit, control, and provide

proper service under given constraints. The replica availability of a replica 𝑟𝑘 is denoted as 𝑅𝐴𝑘 . 𝑃(𝑅𝐴𝑘) is the

probability of replica 𝑟𝑘 in an available state. 𝑃(𝑅𝐴𝑘
̅̅ ̅̅ ̅) is the probability of replica 𝑟𝑘 in an unavailable state, and

𝑃(𝑅𝐴𝑘
̅̅ ̅̅ ̅) = 1 − 𝑃(𝑅𝐴𝑘).

Definition 3.2.3: (File Availability): File availability is the ability of a data replica to limit, control, and provide proper

service under given constraints. The file availability of a replica 𝑓𝑖 is denoted as 𝐹𝐴𝑖 . 𝑃(𝐹𝐴𝑖) is the probability of

replica 𝑓𝑖 in an available state. 𝑃(𝐹𝐴𝑖
̅̅ ̅̅ ̅) is the probability of replica 𝑓𝑖 in an unavailable state, and 𝑃(𝐹𝐴𝑖

̅̅ ̅̅ ̅) = 1 −
𝑃(𝐹𝐴𝑖).

The number of replicas of file fi is Rni. It is obvious that file fi is considered unavailable only if all the replicas of file fi
are not available. So the availability and unavailability of file fi is shown by (2) and (3):

P(FAi) = 1 − (1 − P(RAi))
Rni (2)

166 Journal of Advanced Computer Science & Technology

P(FAi
̅̅ ̅̅̅) = (1 − P(RAi))

Rni
 (3)

Proof: The available and unavailable probability of each replica of file rk are P(RAk) and P(RAk
̅̅ ̅̅ ̅), and the available and

unavailable probability of file fi are P(FAi) and P(FAi
̅̅ ̅̅̅). As there are Rni replicas of file fi , file fi is unavailable if and

only if all the Rni replicas of file fi are unavailable. Therefore,

P(FAi
̅̅ ̅̅̅) = P (RAi1

̅̅ ̅̅ ̅̅ , RAi2
̅̅ ̅̅ ̅̅ , … , RAiRni

̅̅ ̅̅ ̅̅ ̅̅)

All the Rni replicas are distributed in different data centers, and all the Rni replicas are independent of each other, thus,

P(FAi
̅̅ ̅̅̅) = P(RAi1

̅̅ ̅̅ ̅̅) × P(RAi2
̅̅ ̅̅ ̅̅) × …× P (RAiRni

̅̅ ̅̅ ̅̅ ̅̅) = ∏ P(RAik
̅̅ ̅̅ ̅̅)

Rni
k=1

Then

P(FAi
̅̅ ̅̅̅) = ∏ P(RAik

̅̅ ̅̅ ̅̅) = ∏ (1 − P(RAik
))

Rni
k=1

Rni
k=1 = ∏ (1 − P(RAi)) = (1 − P(RAi))

RniRni
k=1

We obtain

P(FAi) = 1 − (1 − P(RAi))
Rni

4. Four-phase data replication algorithm

The four-phase data replication algorithm 4PDRA (Four-Phase Data Replication Algorithm) has four important phases:

1) Which data file should be replicated and when to replicate in the data grid to meet users’ requirements such as

mean job time reduction data access speeding up.

2) How many suitable new replicas should be created in the data grid to meet a given availability requirement.

3) Where the new replicas should be placed to meet the bandwidth consumption requirements.

4) Which replica should be deleted if there is no enough space in data storage?

4.1. Decide which and when to replicate

Given the fact that a more recently accessed data file might be accessed again in the near future according to the current

status of data access pattern, which is called temporal locality, a popular data file is determined by analyzing the access

to the data from users. When the popularity of a data file passes a dynamic threshold, the replication operation will be

triggered.

Definition 4.1.1: (Time-Based Forgetting Function): A time-based forgetting function 𝜔 is defined over the domain

Time, with values within the interval [0,1] [20]. It is used to calculate the popularity degree 𝑃𝐷𝑓𝑖
 of a file 𝑓𝑖 at the

present time 𝑡𝑝 according to the access frequency at the start time 𝑡𝑠, as shown by (4),

ω(tp, ts) = a−(∆t)k = a−(tp−ts)
k
, a > 1, k ∈ {1,2, … } (4)

Where ∆t = tp − ts , as usual, parameter a is assigned as e, as shown by (5)

ω(tp, ts) = e−(∆t)k = e−(tp−ts)
k
, k ∈ {1,2, … } (5)

The value of k determines the rate of decay of the popularity degree with time ∆t, and is assigned by the file fi based on

its perception about the change. Fig. 1 shows the nature of the change of ω(tp, ts) with deferent values of k. If ∆t = 0,

then ω(tp, ts) = e−0 = 1. If ∆t → +∞ , then ω(tp, ts) = lim∆t→+∞ e−(∆t)k = 0 . This corroborates the fact that the

time-based forgetting weight is asymptotic to zero at infinite time.

Journal of Advanced Computer Science & Technology 167

Fig. 1: Time-Based Forgetting Function [20].

Definition 4.1.2: (Popularity Degree): The popularity degree of a file 𝑓𝑖 is defined as the access frequency based on

time factor. During the period from the start time 𝑡𝑠 to the present time 𝑡𝑝, the popularity degree 𝑃𝐷𝑖 of a file 𝑓𝑖 can be

calculated by (6).

PDi = ∑ (Ani(tk, tk+1) × ω(tk, tp))
tp
tk=ts

 (6)

Where 𝐴𝑛𝑖(𝑡𝑘, 𝑡𝑘+1) is the number of accesses during the time interval 𝑡𝑘 to 𝑡𝑘+1.

Definition 4.1.3: (Replica Factor): The replica factor is defined as the ratio of the popularity degree and the total

number of bytes of data file 𝑓𝑖 requested by all tasks under given constraints. It is used to determine whether the data

file 𝑓𝑖 should be replicated, denoted as 𝑅𝐹𝑖 in (7).

𝑅𝐹𝑖 =
𝑃𝐷𝑖

𝑅𝑛𝑖×𝐹𝑠𝑖
 (7)

Where 𝑃𝐷𝑖 , 𝑅𝑁𝑖 , 𝐹𝑆𝑖 are the popularity degree, number of replicas and file size of data file 𝑓𝑖 in million bytes,

respectively. According to (6) 𝑅𝐹𝑖 can be calculated by (8).

𝑅𝐹𝑖 =
∑ (𝐴𝑛𝑖(𝑡𝑘,𝑡𝑘+1)×𝜔(𝑡k,𝑡𝑝))

𝑡𝑝
𝑡𝑘=𝑡𝑠

𝑅𝑛𝑖×𝐹𝑠𝑖
 (8)

According to replica factor Definition, we can prove that the system replica factor 𝑅𝐹𝑠𝑦𝑠 can be calculated by (9).

𝑅𝐹𝑠𝑦𝑠 =
∑ (∑ (𝐴𝑛𝑖(𝑡𝑘,𝑡𝑘+1)×𝜔(𝑡𝑘,𝑡𝑝))

𝑡𝑝
𝑡𝑘=𝑡𝑠

)𝐹𝑛
𝑖=1

∑ (𝑅𝑛𝑖×𝐹𝑠𝑖)
𝐹𝑛
𝑖=1

 (9)

In each time interval T, the replication operation of the data file 𝑓𝑖 will be triggered if the condition shown in (10) is

met.

𝑅𝐹𝑖 > ((1 + 𝛼) × 𝑅𝐹𝑠𝑦𝑠) , 𝛼 ∈ [0,1] (10)

Where 𝜶 is the adjustable parameter according to different system performance. The better the requested system

performance, the greater 𝜶 can be selected. If 𝜶 is near to zero more files are chosen for replication, and if 𝜶 is near to 1

less files are chosen for replication.

4.2. Determine the number of new replicas

To meet the data availability requirement, new replicas should be created. With a reasonable increase of file

availability, the number of new replicas that need to be created can be calculated according to (11), which determines

0

0.2

0.4

0.6

0.8

1

1.2

Fo
rg

e
tt

in
g

W
e

ig
h

t

Time Incremental

k=3 k=2 k=1

168 Journal of Advanced Computer Science & Technology

the new replicas on the basis of old file availability 𝑃𝑜𝑙𝑑(𝐹𝐴𝑖) of data file 𝑓𝑖 and the replica factor based adjustable

parameter 𝛽.

𝑃𝑛𝑒𝑤(𝐹𝐴𝑖) = 𝑃𝑜𝑙𝑑(𝐹𝐴𝑖) + 𝛽 × (1 − 𝑃𝑜𝑙𝑑(𝐹𝐴𝑖)), 𝛽 ∈ [0,1] (11)

Where 𝑃𝑛𝑒w(𝐹𝐴𝑖) and 𝑃𝑜𝑙𝑑(𝐹𝐴𝑖) are the new file availability and the old file availability of data file 𝑓𝑖, respectively. 𝛽

is the replica factor based adjustable parameter.It can be calculated according to (12).

𝛽 =
𝑅𝐹𝑖

∑ 𝑅𝐹𝑘
𝐹𝑛(𝑠𝑙𝑐)
𝑘=1

 (12)

Where 𝐹𝑛(𝑠𝑙𝑐) is the number of files selected to be replicated. So the number of new replicas that need to be created

can be calculated according to (13).

𝑅𝑛𝑖(𝑖𝑛𝑐) =

⌊

 𝑙𝑛(1−(𝑃𝑜𝑙𝑑(𝐹𝐴𝑖)+

𝑅𝐹𝑖

∑ 𝑅𝐹𝑘
𝐹𝑛(𝑠𝑙𝑐)
𝑘=1

×(1−𝑃𝑜𝑙𝑑(𝐹𝐴𝑖))))

𝑙𝑛(1−𝑃(𝑅𝐴𝑖))
− 𝑅𝑛𝑖(𝑜𝑙𝑑)

⌋

 (13)

Where 𝑅𝑛𝑖(𝑜𝑙𝑑) and 𝑅𝑛𝑖(𝑖𝑛𝑐) are the old replica number of data file 𝑓𝑖 and the number of new replicas to be created

respectively.

Proof: As 𝑃𝑛𝑒𝑤(𝐹𝐴𝑖) and 𝑃𝑜𝑙𝑑(𝐹𝐴𝑖) are the new file availability and old file availability of data file 𝑓𝑖, respectively, and

𝑃𝑛𝑒𝑤(𝐹𝐴𝑖) = 1 − (1 − 𝑃(𝑅𝐴i))
𝑅𝑛𝑖(𝑛𝑒𝑤)

, according to (11) and (12), we obtain.

1 − (1 − 𝑃(𝑅𝐴𝑖))
𝑅𝑛𝑖(𝑛𝑒𝑤)

= 𝑃𝑜𝑙𝑑(𝐹𝐴𝑖) +
𝑅𝐹𝑖

∑ 𝑅𝐹𝑘
𝐹𝑛(𝑠𝑙𝑐)
𝑘=1

× (1 − 𝑃𝑜𝑙𝑑(𝐹𝐴𝑖))

So

(1 − 𝑃(𝑅𝐴𝑖))
𝑅𝑛𝑖(𝑛𝑒𝑤)

= 1 − (𝑃𝑜𝑙𝑑(𝐹𝐴𝑖) +
𝑅𝐹𝑖

∑ 𝑅𝐹𝑘
𝐹𝑛(𝑠𝑙𝑐)
𝑘=1

× (1 − 𝑃𝑜𝑙𝑑(𝐹𝐴𝑖)))

And

𝑙𝑛(1 − 𝑃(𝑅𝐴𝑖))
𝑅𝑛𝑖(𝑛𝑒𝑤)

= 𝑙𝑛 (1 − (𝑃𝑜𝑙𝑑(𝐹𝐴𝑖) +
𝑅𝐹𝑖

∑ 𝑅𝐹𝑘
𝐹𝑛(𝑠𝑙𝑐)
𝑘=1

× (1 − 𝑃𝑜𝑙𝑑(𝐹𝐴𝑖))))

Then

𝑅𝑛𝑖(𝑛𝑒𝑤) × 𝑙𝑛(1 − 𝑃(𝑅𝐴𝑖)) = 𝑙𝑛 (1 − (𝑃𝑜𝑙𝑑(𝐹𝐴𝑖) +
𝑅𝐹𝑖

∑ 𝑅𝐹𝑘
𝐹𝑛(𝑠𝑙𝑐)
𝑘=1

× (1 − 𝑃𝑜𝑙𝑑(𝐹𝐴𝑖))))

We obtain

𝑅𝑛𝑖(𝑛𝑒𝑤) =

⌊

 𝑙𝑛(1−(𝑃𝑜𝑙𝑑(𝐹𝐴𝑖)+

𝑅𝐹𝑖

∑ 𝑅𝐹𝑘
𝐹𝑛(𝑠𝑙𝑐)
𝑘=1

×(1−𝑃𝑜𝑙𝑑(𝐹𝐴𝑖))))

𝑙𝑛(1−𝑃(𝑅𝐴𝑖))

⌋

If the old number of replicas is 𝑅𝑛𝑖(𝑜𝑙𝑑), the number of new replicas 𝑅𝑛𝑖(𝑖𝑛𝑐) to be created is,

Journal of Advanced Computer Science & Technology 169

𝑅𝑛i(𝑖𝑛𝑐) =

⌊

 𝑙𝑛(1−(𝑃𝑜𝑙𝑑(𝐹𝐴𝑖)+

𝑅𝐹𝑖

∑ 𝑅𝐹𝑘
𝐹𝑛(𝑠𝑙𝑐)
𝑘=1

×(1−𝑃𝑜𝑙𝑑(𝐹𝐴𝑖))))

𝑙𝑛(1−𝑃(𝑅𝐴𝑖))
− 𝑅𝑛𝑖(𝑜𝑙𝑑)

⌋

4.3. Placement of new replicas

To meet the system task successful execution rate and bandwidth consumption requirement, deferent data centers which

have the selected replica data file f will decide the replica placement and the placement of new replicas to be created

according to the access information of 𝑓𝑖 data centers. As mentioned 𝐴𝑛𝑖 is the number of accesses to file 𝑓𝑖 so 𝐴𝑛𝑖𝑗
 is

the number of accesses to file 𝑓𝑖 from 𝑗-th data center 𝑑𝑐𝑗 that should meet (14).

𝐴𝑛𝑖 = ∑ 𝐴𝑛𝑖𝑗
𝐷𝐶𝑛
𝑗=1 (14)

Definition 4.3.1: (Popularity Degree per data center): The popularity degree of a file 𝑓𝑖 from data center 𝑑𝑐𝑗 is defined

as the access frequency in data center based on time factor. During the period from the start time 𝑡𝑠 to the present time

𝑡𝑝, the popularity degree 𝑃𝐷𝑖𝑗
 of a file 𝑓𝑖 from data center 𝑑𝑐𝑗 can be calculated by (15).

𝑃𝐷𝑖𝑗
= ∑ (𝐴𝑛𝑖𝑗

(𝑡𝑘, 𝑡𝑘+1) × 𝜔(𝑡𝑘, 𝑡𝑝))
𝑡𝑝
𝑡𝑘=𝑡𝑠

 (15)

Where 𝐴𝑛𝑖𝑗
(𝑡𝑘, 𝑡𝑘+1) is the number of accesses of file 𝑓𝑖 from data center 𝑑𝑐𝑗 during the time interval 𝑡𝑘 to 𝑡𝑘+1. This

parameter used to select data centers set that need replicas to be created in them, and data centers which have the most

Popularity Degree per data center will be chosen. So 𝐷𝐶𝑛𝑒𝑒𝑑𝑖
= {𝑑𝑐𝑛𝑒𝑒𝑑𝑖1

, 𝑑𝑐𝑛𝑒𝑒𝑑𝑖2
, … , 𝑑𝑐𝑛𝑒𝑒𝑑𝑖𝑅𝑛𝑖(𝑖𝑛𝑐)

} is the data center

set that new replica should be created on them and it can calculated by (16).

𝐷𝐶𝑛𝑒𝑒𝑑𝑖
={𝑑𝑐𝑛𝑒𝑒𝑑𝑖1

,𝑑𝑐𝑛𝑒𝑒𝑑𝑖2
,…,𝑑𝑐𝑛𝑒𝑒𝑑i𝑅𝑛𝑖(𝑖𝑛𝑐)

},

𝐷𝐶𝑛𝑒𝑒𝑑𝑖
⊂𝐷𝐶,∀ 𝑑𝑐𝑛𝑒𝑒𝑑𝑖𝑗

∈𝐷𝐶𝑛𝑒𝑒𝑑𝑖
,𝑑𝑐𝑗∈𝐷𝐶−𝐷𝐶𝑛𝑒𝑒𝑑𝑖

; 𝑃𝐷𝑖𝑛𝑒𝑒𝑑𝑖𝑗
>𝑃𝐷𝑖𝑗

 (16)

4.4. Deletion old replica

After selecting the appropriate data centers for the placement of the new replicas, if the replica is not available in the

data center and it has enough space for placement, the replica on data center can be created. Otherwise, some files

should be deleted from the data center to be replicated if possible. To do this, some definitions are presented and based

on that how to select the file for deletion will be described.

Definition 4.4.1: (The best data center contains a file): is the data center which has the required data for replication,

and has the most bandwidth between itself and the destination data center to other data centers contain files.

If 𝑑𝑐𝑗 is the one of the selected data center to replicate the new replica of file 𝑓𝑖 , let

𝐷𝐶𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔𝑖
= {𝑑𝑐𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔𝑖1

, 𝑑𝑐𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔𝑖2
, … , 𝑑𝑐𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔𝑖𝑅𝑛𝑖

} be set of data center that containing the data file 𝑓𝑖

composed 𝑅𝑛𝑖 data center, and 𝐵𝑊𝑗𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔𝑖
= {𝑏𝑤𝑗𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔𝑖1

, 𝑏𝑤𝑗𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔𝑖2
, … , 𝑏𝑤𝑗𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔𝑖𝑅𝑛𝑖

} be a set of

bandwidth between data center 𝑑𝑐𝑗 and data center of set 𝐷𝐶𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔𝑖
, best data center containing file can be

calculated by (17).

𝑑𝑐𝐵𝑒𝑠𝑡𝑖
= 𝑑𝑐𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔𝑖𝑘

, 𝑑𝑐𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔𝑖𝑘
∈ 𝐷𝐶𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔𝑖

, 𝑏𝑤𝑗𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔𝑖𝑘
= 𝑚𝑎𝑥 (𝐵𝑊𝑗𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔𝑖

) (17)

Definition 4.4.2: (Access cost): access cost of data center 𝑑𝑐𝑗 to file 𝑓𝑖 is size of file 𝑓𝑖 to bandwidth between data

center 𝑑𝑐𝑗 and the best data center 𝑑𝑐𝐵𝑒𝑠𝑡𝑖
 contains file 𝑓𝑖. It can be calculated according to (18).

𝐶𝑜𝑠𝑡𝑗𝐵𝑒𝑠𝑡𝑖
=

𝐹𝑠𝑖

𝑏𝑤𝑗𝐵𝑒𝑠𝑡𝑖

 (18)

Where 𝐶𝑜𝑠𝑡𝑗B𝑒𝑠𝑡𝑖
 is access cost of data center 𝑑𝑐𝑗 to file 𝑓𝑖, and bandwidth between data center 𝑑𝑐𝑗 and the best data

center 𝑑𝑐𝐵𝑒𝑠𝑡𝑖
 contains file 𝑓𝑖.

170 Journal of Advanced Computer Science & Technology

According to access cost definition, we can prove that the average cost of file 𝑓𝑖 can be calculated by (19).

𝐴𝑣𝑔𝐶𝑜𝑠𝑡𝑖 =
∑ 𝐶𝑜𝑠𝑡𝑗𝐵𝑒𝑠𝑡𝑖

𝑅𝑛𝑖(𝑖𝑛𝑐)

𝑗=0

𝑅𝑛𝑖(𝑖𝑛𝑐)
 (19)

During the placement of replica, if the data center doesn’t have enough space to store new replicas, a mechanism should

be considered to delete existing files. Deletion takes place in two steps. In the first step, the existing files are arranged

based on the least frequently used (LFU) and then as much as Five times bigger than the size of the selected files, some

files from data center are chosen as a candidate and introduced to the second step. Let 𝐹𝑑𝑐𝑗
= {𝑓𝑑𝑐𝑗1

, 𝑓𝑑𝑐𝑗2
, … , 𝑓𝑑𝑐𝑗𝐹𝑛𝑗

}

be files set of data center 𝑑𝑐𝑗 Candidate files for deletion can be calculated according to (20).

𝐹𝑐𝑎𝑛𝑑𝑖𝑑𝑑𝑐𝑗
={𝑓𝑐𝑎𝑛𝑑𝑖𝑑𝑑𝑐1

,𝑓𝑐𝑎𝑛𝑑𝑖𝑑𝑑𝑐2
,…,𝑓𝑐𝑎𝑛𝑑𝑖𝑑𝑑𝑐𝐹𝑛𝑗

},

𝐹𝑐𝑎𝑛𝑑𝑖𝑑𝑑𝑐𝑗
⊂𝐹𝑑𝑐j

,∀ 𝑓𝑐𝑎𝑛𝑑𝑖𝑑𝑑𝑐𝑘
∈𝐹𝑐𝑎𝑛𝑑𝑖𝑑𝑑𝑐𝑗

,𝑓𝑑𝑐𝑗𝑘
∈𝐹𝑑𝑐𝑗

−𝐹𝑐𝑎𝑛𝑑𝑖𝑑𝑑𝑐𝑗
; 𝐴𝑛𝑐𝑎𝑛𝑑𝑖𝑑𝑑𝑐𝑘

>𝐴𝑛𝑑𝑐𝑗𝑘

 (20)

In the second step, the files of set 𝐹𝑐𝑎𝑛𝑑𝑖𝑑𝑑𝑐𝑗
 that have the following two conditions are deleted:

1) The average of access time to the selected file for deletion is less than the average of access time to every single

existing file in its data center.

2) The average of access time to the selected file for deletion assuming it is deleted is less than the average of access

time to the file which is selected for replication.

And this operation continues until enough space for replication of new replicas is created. And if it fails to create

enough space, placement doesn’t take place. The file 𝑓𝑐𝑎𝑛𝑑𝑖𝑑𝑑𝑐𝑘
 will be deleted if the condition shown in (21) is met.

∀𝑓𝑑𝑐𝑗𝑘
∈ 𝐹𝑑𝑐𝑗

, 𝐴𝑣𝑔𝐶𝑜𝑠𝑡𝑐𝑎𝑛𝑑𝑖𝑑𝑑𝑐𝑘
≤ 𝐴𝑣𝑔𝐶𝑜𝑠𝑡𝑑𝑐𝑗𝑘

, 𝐴𝑣𝑔𝐶𝑜𝑠𝑡𝑐𝑎𝑛𝑑𝑖𝑑𝑑𝑐𝑘
< 𝐴𝑣𝑔𝐶𝑜𝑠𝑡𝑖 , 𝑖𝑓 𝑓𝑐𝑎𝑛𝑑𝑖𝑑𝑑𝑐𝑘

 𝑑𝑒𝑙𝑒𝑡𝑒𝑑 (21)

4.5. PDRA algorithm

According to the above analysis, the replication decision is based on the theory of temporal locality and temporal

geography. A popular data file is determined by the analysis of the access information to the data from users. When the

popularity of a data file passes a dynamic threshold, the replication operation will be triggered. The number of replicas

depends on the reasonable increase of file availability; the replica placement is determined by the popularity of a data

file per data center and is accomplished in a balanced way, and the deletion of file is based on access cost of data file.

The core part of the 4PDRA algorithm is described as follows.

1) 4PDRA Algorithm

2) Begin

3) for each data file 𝑓𝑖 in all data centers 𝐷𝐶 do

4) Calculate the popularity degree 𝑃𝐷𝑖 of data file 𝑓𝑖 by (6).

5) Calculate replica factor 𝑅𝐹𝑖 of data file 𝑓𝑖 by (8).

6) end for

7) Calculate replica factor 𝑅𝐹𝑠𝑦𝑠 of system by (9).

8) for each data file 𝑓𝑖 at all data centers 𝐷𝐶 do

9) if condition of (10) is met then

10) The replication operation of the data file 𝑓𝑖 will be triggered.

11) end if

12) end for

13) for each data file 𝑓𝑖 at all data centers 𝐷𝐶 do

14) Calculate the old file availability 𝑃𝑜𝑙𝑑(𝐹𝐴𝑖) of data file 𝑓𝑖 by (2).

15) end for

16) for each triggered data file 𝑓𝑖 do

17) Calculate the new file availability 𝑃𝑛𝑒𝑤(𝐹𝐴𝑖)of data file 𝑓𝑖 by (11).

18) Calculate the number of new replicas needed R𝑛𝑖(𝑖𝑛𝑐) by (13).

19) end for

20) for each triggered data file 𝑓𝑖 do

21) for each data center 𝑑𝑐𝑗 do

22) Calculate popularity degree per data center 𝑃𝐷𝑖𝑗
 for file 𝑓𝑖 in data center 𝑑𝑐𝑗 by (15).

23) Select data center set 𝐷𝐶𝑛𝑒𝑒𝑑𝑖
 for replica placement of file 𝑓𝑖 by (16)

Journal of Advanced Computer Science & Technology 171

24) end for

25) for each data center 𝑑𝑐𝑛𝑒𝑒𝑑𝑖
 do

26) Replicate replicas of file 𝑓𝑖 in data center 𝑑𝑐𝑛𝑒𝑒𝑑𝑖

27) if the storage space of the target data center 𝑑𝑐𝑛𝑒𝑒𝑑𝑖
 is not enough then

28) Find the candidate files set Fcandiddcj
 to deletion in data center dcneedi

 by (20).

29) do

30) Delete data file from data center dcneedi
 according to (21).

31) while enough space for replication provide

32) end if

33) end for

34) End

5. Experimental results

In order to evaluate the performance of the proposed 4PDRA algorithm, simulation environment and parameter setup

are discussed in this section, followed by the precise performance evaluation results.

5.1. Simulation tool and parameter setup

OptorSim is used as the simulator tool to evaluate the performance of our proposed algorithm. OptorSim was developed

by the European Data Grid projects [21] and is written in Java. It provides a framework to simulate the real grid

environment. It is developed to test the dynamic replication strategies.

The simulation here has been performed with the grid network topology shown in Fig. 2 we used the CMS [22] testbed

architecture; this architecture contains twenty sites. The job execution scenario used for this algorithm is shown in

Table 1. 4PDRA is compared with No-Replication, Least Frequently Used (LFU), and Least Recently Used (LRU). In

No Replication Algorithm the files are taken from the master site where the data are originally produced. LFU always

replicates and delete those files least frequently accessed if the storage space is not enough for storing new replica. LRU

strategy also always replicates and delete those files least recently accessed.

Fig. 2: Network Topology.

Table 1: Simulation Parameters

Parameters Values

Number of Jobs 1000

Number of Job Types 6

Size of single file 100Mb-1GB

Job Delay 2500ms

Bandwidth 100-10000MB

Volume of storage element 50000MB

α 0.5

172 Journal of Advanced Computer Science & Technology

5.2. Evaluation metrics

Definition 5.2.1: (Mean job execution time): The mean job execution time is defined as the total time to execute all the

jobs divided by the number of jobs completed. The total time includes the time that elapses from when a job enters the

queue in a site to await execution until the time when the job finishes its processing and leaves the site. It is computed

as shown in (22).

𝑀𝐽𝐸𝑇 =
∑ (𝐽𝑎𝑡𝑖−𝐽𝑑𝑡𝑖)

𝐽𝑛
𝑖=1

𝐽𝑛𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑
 (22)

Where 𝐽𝑛 is the number of jobs processed through the system, 𝐽𝑎𝑡𝑖 is arrival time of job 𝐽𝑖, 𝐽𝑑𝑡𝑖 is departure time of job

𝐽𝑖, and 𝐽𝑛𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑 is number of completed job. This metric is considered the most important of the evaluation metrics.

Definition 5.2.2: (Average storage used): Storage used specifies the amount of space used by files. Monitoring the use

of storage resources in the grid sites can also be a valuable source of information. Storage usage can be calculated for

each site as a percentage of the capacity reserved by files out of the total capacity of the underlying storage. The

average of all the storage elements in the grid can reflect the total system storage cost, which is computed as shown in

(23).

𝐴𝑆𝑈 =
∑ (

𝐷𝐶𝑢𝑖
𝐷𝐶𝑠𝑖

)𝐷𝐶𝑛
𝑖=1

𝐷𝐶𝑛
× 100% (23)

Where 𝐷𝐶𝑛 is the number of data centers, 𝐷𝐶𝑢𝑖 is the storage usage for data center 𝑑𝑐𝑖, and 𝐷𝐶𝑠𝑖 is the total capacity

of the storage medium.

Definition 5.2.3: (Effective network usage): Replicating a file takes time and uses network bandwidth. This cost is

effectively the ratio of files transferred to files requested, so a low value indicates that the optimization strategy used is

better at placing files in the right places. It can be measured by using (24).

ENU =
Anremote+Fnreplicate

Anremote+Anlocal
 (24)

Where Anremote is the number of times the Computing Element reads a file from a Storage Element on a different data

center, Fnreplicate is the total number of file replications that take place during the job execution and Anlocal is the

number of times a Computing Element reads a file from a Storage Element on the same data center?

5.3. Simulation results and discussion

In this section the result of 4PDRA simulation will be described.

The mean job execution time for the Random Zipf Access Pattern Generator is shown in Fig. 3 when compared to all

other algorithms, the Modified 4PDRA algorithm has the shortest mean job execution time. The 4PDRA algorithm

improves the mean job execution time by locating files based on temporal locality and temporal geography, and stores it

in the most frequently accessed data center.

Fig.3: The Mean Execution Time for Different Algorithms.

The storage used for the Random Zipf Access Pattern Generator is depicted in Fig. 4. The storage used is best in the No

replication strategy because the file is stored in only one site, which is the master site, and no replication takes place.

0

500

1000

1500

2000

2500

5 0 0 1 0 0 0 1 5 0 0 2 0 0 0

M
EA

N
 J

O
B

 T
IM

E

NO. OF JOBS

LRU LFU 4PDRA

Journal of Advanced Computer Science & Technology 173

When compared to the LRU, the LFU and 4PDRA algorithms, the 4PDRA algorithm performs better because of

considering temporal locality and creating a reasonable number of replicas.

Fig.4: The Percentage of the Used Storage Space.

The effective network usage ranges from 0 to 1. This algorithm is optimized to minimize the bandwidth consumption

and thus reduce the network traffic. The No Replication Strategy performs the worst and consumes the maximum

network bandwidth available in the network. The effective network usage is better in 4PDRA in comparison the LFU

and LRU strategies because of considering access cost in deletion of replicas. The effective network usage for the

Random Zipf Access Pattern Generator is shown in Fig. 5.

Fig. 5: Effective Network Usage.

6. Conclusion and future works

A data grid provides the ability to access and manage data and data resources on the grid. Replication involves the

creation of identical copies of data files and their distribution over various grid sites needing access to these replicas.

Replicas must be managed in terms of creation, deletion and placement. In this paper, a Four-Phase Data Replication

Algorithm based on Temporal and Geographical locality is proposed. It includes: 1. Evaluating and identifying the

popular data and triggering a replication operation when the popularity data passes a dynamic threshold; 2. Analyzing

and modeling the relationship between system availability and the number of replicas, and calculating a suitable number

of new replicas; 3. Placing replicas among data nodes in a balanced way; 4. It removes files with least cost of average

access time when encountering insufficient space for replication. By using this algorithm, mean job execution time can

be minimized. The network is used more effectively, and storage space is saved. In future work, more realistic scenarios

and user access patterns can be investigated. It can be used another function to calculate the popularity degree such as

times series or considering user's access pattern, instead of time-based forgetting function. It can be used some other

metric to evaluate this algorithm such as response time, waiting time and etc. Finally, this model can be deployed in a

real grid environment.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

No-Rep LRU LFU 4PDRA

P
e

rc
e

n
ta

ge
 o

f
St

o
ra

ge
 F

ill
e

d

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

No-Rep LRU LFU 4PDRA

Ef
fe

ct
iv

e
 N

e
tw

o
rk

 U
sa

ge

174 Journal of Advanced Computer Science & Technology

References

[1] I. Foster, C. Kesselman. "The Grid: Blueprint for a New Computing Infrastructure", Morgan Kaufmann, (2004).

[2] Khanli L.M., A. Isazadeh, T.N. Shishavanc. "PHFS: A dynamic Replication method, to decrease access latencyin multi-tier data grid", Future

GenerationComputer Systems 27, (2011), pp.233-244. http://dx.doi.org/10.1016/j.future.2010.08.013.
[3] W. Allcock, J. Bester, J. Bresnahan, A. Chervenak, I. Foster, C. Kesselman, S. Meder, V. Nefedova, D.Quesnel, S. Tuecke. "Secure, Efficient

Data Transportand Replica Management for High-Performance Data-Intensive Computing" IEEE Mass Storage Conference, (2001).

[4] Stevens. R, Woodward. P, DeFanti. T, Catlett. C. "From the I-WAY to the National Technology Grid", Communications of the ACM, Vol.40,
No.11, (1997), pp.50-61. http://dx.doi.org/10.1145/265684.265692.

[5] Jose M. Perez, F. Garcia-Carballeira, J. Carretero, A. Calderon, J. Fernandez. "Branch replication scheme: a new model for data replication in
large scale data grids", Future Generation Computer Systems, Vol.26, No.1, (2010), pp.12–20. http://dx.doi.org/10.1016/j.future.2009.05.015.

[6] Chang R-S., J-S. Chang, S-Y. Lin. "Job scheduling and data replication on data grids", Future Generation Computer Systems, Vol.23, (2007),

pp.846-860. http://dx.doi.org/10.1016/j.future.2007.02.008.
[7] Rabinovich M., I. Rabinovich, R. Rajaraman. "Dynamic Replication on the Internet", Technical Report, (1998).

[8] Park S.M., J.H. Kim, Y.B. Ko, W.S. Yoon. "Dynamic Data Replication Strategy Based on Internet Hierarchy BHR", Lecture notes in

Computer Science Publisher, Springer-Verlag, Vol.3033, (2004), pp.838-846.
[9] Tang M., B.S. Lee, X. Tang, C.K. Yeo. "The impact of data replication on job scheduling performance in the data grid", Future Generation

Computer Systems, Vol.22, No.3, (2006), pp.254–268. http://dx.doi.org/10.1016/j.future.2005.08.004.

[10] William H. Bell, David G. Cameron, Ruben Carvajal-Schiaffino, A. Paul Millar, Kurt Stockinger, Floriano Zini. "Evaluation of an economy-
based file replication strategy for a Data Grid", International Workshop on Agent Based Cluster and Grid Computing at CCGrid, Tokyo,

Japan, IEEE Computer Society Press ,(2003). http://dx.doi.org/10.1109/CCGRID.2003.1199430.

[11] Sang-Min Park, Jai-Hoon Kim, Young-Bae Ko, Won-Sik Yoon. "Dynamic Data Grid replication strategy based on internet hierarchy", Second
International Workshop on Grid and CooperativeComputing, GCC', Shanghai, China, (2003).

[12] K. Sashi, A.S. Thanamani. "Dynamic replication in a data grid using a modified BHR region based algorithm", Future Generation Computer

Systems, Vol.27, No.2, (2011), pp.202–210. http://dx.doi.org/10.1016/j.future.2010.08.011.
[13] K. Ranganathan, I. Foster. "Design and evaluation of dynamic replication strategies for a high performance data grid", International

Conference on Computing in High Energy and Nuclear Physics, Beijing, China, (2001).

[14] A. Horri, R. Sepahvand, Gh. Dastghaibyfard. "A hierarchical scheduling and replication strategy", International Journal of Computer Science
and Network Security Vol.8, (2008).

[15] K. Sashi, A.S. Thanamani. "Dynamic replication in a data grid using a modified BHR region based algorithm", Future Generation Computer

Systems, Vol.27, No.2, (2011), pp.202–210. http://dx.doi.org/10.1016/j.future.2010.08.011.
[16] K. Sashi, A.S. Thanamani. "A new dynamic replication algorithm for European data grid", Proceedings of the Third Annual ACM Bangalore

Conference, (2010), p.17. http://dx.doi.org/10.1145/1754288.1754305.

[17] Rood B, Lewis M J. "Grid resource availability prediction- based scheduling and task replication", Journal of Grid Computing, Vol.7, No.4,
(2009), pp.479-500. http://dx.doi.org/10.1007/s10723-009-9135-2.

[18] Al-Kuwaiti M, Kyriakopoulos N, Hussein S. "A comparative analysis of network dependability, fault-tolerance, reliability, security, and

survivability", IEEE Communications Surveys & Tutorials, Vol.11, No.2, (2009), pp.106-124. http://dx.doi.org/10.1109/SURV.2009.090208.
[19] Sun DW, Chang GR, Gao S., "Modeling a dynamic data replication strategy to increase system availability in cloud computing environments",

Journal of Computer Science and Technology, Vol. 27, No.2, (2012), pp.256-272. http://dx.doi.org/10.1007/s11390-012-1221-4.

[20] D.G. Cameron, R.C. Schiaffino, J. Ferguson, P. Millar, C. Nicholson, K.Stockinger, F. Zini. "OptorSim v2.0 Installation and User Guide",

(2004).

[21] K. Holtman. "CMS Data Grid system overview and requirement", Tech report CERN, (2001).

http://dx.doi.org/10.1016/j.future.2010.08.013
http://dx.doi.org/10.1145/265684.265692
http://dx.doi.org/10.1016/j.future.2009.05.015
http://dx.doi.org/10.1016/j.future.2007.02.008
http://dx.doi.org/10.1016/j.future.2005.08.004
http://dx.doi.org/10.1109/CCGRID.2003.1199430
http://dx.doi.org/10.1016/j.future.2010.08.011
http://dx.doi.org/10.1016/j.future.2010.08.011
http://dx.doi.org/10.1145/1754288.1754305
http://dx.doi.org/10.1007/s10723-009-9135-2
http://dx.doi.org/10.1109/SURV.2009.090208
http://dx.doi.org/10.1007/s11390-012-1221-4

